
Dimensionality Reduction for Tukey Regression

Supplementary Material for “Dimensionality Reduction for Tukey Regression”

A. Preliminaries
For two real numbers a and b, we use the notation a = (1± ε)b if a ∈ [(1− ε)b, (1 + ε)b].

We use ‖ · ‖p to denote the `p norm of a vector, and ‖ · ‖p,w to denote the weighted `p norm, i.e.,

‖y‖p,w =

(
n∑
i=1

wi|yi|p
)1/p

.

For a vector y ∈ Rn, a weight vector w ∈ Rn whose entries are all non-negative and a loss function M : R → R+ that
satisfies Assumption 1, ‖y‖M,w is defined to be

‖y‖M,w =

n∑
i=1

wi ·M(yi).

We also define ‖y‖M to be

‖y‖M =

n∑
i=1

M(yi).

For a vector y ∈ Rn and a real number τ ≥ 0, we define Hy to be the set Hy = {i ∈ [n] | |yi| > τ}, and Ly to be the set
Ly = {i ∈ [n] | |yi| ≤ τ}.

A.1. Tail Inequalities

Lemma A.1 (Bernstein’s inequality). Suppose X1, X2, . . . , Xn are independent random variables taking values in [−b, b].
Let X =

∑n
i=1Xi and Var[X] =

∑n
i=1 Var[Xi] be the variance of X . For any t > 0 we have

Pr[|X − E[X]| > t] ≤ 2 exp

(
− t2

2 Var[X] + 2bt/3

)
.

A.2. Facts Regarding the Loss Function

Lemma A.2. Under Assumption 1, there is a constant C > 0 that depends only on p, for which for any a, b with |b| ≤ ε|a|,
we have M(a+ b) = (1± Cε)M(a).

Proof. Without loss of generality we assume a > 0. When b ≥ 0, by Assumption 1.3, we have

M(a) ≤M(a+ b) ≤ (1 + ε)p ·M(a) ≤ (1 + Cε)M(a).

When b < 0, we have

M(a) ≥M(a+ b) ≥
(

a

a+ b

)p
M(a) ≥ (1− Cε)M(a).

Lemma A.3. Under Assumption 1, there is a constant C ′ > 0 that depends only on p, for which for any e, y ∈ Rn and any
weight vector w with ‖e‖M,w ≤ ε2p+1‖y‖M,w,

‖y + e‖M,w = (1± C ′ε)‖y‖M,w.

Proof. Clearly, by Assumption 1.3,
‖e/ε2‖M,w ≤ ε−2p‖e‖M,w ≤ ε‖y‖M,w.
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Let S = {i ∈ n | |ei| ≤ ε|yi|}. By Lemma A.2, for all i ∈ S we have M(yi + ei) = (1± Cε)M(yi). For all i ∈ [n] \ S,
we have |ei| > ε|yi|. For sufficiently small ε, by Assumption 1.2 and Lemma A.2,

M(ei + yi) ≤M(ei/ε
2 + yi) ≤ (1 + Cε)M(ei/ε

2),

which implies ∑
i∈[n]\S

wiM(yi + ei) ≤ (1 + Cε)‖e/ε2‖M,w ≤ (1 + Cε)ε‖y‖M,w.

Furthermore, ∑
i∈[n]\S

wiM(yi) ≤
∑

i∈[n]\S

wiM(ei/ε) ≤ ‖e/ε2‖M,w ≤ ε‖y‖M,w.

Thus,

‖y + e‖M,w

=
∑
i∈S

wiM(yi + ei) +
∑

i∈[n]\S

wiM(yi + ei)

=(1± Cε)
∑
i∈S

wiM(yi)± (1 + Cε)ε‖y‖M,w

=(1± C ′ε)‖y‖M,w.

A.3. Facts Regarding Lewis Weights

In this section we recall some facts regarding leverage scores and Lewis weights.

Definition A.1. Given a matrix A ∈ Rn×d. The leverage score of a row Ai,∗ is defined to be

τi(A) = Ai,∗(A
TA)†(Ai,∗)

T .

Definition A.2 ((Cohen & Peng, 2015)). For a matrix A ∈ Rn×d, its `p Lewis weights {ui}ni=1 are the unique weights such
that for each i ∈ [n] we have

ui = τi(U
1/2−1/pA).

Here τi is the leverage score of the i-th row of a matrix and U is the diagonal matrix formed by putting the elements of u on
the diagonal.

Theorem A.4 ((Cohen & Peng, 2015)). There is an algorithm that receives a matrix A ∈ Rn×d and outputs {û}ni=1 such
that

ui ≤ ûi ≤ 2ui,

where {ui}ni=1 are the `p Lewis weights of A. Furthermore, the algorithm runs in Õ(nnz(A) + dp/2+O(1)) time.

Theorem A.5 (Lewis’s change of density (Lewis, 1978), see also (Wojtaszczyk, 1996, p. 113)). Given a matrix A ∈ Rn×d
and p ≥ 1, there exists a basis matrix H ∈ Rn×d of the column space of A, such that if we define a weight vector u ∈ Rn
where ui = ‖Hi,∗‖2, then the following hold:

1. ‖u‖pp ≤ d;

2. U
p/2−1

H is an orthonormal matrix.

Here U is the diagonal matrix formed by putting the elements of u on the diagonal.

Lemma A.6 (See, e.g., (Wojtaszczyk, 1996, p. 115)). Given a matrix A ∈ Rn×d, for the basis matrix H and the weight
vector u defined in Theorem A.5, for all x ∈ Rd we have

‖Up/2−1
Hx‖2 ≤ ‖Hx‖p ≤ d1/p−1/2‖Up/2−1

Hx‖2
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when 1 ≤ p ≤ 2, and

‖Hx‖p ≤ ‖U
p/2−1

Hx‖2 ≤ d1/2−1/p‖Hx‖p

when p ≥ 2.

Since U
p/2−1

H is an orthonormal matrix, for all x ∈ Rd we have

‖x‖2 ≤ ‖Hx‖p ≤ d1/p−1/2‖x‖2

when 1 ≤ p ≤ 2, and
‖Hx‖p ≤ ‖x‖2 ≤ d1/2−1/p‖Hx‖p

when p ≥ 2.

Lemma A.7. Given a matrix A ∈ Rn×d and p ≥ 1, the weight vector u defined in Definition A.2 and the weight vector u
defined in Theorem A.5 satisfies

ui = upi .

Proof. We show that substituting ui = upi will satisfy

ui = τi(U
1/2−1/pA),

and thus the theorem follows by the uniqueness of Lewis weights.

Since leverage scores are invariant under change of basis (see, e.g., (Woodruff, 2014, p. 30)), we have

τi(U
1/2−1/pA) = τi(U

1/2−1/pH),

where H is the basis matrix defined in Theorem A.5. Substituting ui = upi we have

τi(U
1/2−1/pA) = τi(U

p/2−1
H).

However, since U
p/2−1

H is an orthonormal matrix, and the leverage scores of an orthonormal matrix are just squared `2
norm of rows (see, e.g., (Woodruff, 2014, p. 29)), we have

τi(U
1/2−1/pA) =

(
u
p/2−1
i ‖Hi,∗‖2

)2

= upi .

Lemma A.8. Given a matrix A ∈ Rn×d and p ≥ 1, for all y ∈ im(A) and i ∈ [n], we have

|yi|p ≤ dmax{0,p/2−1}ui · ‖y‖pp.

Here {ui}ni=1 are the `p Lewis weights defined in Definition A.2.

Proof. For all y ∈ im(A), we can write y = Hx for some vector x ∈ R and the basis matrix H in Theorem A.5. By the
Cauchy-Schwarz inequality,

|yi|p = |〈x,Hi,∗〉|p ≤ ‖x‖p2 · ‖Hi,∗‖p2,

which implies
|yi|p ≤ dmax{0,p/2−1} · ‖y‖pp · ‖Hi,∗‖p2

by Lemma A.6, which again implies
|yi|p ≤ dmax{0,p/2−1}ui · ‖y‖pp

since ui = ‖Hi,∗‖2 and ui = upi by Lemma A.7.
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Lemma A.9. Under Assumption 1, given a matrix A ∈ Rn×d, δlewis ∈ (0, 1), and a weight vector w ∈ Rn such that (i)
wi ≥ 1 for all i ∈ [n] and (ii) maxi∈[n] wi ≤ 2 mini∈[n] wi. Let w′ ∈ Rn be another weight vector which is defined to be

w′i =

{
wi/pi with probability pi
0 with probability 1− pi

and pi satisfies
pi ≥ min{1,Θ(UM/LM · dmax{0,p/2−1}ui · log(1/δlewis)/ε

2)},

then for any fixed vectors x ∈ Rd such that ‖Ax‖∞ ≤ τ , with probability at least 1− δlewis we have

‖Ax‖M,w = (1± ε)‖Ax‖M,w′ .

Proof. Without loss of generality we assume 1 ≤ wi ≤ 2 for all i ∈ [n]. Let y = Ax. We use the random variable Zi to
denote

Zi = w′iM(yi).

Clearly E[Zi] = wiM(yi), which implies
E[‖y‖M,w′ ] = ‖y‖M,w.

Furthermore, Zi ≤ 2M(yi)/pi. Since ‖y‖∞ ≤ τ and LM |yi|p ≤ M(yi) ≤ UM |yi|p when |yi| ≤ τ , by Lemma A.8 we
have

Zi ≤ 2UM |yi|p/pi ≤ Θ(LM · ‖y‖pp · ε2/ log(1/δlewis)) ≤ Θ(‖y‖M,w · ε2/ log(1/δlewis)).

Moreover, E[Z2
i ] ≤ O((M(yi))

2/pi), which implies

n∑
i=1

E[Z2
i ] ≤ O

(
n∑
i=1

(M(yi))
2/pi

)
.

By Hölder’s inequality,

n∑
i=1

E[Z2
i ] ≤ O(‖y‖M ) ·max

i∈[n]
M(yi)/pi ≤ O(‖y‖2M,w · ε2/ log(1/δlewis)).

Furthermore, since

Var

[
n∑
i=1

Zi

]
=

n∑
i=1

Var[Zi] ≤
n∑
i=1

E[Z2
i ],

Bernstein’s inequality in Lemma A.1 implies

Pr [|‖y‖M,w′ − ‖y‖M,w| > t] ≤ exp

(
−Θ

(
t2

‖y‖M,w · ε2/ log(1/δlewis) · t+ ‖y‖2M,w · ε2/ log(1/δlewis)

))
.

Taking t = ε · ‖y‖M,w implies the desired result.

Theorem A.10. Given a matrix A ∈ Rn×d, δsubspace ∈ (0, 1), and a weight vector w ∈ Rn such that (i) wi ≥ 1 for all
i ∈ [n] and (ii) maxi∈[n] wi ≤ 2 mini∈[n] wi. Let w′ ∈ Rn be another weight vector which is defined to be

w′i =

{
wi/pi with probability pi
0 with probability 1− pi

and pi satisfies
pi ≥ min{1,Θ(dmax{0,p/2−1}ui · (d log(1/ε) + log(1/δsubspace))/ε

2)},

then with probability at least 1− δsubspace, for all vectors x ∈ Rd, we have

‖Ax‖pp,w = (1± ε)‖Ax‖pp,w′ .
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Proof. Let N be an ε-net for {Ax | ‖Ax‖p,w = 1}. Standard facts (see, e.g., (Woodruff, 2014, p. 48)) imply that
log |N | ≤ O(d log(1/ε)). Now we invoke Lemma A.9 with δlewis = δsubspace/|N |. Notice that f(x) = |x|p is also a loss
function that satisfies Assumption 1, with LM = UM = 1 and τ =∞. Thus, if pi satisfies

pi ≥ Θ(dmax{0,p/2−1}ui · (d log(1/ε) + log(1/δsubspace))/ε
2),

then with probability 1− δsubspace, simultaneously for all x ∈ N we have

‖Ax‖pp,w = (1± ε)‖Ax‖pp,w′ .

Now we can invoke the standard successive approximation argument (see, e.g., (Woodruff, 2014, p. 47)) to show that with
probability 1− δsubspace, simultaneously for all x ∈ Rd we have

‖Ax‖pp,w = (1±O(ε))‖Ax‖pp,w′ .

Adjusting constants implies the desired result.

B. Finding Heavy Coordinates
B.1. A Polynomial Time Algorithm

1. Let J = ∅.

2. Repeat the following for α times:

(a) Calculate {ui}i∈[n]\J , which are the `p Lewis weights of the matrix A[n]\J,∗.
(b) For each i ∈ [n] \ J , if

dmax{0,p/2−1}ui ≥
1

2α
,

then add i into J .

Figure 6. Algorithm for finding the set J .

Theorem B.1. For a given matrix A ∈ Rn×d, τ ≥ 0 and p ≥ 1, the algorithm in Figure 6 returns a set of indices J ⊆ [n]
with size |J | ≤ O(dmax{p/2,1} · α2), such that for all y ∈ im(A), if y satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α, then
Hy ⊆ J .

Proof. Consider a fixed vector y ∈ im(A) that satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α. For ease of notation, we
assume |y1| ≥ |y2| ≥ · · · ≥ |yn|. Of course, this order is unknown and is not used by our algorithm. Under this assumption,
Hy = {1, 2, . . . , |Hy|}.

We prove Hy ⊆ J by induction. For any i < |Hy|, suppose [i] ⊆ J and i + 1 /∈ J after the i-th repetition of Step 2, we
show that we will add i+ 1 into J in the (i+ 1)-th repetition of Step 2. Since, [i] ⊆ J and |y1| ≥ |y2| ≥ · · · ≥ |yn|,

‖y[n]\J‖pp ≤ ‖yLy‖pp + α|yi+1|p ≤ ατp + α|yi+1|p.

Since i+ 1 ∈ Hy , we must have |yi+1| ≥ τ , which implies

|yi+1|p

‖y[n]\J‖pp
≥ 1

2α
.

By Lemma A.8, this implies

dmax{0,p/2−1}ui+1 ≥
1

2α
,
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1. Let |J | = O(dmax{p/2,1} · α2) as in Corollary B.2.

2. Repeat the following for O(log(|J |/δstruct)) times:

(a) Randomly partition [n] into Γ1,Γ2, . . . ,Γα.
(b) For each j ∈ [α], use the algorithm in Theorem A.2 to obtain weights {ûi}i∈Γj such that ui ≤ ûi ≤ 2ui,

where {ui}i∈Γj are the `p Lewis weights of the matrix AΓj ,∗.
(c) For each j ∈ [α], for each i ∈ Γj , if

dmax{0,p/2−1}ûi ≥
1

6
,

then add i to I .

Figure 7. Algorithm for finding the set I .

where ui+1 is the `p Lewis weight of the row Ai+1,∗ in A[n]\J,∗, in which case we will add i + 1 into J . Thus, Hy ⊆ J
since |Hy| ≤ α.

Now we analyze the size of J . For the algorithm in Figure 6, we repeat the whole procedure α times. Each time, an index i
will be added into I if and only if

dmax{0,p/2−1}ui ≥
1

2α
.

However, since ∑
i∈[n]\J

ui =
∑

i∈[n]\J

upi ≤ d

by Theorem A.5, there are at most O(dmax{p/2,1} · α) such indices i. Thus, the total size of J is upper bounded by
O(dmax{p/2,1} · α2).

The above algorithm also implies the following existential result.

Corollary B.2. For a given matrix A ∈ Rn×d, τ ≥ 0 and p ≥ 1, there exists a set of indices J ⊆ [n] with size
|J | ≤ O(dmax{p/2,1} · α2), such that for all y ∈ im(A), if y satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α, then Hy ⊆ J .

B.2. An Input-sparsity Time Algorithm

To find a set of heavy coordinates, the algorithm in Theorem B.1 runs in polynomial time. In this section we present an
algorithm for finding heavy coordinates that runs in input-sparsity time. The algorithm is described in Figure 7.

Theorem B.3. For a given matrix A ∈ Rn×d, τ ≥ 0, δstruct ∈ (0, 1), and p ≥ 1, the algorithm in Figure 7 returns a set of
indices I ⊆ [n] with size |I| ≤ Õ(dmax{p/2,1}α · log(1/δstruct)), such that with probability at least 1−δstruct, simultaneously
for all y ∈ im(A), if y satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α, then Hy ⊆ I . Furthermore, the algorithm runs in
Õ
((

nnz(A) + dp/2+O(1) · α
)
· log(1/δstruct)

)
time.

Proof. Let J be the set with size |J | ≤ O(dmax{p/2,1} ·α2) whose existence is proved in Corollary B.2. For all y ∈ im(A),
if y satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α, then Hy ⊆ J . We only consider those c ∈ J for which there
exists y ∈ im(A) such that (i) ‖yLy‖pp ≤ α · τp, (ii) |Hy| ≤ α and (iii) c ∈ Hy, since we can remove other c from
J and the properties of J still hold. For such c ∈ Hy and the corresponding y ∈ im(A), suppose for some j ∈ [α]
we have c ∈ Γj . Since |Hy| ≤ α, with probability (1 − 1/α)|Hy|−1 ≥ 1/e, we have Γj ∩ Hy = {c}. Furthermore,
E[‖yLy∩Γj‖pp] = ‖yLy‖pp/α ≤ τp. By Markov’s inequality, with probability at least 0.8, we have ‖yLy∩Γj‖pp ≤ 5τp. Thus,
by a union bound, with probability at least 1/e− 0.2 > 0.1, we have ‖yLy∩Γj‖pp ≤ 5τp and Γj ∩Hy = {c}. By repeating
O(log(|J |/δstruct)) times, the success probability is at least 1− δstruct/|J |. Applying a union bound over all c ∈ J , with
probability 1− δstruct, the stated conditions hold for all c ∈ J . We condition on this event in the rest of the proof.
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Consider any c ∈ J and y ∈ im(A) with the properties stated above. Since |yc| ≥ τ , we have

|yc|p

‖yΓj‖
p
p
≥ |yc|p

‖yΓj∩Ly‖
p
p + |yc|p

≥ 1

6
.

By Lemma A.8, we must have

dmax{0,p/2−1}uc ≥
1

6
,

where uc is the `p Lewis weight of the row Ac,∗ in the matrix AΓj ,∗, which also implies

dmax{0,p/2−1}ûc ≥
1

6

since ûc ≥ uc, in which case we will add c to I .

Now we analyze the size of I . For each j ∈ [α], we have∑
i∈Γj

ûi ≤ 2
∑
i∈Γj

ui = 2
∑
i∈Γj

upi ≤ 2d

by Theorem A.5. For each j ∈ [α], there are at most O(dmax{p/2,1}) indices i which satisfy

dmax{0,p/2−1}ûi ≥
1

6
,

which implies we will add at most O
(
α · dmax{p/2,1}) elements into I during each repetition. The bound on the size of I

follows since there are only O(log(|J |/δstruct)) = O(log d+ logα+ log(1/δstruct)) repetitions.

For the running time of the algorithm, since we invoke the algorithm in Theorem A.4 for O(log(|J |/δstruct)) times, and
each time we estimate the `p Lewis weights of AΓ1,∗, AΓ2,∗, . . . , AΓ|α|,∗, which implies the running time for each repetition
is upper bounded by

|α|∑
j=1

Õ
(

nnz(AΓj ,∗) + dp/2+O(1)
)

= Õ
(

nnz(A) + dp/2+O(1) · α
)
.

The bound on the running time follows since we repeat for O(log(|J |/δstruct)) times.

The above algorithm and the probabilisitic method also imply the following existential result.

Corollary B.4. For a given matrix A ∈ Rn×d, τ ≥ 0 and p ≥ 1, there exists a set of indices I ⊆ [n] with size
|I| ≤ Õ(dmax{p/2,1} · α), such that for all y ∈ im(A), if y satisfies (i) ‖yLy‖pp ≤ α · τp and (ii) |Hy| ≤ α, then Hy ⊆ I .

C. The Net Argument
C.1. Bounding the Norm

We will generally assume that for product Ax, the x involved is in im(A>), which is the orthogonal complement of the
nullspace of A; any nullspace component of x would not affect Ax or SAx, and so can be neglected for our purposes.

Lemma C.1. When the entries of A are integral, for any nonempty S ⊂ [n], ‖A+
S,∗‖2 ≤ ‖A‖

d
2CP(A)

√
d, and under also

Assumption 2.2, ‖A+
S,∗‖2 ≤ n

O(d2).

Proof. When S is a nonempty proper subset of [n], then since ‖AS,∗‖2 ≤ ‖A‖2 and CP(AS,∗) ≤ CP(A), we have that if
‖A+
S,∗‖2 ≤ ‖AS,∗‖

d
2CP(AS,∗)

√
d, then the lemma follows. So we can assume S = [n].

First suppose A has full column rank, so that A>A is invertible. For any y ∈ Rn, A+y is the unique solution x∗ of
A>Ax = A>y. Applying Cramer’s rule, the entries of x∗ have the form xi = detBi

detA>A
, where Bi is the same as A>A,

except that the i’th column of Bi is A>y. The integrality of A implies |detA>A| ≥ 1; using that together with Hadamard’s
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determinant inequality and the definition of the spectral norm, we have ‖x∗‖2 ≤ ‖A‖
d
2CP(A)‖y‖2

√
d. Since this holds for

any y, we have ‖A+‖2 ≤ ‖A‖
d
2CP(A)

√
d as claimed.

Now supposeA has rank k < d. Then there is T ⊂ [d] of size k whose members are indices of a set of k linearly independent
columns of A. Moreover, if x∗ = A+y is a solution to minx ‖Ax− y‖2, then there is another solution where the entries
with indices in [d] \ T are zero, since a given column not in T is a linear combination of columns in T . That is, the solution
to minx∈Rk ‖A∗,T x− y‖2 can be mapped directly to a solution x∗ in Rk with the same Euclidean norm. Since A∗,T has
full column rank, the analysis above implies that

‖x∗‖2 ≤ ‖A∗,T ‖
k
2CP(A∗,T )‖y‖2

√
k ≤ ‖A‖d2CP(A)‖y‖2

√
d,

so the bound on ‖A+‖2 holds also when A has less than full rank.

The last statement of the lemma follows directly, using the definitions of ‖A‖2, CP(A), and Assumption 2.2.

Lemma C.2. If A has integral entries, and if Assumptions 1, 2.2, 2.3 hold, then Assumption 2.1 holds.

Proof. Let xC1

M be a C1-approximate solution of minx ‖Ax− b‖M , which Assumption 2.1 requires to have bounded
Euclidean norm. Let M̂(a) ≡ min{τp, |a|p}, so that Assumptions 1.4 and 1.5 imply that LMM̂(a) ≤M(a) ≤ UMM̂(a)
for all a. Letting x∗M ≡ argminx ‖Ax− b‖M , and similarly defining x∗

M̂
, this condition implies that

‖AxC1

M − b‖M̂ ≤
1

LM
‖AxC1

M − b‖M

≤ C1

LM
‖Ax∗M − b‖M

≤ C2‖Ax∗M − b‖M̂
≤ C2‖Ax∗M̂ − b‖M̂ , (3)

where C2 ≡ C1UM/LM .

Let S denote the set of indices at which |Ai,∗xC1

M − bi| ≤ τ . If S is empty, then xC1

M can be assumed to be zero.

Similarly to our general assumption that xC1

M ∈ im(A>), we can assume that xC1

M ∈ im(A>S,∗), since any component of
xC1

M in the nullspace of AS,∗ can be removed without changing AS,∗xC1

M , and without increasing the n− |S| contributions
of τp from the remaining summands in ‖AxC1

M − b‖M . (Here we used Assumption 1.5 that M(a) = τp for |a| ≥ τ .)

From xC1

M ∈ im(A>) it follows that ‖xC1

M ‖2 = ‖A+
S,∗AS,∗x

C1

M ‖2 ≤ ‖A
+
S,∗‖2‖AS,∗x

C1

M ‖2, and since

‖AS,∗xC1

M ‖2 ≤
√
n‖AS,∗xC1

M ‖p
≤
√
n(‖AS,∗xC1

M − bS‖p + ‖bS‖p)

≤ C2

√
n(‖Ax∗

M̂
− b‖1/p

M̂
+ ‖bS‖p) (by (3))

≤ 2C2

√
n‖b‖p,

we have ‖xC1

M ‖2 ≤ ‖A
+
S,∗‖2‖AS,∗x

C1

M ‖2 ≤ ‖A
+
S,∗‖22C2

√
n‖b‖p, and so from Lemma C.1 and Assumption 2.2, the bound

on ‖xC1

M ‖2 of Assumption 2.1 follows.

C.2. Net Constructions

Lemma C.3. Under the given assumptions, for U as in Assumption 2.1, there exists a set Nε ⊆ im([A b]) with size
|Nε| ≤ nO(d3) · (1/ε)O(d), such that for any x satisfying ‖x‖2 ≤ U , there exists y′ ∈ Nε such that

‖(Ax− b)− y′‖M ≤ εp.

Proof. Let M̂(a) ≡ min{τp, |a|p}. Assume for now that ε ≤ τ/2, so that if ‖Ax‖M̂ ≤ εp, then every entry of Ax is no
more than τ in magnitude, and so ‖Ax‖M̂ = ‖Ax‖pp.
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Let
Bε ≡ {Ax− b | ‖Ax− b‖M̂ ≤ ε

p} = {Ax− b | ‖Ax− b‖p ≤ ε}

and
BU ≡ {Ax− b | ‖x‖2 ≤ U} ⊆ {Ax− b | ‖Ax− b‖p ≤

√
n · (‖A‖2U + ‖b‖2)}.

From the scale invariance of the `p norm, and the volume in at-most d dimensions, Vol(Bε) ≥ (ε/(
√
n · (‖A‖2U +

‖b‖2)))d Vol(BU ), so that at most (
√
n · (‖A‖2U + ‖b‖2)/ε)d translates of Bε can be packed into BU without intersecting.

Thus the setNε of centers of such a maximal packing of translates is an εp-cover of BU , that is, for any point y ∈ BU , there
is some y′ ∈ N such that ‖y′ − y‖p ≤ ε, so that ‖y′ − y‖M̂ ≤ εp.

If ε > τ/2, we just note that a (τ/2)p-cover is also an εp-cover, and so there is an εp-cover of size (
√
n · (‖A‖2U +

‖b‖2)/min{τ/2, ε})d.

Plugging in the bounds for U from Assumption 2.1, and for τ , ‖b‖2, and ‖A‖2 ≤ maxi∈[d] ‖A∗,i‖2 from Assumptions 2.2
and 2.3, the cardinality bound of the lemma follows.

This argument is readily adapted to more general ‖ · ‖M , by noticing that ‖y−y′‖M ≤ UM ·‖y−y′‖M̂ using Assumption 1.4
and adjusting constants.

Lemma C.4. Under the given assumptions, there exists a setMα,β
ε ⊆ im([A b]) with size |Mα,β

ε | ≤ O
(
β/α
ε

)
· nO(d2) ·

(1/ε)O(d), such that for any x satisfying α ≤ ‖Ax− b‖p ≤ β ≤ τ , there exists y′ ∈Mα,β
ε such that

‖(Ax− b)− y′‖M ≤ εp · ‖Ax− b‖M .

Proof. We assume ε ≤ τ , since otherwise we can take ε to be τ . By standard constructions (see, e.g., (Woodruff, 2014,
p. 48)), there exists a setMγ ⊆ im([A b]) with size |Mγ | ≤ (1/ε)O(d), such that for any y = Ax − b with ‖y‖p = γ,
there exists y′ ∈Mγ such that ‖y − y′‖p ≤ γ · ε.

LetMα,β
ε be

Mα,β
ε =Mα ∪M(1+ε)α ∪M(1+ε)2α ∪ · · · ∪Mβ .

Clearly, by Assumption 2,

|Mα,β
ε | ≤ log1+ε(β/α) · nO(d2) · (1/ε)O(d) ≤ O

(
β/α

ε

)
· nO(d2) · (1/ε)O(d).

Now we show thatMα,β
ε satisfies the desired properties. For any x ∈ Rd such that y = Ax − b satisfies α ≤ ‖y‖p ≤

β ≤ τ , we must have |yi| ≤ τ for all entries of y. By normalization, there exists ŷ such that ‖y − ŷ‖p ≤ ε · ‖y‖p and
‖ŷ‖p = (1 + ε)i · α for some i ∈ N. Furthermore, by the property ofM(1+ε)iα, there exists y′ ∈M(1+ε)iα ⊆Mα,β

ε such
that ‖ŷ − y′‖p ≤ ε · ‖y′‖p ≤ 2ε · ‖y‖p. Thus, by triangle inequality, we have ‖y − y′‖p ≤ 3ε‖y‖p. For sufficiently small ε,
since ‖y‖p ≤ τ , we also have ‖y − y′‖p ≤ τ , which implies ‖y − y′‖∞ ≤ τ . Thus, using Assumption 1.4, we have

‖y − y′‖M ≤ UM‖y − y′‖pp ≤ UM · (3ε)p · ‖y‖pp ≤ UM/LM (3ε)p‖y‖M .

Adjusting constants implies the desired properties.

C.3. The Net Argument

Theorem C.5. For any A ∈ Rn×d and b ∈ Rn, given a matrix S ∈ Rr×n and a weight vector w ∈ Rn such that wi ≥ 0
for all i ∈ [n]. Let c = minx ‖Ax− b‖p. If there exist UO, UA, LA, LN ≤ poly(n) such that

1. ‖S(Ax∗M − b)‖M,w ≤ UO‖Ax∗M − b‖M , where x∗M = argminx ‖Ax− b‖M ;

2. LA‖Ax− b‖M ≤ ‖S(Ax− b)‖M,w ≤ UA‖Ax− b‖M for all x ∈ Rd;

3. ‖Sy‖M,w ≥ LN‖y‖M for all y ∈ Npoly(ε·τ/n) ∪M
c,c·poly(n)
poly(ε/n) ,
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then, any C-approximate solution of minx ‖S(Ax− b)‖M,w with C ≤ poly(n) is a C · (1 +O(ε)) · UO/LN -approximate
solution of minx ‖Ax−b‖M . HereNpoly(ε·τ/n) andMc,c·poly(n)

poly(ε/n) are as defined in Lemma C.3 and Lemma C.4, respectively.

Proof. We distinguish two cases in the proof.

Case 1: (C · UM · UA/(LM · LA)) · cp ≤ τp. In this case, we prove that any C-approximate solution xCS,M,w of
minx ‖S(Ax−b)‖M,w satisfies c ≤ ‖AxCS,M,w−b‖p ≤ (C ·UM ·UA/(LM ·LA))1/p ·c ≤ τ . Let x∗p = argminx ‖Ax−b‖p,
we have

‖AxCS,M,w − b‖M
≤‖S(AxCS,M,w − b)‖M,w/LA

≤C · ‖S(Ax∗p − b)‖M,w/LA

≤C · ‖Ax∗p − b‖M · UA/LA
≤C · ‖Ax∗p − b‖pp · (UM · UA)/LA

=C · cp · (UM · UA)/LA.

Since LM ≤ 1, this implies ‖AxCS,M,w − b‖M ≤ τp, which implies ‖AxCS,M,w − b‖∞ ≤ τ . Thus, ‖AxCS,M,w − b‖pp ≤
‖AxCS,M,w−b‖M/LM ≤ (C ·UM ·UA/(LM ·LA)) ·cp, which implies ‖AxCS,M,w−b‖p ≤ (C ·UM ·UA/(LM ·LA))1/p ·c.
Moreover, by the definition of c we have ‖AxCS,M,w − b‖p ≥ c.

Since (C · UM · UA/(LM · LA))1/p ≤ poly(n), by Lemma C.4, there exists y′ ∈ Mc,c·poly(n)
poly(ε/n) such that ‖(AxCS,M,w −

b)− y′‖M ≤ poly(ε/n) · ‖AxCS,M,w − b‖M . Notice that

‖S(AxCS,M,w − b)‖M,w = ‖Sy′ + S((AxCS,M,w − b)− y′)‖M,w.

For Sy′, since y′ ∈Mc,c·poly(n)
poly(ε/n) , we have

‖Sy′‖M,w ≥ LN‖y′‖M = LN‖AxCS,M,w − b+ (y′ − (AxCS,M,w − b))‖M .

Since ‖y′ − (AxCS,M,w − b)‖M ≤ poly(ε/n) · ‖AxCS,M,w − b‖M , by Lemma A.3, we have ‖AxCS,M,w − b + (y′ −
(AxCS,M,w − b))‖M ≥ (1− ε)‖AxCS,M,w − b‖M , which implies ‖Sy′‖M,w ≥ LN (1− ε)‖AxCS,M,w − b‖M . On the other
hand, ‖S((AxCS,M,w − b)− y′)‖M,w ≤ UA‖(AxCS,M,w − b)− y′‖M ≤ poly(ε/n) · ‖AxCS,M,w − b‖M . Again by Lemma
A.3, we have ‖S(AxCS,M,w − b)‖M,w ≥ (1− ε)‖Sy′‖M,w ≥ LN (1−O(ε))‖AxCS,M,w − b‖M . Furthermore, since xCS,M,w

is a C-approximate solution of minx ‖S(Ax− b)‖M,w, we must have

‖AxCS,M,w − b‖M ≤ (1 +O(ε))/LN · ‖S(AxCS,M,w − b)‖M,w

≤ C · (1 +O(ε))/LN · ‖S(Ax∗M − b)‖M,w

≤ C · (1 +O(ε)) · UO/LN · ‖Ax∗M − b‖M .

Case 2: (C · UM · UA/(LM · LA)) · cp ≥ τp. In this case, we first prove that any C-approximate solution xCS,M,w

of minx ‖S(Ax − b)‖M,w is a poly(n)-approximate solution of minx ‖Ax − b‖M . By Assumption 2.1, this implies all
C-approximate solution xCS,M,w of minx ‖S(Ax− b)‖M,w satisfies ‖xCS,M,w‖2 ≤ U .

Consider any C-approximate solution xCS,M,w of minx ‖S(Ax− b)‖M,w, we have

‖AxCS,M,w − b‖M ≤ ‖S(AxCS,M,w − b)‖M,w/LA ≤ C · ‖S(Ax∗M − b)‖M,w/LA

≤ C · UA/LA · ‖Ax∗M − b‖M ≤ poly(n) · ‖Ax∗M − b‖M .

We further show that ‖Ax − b‖M ≥ τp/ poly(n) for all x ∈ Rd. If ‖Ax − b‖∞ ≥ τ , then the statement clearly holds.
Otherwise, ‖Ax − b‖M ≥ LM · ‖Ax − b‖pp ≥ LMc

p ≥ L2
MLA/(C · UM · UA) · τp ≥ τp/ poly(n). Thus, for any

C-approximate solution xCS,M,w of minx ‖S(Ax− b)‖M,w, there exists y′ ∈ Npoly(ε·τ/n) such that

‖y′ − (AxCS,M,w − b)‖M ≤ poly(ε · τ/n) ≤ poly(ε/n) · ‖AxCS,M,w − b‖M .

The rest of the proof is exactly the same as that of Case 1.
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D. A Row Sampling Algorithm for Tukey Loss Functions
In this section we present the row sampling algorithm. The row sampling algorithm proceeds in a recursive manner. We
describe a single recursive step in Section D.1 and the overall algorithm in Section D.2.

D.1. One Recursive Step

The goal of this section is to design one recursive step of the row sampling algorithm. For a weight vector w ∈ Rn, the
recursive step outputs a sparser weight vector w′ ∈ Rn such that for any set N ⊆ im(A) with size |N |, with probability at
least 1− δo, simultaneously for all y ∈ N ,

‖y‖M,w′ = (1± ε)‖y‖M,w.

We maintain that if wi 6= 0, then wi ≥ 1 and ‖w‖∞ ≤ n2 as an invariant in the recursion. These conditions imply that we
can partition the positive coordinates of w into 2 log n groups Pj , for which Pj = {i | 2j−1 ≤ wi < 2j}.

Now we define one recursive step of our sampling procedure. We split the matrix A into AP1,∗, AP2,∗, . . . , AP2 logn,∗, and
deal with each of them separately. For each 1 ≤ j ≤ 2 log n, we invoke the algorithm in Theorem B.3 to identify a set Ij for
the matrix APj ,∗, for some parameter α and δstruct to be determined. For each 1 ≤ j ≤ 2 log n, we also use the algorithm in
Theorem A.4 to calculate {ûi}i∈Pj such that ui ≤ ûi ≤ 2ui where {ui}i∈Pj are the `p Lewis weights of the matrix APj ,∗.

Now for each i ∈ Pj , we define its sampling probability pi to be

pi =

{
1 i ∈ Ij
min{1, 1/2 + Θ(dmax{0,p/2−1}ûi · Y )} i /∈ Ij

,

where Y ≡ d log(1/ε) + log(log n/δo) + UM/LM log(|N | · log n/δo)/ε2.

For each i ∈ [n], we set w′i = 0 with probability 1− pi, and set w′i = wi/pi with probabliity pi. The finishes the definition
of one step of the sampling procedure.

Let
F ≡

∑
1≤j≤2 logn

|Ij |+
∑

1≤j≤2 logn

∑
i∈Pj\Ij

Θ(dmax{0,p/2−1}ûi · Y ).

Our first lemma shows that with probability at least 1− δo, the number of non-zero entries in w′ is at most 2
3‖w‖0, provided

‖w‖0 is large enough.

Lemma D.1. When ‖w‖0 ≥ 10F , with probability at least 1− δo,

‖w′‖0 ≤
2

3
‖w‖0.

Proof. Notice that
E[‖w′‖0] ≤ ‖w‖0/2 + F.

By Bernstein’s inequality in Lemma A.1, since F ≥ Ω(log(1/δo)), with probability at least 1 − exp(−Ω(‖w‖0)) ≥
1− exp(−Ω(F )) ≥ 1− δo, we have

‖w′‖0 ≤ ‖w‖0/2 + F + ‖w‖0/10 ≤ 2

3
‖w‖0.

Our second lemma shows that ‖w′‖∞ is upper bounded by 2‖w‖∞.

Lemma D.2. ‖w′‖∞ ≤ 2‖w‖∞.

Proof. Since pi ≥ 1/2 for all i ∈ [n], we have ‖w′‖∞ ≤ 2‖w‖∞.
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We show that for sufficiently large constant C, if we set

α = C · UM/LM · log(|N | · log n/δo)/ε2

and δstruct = δo/(4 log n), then with probability at least 1− δo, simultaneously for all y ∈ N we have

‖y‖M,w′ = (1± ε)‖y‖M,w.

By Theorem B.3 and Theorem A.5, since ∑
1≤j≤2 logn

∑
i∈Pj\Ij

ûi ≤ O(d log n),

this also implies
F = Õ(dmax{1,p/2} log n · (log(|N |/δo) · log(1/δo) + d)/ε2).

Furthermore, for each 1 ≤ j ≤ 2 log n, we invoke the algorithm in Theorem A.4 and the algorithm in Theorem B.3 on
AP1,∗, AP2,∗, . . . , AP2 logn,∗, and thus the running time of each recursive step is thus upper bounded by

Õ((nnz(A) + dp/2+O(1) · α) · log(1/δstruct)) = Õ((nnz(A) + dp/2+O(1) · log(|N |/δo) · /ε2) · log(1/δo)).

Now we consider a fixed vector y ∈ im(A). We use the following two lemmas in our analysis.

Lemma D.3. With probability 1− δo/O(|N | · log n), the following holds:

• If ‖yHy∩Pj‖M,w ≥ C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2, then

‖yHy∩Pj‖M,w′ = (1± ε/2)‖yHy∩Pj‖M,w;

• If ‖yHy∩Pj‖M,w < C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2, then

|‖yHy∩Pj‖M,w′ − ‖yHy∩Pj‖M,w| ≤ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

Proof. For each i ∈ Hy ∩ Pj , we use Zi to denote the random variable

Zi =

{
wiM(yi)/pi with probability pi
0 with probability 1− pi

.

Since Zi = w′iM(yi), we have
‖yHy∩Pj‖M,w′ =

∑
i∈Hy∩Pj

Zi.

It is clear that Zi ≤ 2j+1 · UM · τp since pi ≥ 1/2 and wi ≤ 2j , E[Zi] = wiM(yi) and E[Z2
i ] = w2

i (M(yi))
2/pi. By

Hölder’s inequality, ∑
i∈Hy∩Pj

E[Z2
i ] ≤ 2j+1 · ‖yHy∩Pj‖M,w · UM · τp.

Thus by Bernstein’s inequality in Lemma A.1, we have

Pr

∣∣∣∣∣∣
∑

i∈Hy∩Pj

Zi − ‖yHy∩Pj‖M,w

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2

2j+2 · UM · τp · t/3 + 2j+2 · ‖yHy∩Pj‖M,w · UM · τp

)
.

When
‖yHy∩Pj‖M,w ≥ C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2,

we take
t = ε/2 · ‖yHy∩Pj‖M,w ≥ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.
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By taking C to be some sufficiently large constant, with probability at least 1− δo/O(|N | · log n),

‖yHy∩Pj‖M,w′ = (1± ε/2)‖yHy∩Pj‖M,w.

When
‖yHy∩Pj‖M,w < C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2,

we take
t = C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

By taking C to be some sufficiently large constant, with probability at least 1− δo/O(|N | · log n),

|‖yHy∩Pj‖M,w′ − ‖yHy∩Pj‖M,w| ≤ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

The proof of the following lemma is exactly the same as Lemma D.3.
Lemma D.4. With probability 1− δo/O(|N | · log n), the following holds:

• If ‖yLy∩Pj‖M,w ≥ C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2, then

‖yLy∩Pj‖M,w′ = (1± ε/2)‖yLy∩Pj‖M,w;

• If ‖yLy∩Pj‖M,w < C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2, then

|‖yLy∩Pj‖M,w′ − ‖yLy∩Pj‖M,w| ≤ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

Now we use Lemma D.3 and Lemma D.4 to analyze the sampling procedure.
Lemma D.5. If we set α = C · UM/LM · log(|N | · log n/δo)/ε2, δstruct = δo/(4 log n), then for each 1 ≤ j ≤ 2 log n,
with probability at least 1− δo/(2 log n), simultaneously for all y ∈ N ,

‖yPj‖M,w′ = (1± ε)‖yPj‖M,w.

Applying a union bound over all 1 ≤ j ≤ 2 log n, with probability at least 1− δo, simultaneously for all y ∈ N ,

‖y‖M,w′ = (1± ε)‖y‖M,w.

Proof. By Theorem B.3, for each 1 ≤ j ≤ 2 log n, with probability 1−δo/(4 log n), simultaneously for all y ∈ N ⊆ im(A),
if y satisfies (i) ‖yLy∩Pj‖pp ≤ α · τp and (ii) |Hy ∩ Pj | ≤ α, then we have Hy ∩ Pj ⊆ Ij . We condition on this event in the
remaining part of the proof.

Now we consider a fixed y ∈ N . We show that ‖yPj‖M,w′ = (1±ε)‖yPj‖M,w with probability at least 1−δo/O(|N |·log n).
The desired bound follows by applying a union bound over all y ∈ N .

We distinguish four cases in our analysis. We use T to denote a fixed threshold

T = C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2.

Case (i): ‖yHy∩Pj‖M,w < T and ‖yLy∩Pj‖M,w < T . Since ‖yHy∩Pj‖M,w < T , we must have

|Hy ∩ Pj | < C · UM/LM · log(|N | · log n/δo)/ε2 = α.

Furthermore, we also have

‖yLy∩Pj‖pp < C · UM/LM · τp · log(|N | · log n/δo)/ε2 = α · τp.

By Lemma A.9, with probability at least 1− δo/O(|N | · log n), we have

‖yPj\Ij‖M,w′ = (1± ε)‖yPj\Ij‖M,w,

since Hy ∩ Pj ⊆ Ij . Moreover, ‖yIj‖M,w = ‖yIj‖M,w′ since wi = w′i for all i ∈ Ij . Thus, we have ‖yPj‖M,w′ =
(1± ε)‖yPj‖M,w.
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Case (ii): ‖yHy∩Pj‖M,w ≥ T and ‖yLy∩Pj‖M,w ≥ T . By Lemma D.3 and Lemma D.4, with probability at least 1 −
δo/O(|N | · log n),

‖yHy∩Pj‖M,w′ = (1± ε/2)‖yHy∩Pj‖M,w

and
‖yLy∩Pj‖M,w′ = (1± ε/2)‖yLy∩Pj‖M,w,

which implies
‖yPj‖M,w′ = (1± ε/2)‖yPj‖M,w.

Case (iii): ‖yHy∩Pj‖M,w ≥ T and ‖yLy∩Pj‖M,w < T . By Lemma D.3 and Lemma D.4, with probability at least 1 −
δo/O(|N | · log n),

‖yHy∩Pj‖M,w′ = (1± ε/2)‖yHy∩Pj‖M,w

and ∣∣‖yLy∩Pj‖M,w′ − ‖yLy∩Pj‖M,w

∣∣ ≤ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

Since
‖yPj‖M,w ≥ ‖yHy∩Pj‖M,w ≥ T ≥ C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2,

we have ∣∣‖yLy∩Pj‖M,w′ − ‖yLy∩Pj‖M,w

∣∣ ≤ ε/2 · ‖yPj‖M,w,

which implies
‖yPj‖M,w′ = (1± ε)‖yPj‖M,w.

Case (iv): ‖yHy∩Pj‖M,w < T and ‖yLy∩Pj‖M,w ≥ T . By Lemma D.3 and Lemma D.4, with probability at least 1 −
δo/O(|N | · log n),

‖yLy∩Pj‖M,w′ = (1± ε/2)‖yLy∩Pj‖M,w

and ∣∣‖yHy∩Pj‖M,w′ − ‖yHy∩Pj‖M,w

∣∣ ≤ C · UM · τp · 2j−2 · log(|N | · log n/δo)/ε.

Since
‖yPj‖M,w ≥ ‖yLy∩Pj‖M,w ≥ T ≥ C · UM · τp · 2j−1 · log(|N | · log n/δo)/ε2,

we have ∣∣‖yHy∩Pj‖M,w′ − ‖yHy∩Pj‖M,w

∣∣ ≤ ε/2 · ‖yPj‖M,w,

which implies
‖yPj‖M,w′ = (1± ε)‖yPj‖M,w.

Now we show that with probability 1− δo, simultaneously for all x ∈ Rd, ‖Ax‖pp,w′ = (1± ε)‖Ax‖pp,w.

Lemma D.6. For any 1 ≤ j ≤ 2 log n, with with probability at least 1− δo/(2 log n), simultaneously for all y = Ax,

‖yPj‖
p
p,w′ = (1± ε)‖yPj‖pp,w.

Applying a union bound over all 1 ≤ j ≤ 2 log n, this implies with probability at least 1− δo,

‖y‖pp,w′ = (1± ε)‖y‖pp,w.

Proof. For any fixed 1 ≤ j ≤ 2 log n, by Theorem A.10, if we take δsubspace = δo/(2 log n), with probability at least
1− δo/(2 log n), simultaneously for all y = Ax, we have

‖yPj\Ij‖
p
p,w′ = (1± ε)‖yPj\Ij‖

p
p,w.

Moreover, ‖yIj‖pp,w = ‖yIj‖
p
p,w′ since wi = w′i for all i ∈ Ij . Thus, we have ‖yPj‖

p
p,w′ = (1± ε)‖yPj‖pp,w.
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D.2. The Recursive Algorithm

We start by setting w = 1n. In each recursive step, we use the sampling procedure defined in Section D.1 to obtain w′, by
setting δo = δ/O(log n) and ε = ε′/O(log n) for some ε′ > 0. By Lemma D.1, for each recursive step, with probability at
least 1− δ/(10 log n), we have ‖w′‖0 ≤ 2/3‖w‖0. We repeat the recursive step until ‖w‖0 ≤ 10F .

By applying a union bound over all recursive steps, with probability 1− δ/10, the recursive depth is at most log3/2 n. By
Lemma D.2, this also implies with probability 1− δ/10, during the whole recursive algorithm, the weight vector w always
satisfies ‖w‖∞ ≤ 2log1.5 n ≤ n2. If we use wfinal to denote the final weight vector, then we have

‖wfinal‖0 ≤ 10F = Õ(dmax{1,p/2} log n · (log(|N |/δo) · log(1/δo) + d)/ε2).

By Lemma D.5, and a union bound over all the log1.5 n recursive depths, with probability 1 − δ, simultaneously for all
y ∈ N , we have

‖Ax‖M,wfinal
= (1±O(ε · log n))‖Ax‖M = (1±O(ε′))‖Ax‖M .

Moreover, by Lemma D.6 and a union bound over all the log1.5 n recursive depths, with probability 1−δ/10, simultaneously
for all y = Ax we have

‖Ax‖pp,wfinal
= (1±O(ε · log n))‖Ax‖pp,w = (1±O(ε′))‖Ax‖pp,w.

We further show that conditioned on this event, simultaneously for all x ∈ Rd,

‖Ax‖M,wfinal
≥ LM
UM · n

· ‖Ax‖M .

Consider a fixed vector x ∈ Rd, if there exists a coordinate i ∈ HAx such that wi > 0, since wi ≥ 1 if wi > 0, we must
have

‖Ax‖M,wfinal
≥ wiM((Ax)i) ≥M((Ax)i) ≥ LM · τp.

On the other hand,
‖Ax‖M ≤ n · UM · τp,

which implies

‖Ax‖M,wfinal
≥ LM
UM · n

· ‖Ax‖M .

Otherwise, i ∈ LAx for all i ∈ [n], which implies

‖Ax‖M,wfinal
≥ LM · ‖Ax‖pp,wfinal

≥ (1−O(ε′))LM‖Ax‖pp,w ≥
(1−O(ε′))LM

UM
‖Ax‖M .

Finally, since each recursive step runs in Õ((nnz(A) + dp/2+O(1) · log(|N |/δ) · /ε2) · log(1/δ)) time, and the number
of recursive steps is upper bounded by log1.5 n with probability 1 − δ/10, the total running time is also upper bounded
Õ((nnz(A) + dp/2+O(1) · log(|N |/δ) · /ε2) · log(1/δ)) with probability 1− δ/10.

The following lemma can be proved by applying a union bound over all observations above, changing ε′ to ε and changing
A to [A b].

Lemma D.7. The algorithm outputs a vector wfinal ∈ Rn, such that for any set N ⊆ im([A b]) with size |N |, with
probability 1 − δ, the algorithm runs in Õ((nnz(A) + dp/2+O(1) · log(|N |/δ) · /ε2) · log(1/δ)) time and the following
holds:

1. ‖wfinal‖0 ≤ Õ(dmax{1,p/2} log3 n · (log(|N |/δ) · log(1/δ) + d)/ε2);

2. ‖wfinal‖∞ ≤ n2;

3. For all x ∈ Rd, ‖Ax− b‖M,wfinal
≥ LM

UM ·n · ‖Ax− b‖M .

4. For all x ∈ N , ‖Ax− b‖M,wfinal
= (1± ε)‖Ax− b‖M .
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Combining Lemma D.7 with the net argument in Theorem C.5, we have the following theorem.

Theorem D.8. By setting |N | = nO(d3) · (1/ε)O(d), the algorithm outputs a vector wfinal ∈ Rn, such that with probability
1 − δ, the algorithm runs in Õ((nnz(A) + dp/2+O(1)/ε2 · log(1/δ)) · log(1/δ)) time, ‖wfinal‖0 ≤ Õ(dp/2+O(1) log4 n ·
log2(1/δ)/ε2) and any C-approximate solution of minx ‖Ax− b‖M,wfinal

with C ≤ poly(n) is a C · (1 + ε)-approximate
solution of minx ‖Ax− b‖M .

Proof. Lemma D.7 implies that UO = 1 + ε, LN = 1− ε, LA = LM
UM ·n and UA ≤ ‖wfinal‖∞ ≤ n2. Adjusting constants

and applying Theorem C.5 imply the desired result.

E. The M -sketch
In this section we give an oblivious sketch for Tukey loss functions. Throughout this section we assume 1 ≤ p ≤ 2 in
Assumption 1.

For convenience and to set up notation, we first describe the construction.

The sketch. Each coordinate zp of a vector z to be sketched is mapped to a level hp, and the number of coordinates
mapped to level h is exponentially small in h: for an integer branching factor b > 1, we expect the number of coordinates at
level h to be about a b−h fraction of the coordinates. The number of buckets at a given level is N = bcm, where integers
m, c > 1 are parameters to be determined later.

Our sketching matrix is S ∈ RNhmax×n, where hmax ≡ blogb(n/m)c. Our weight vector w ∈ RNhmax has entries
wi+1 ← βbh, for i ∈ [Nh,N(h + 1)) and integer h = 0, 1, . . . , hmax, and β ≡ (b − b−hmax)/(b − 1). Our sketch is
reminiscent of sketches in the data stream literature, where we hash into buckets at multiple levels of subsampling (Indyk &
Woodruff, 2005; Verbin & Zhang, 2012). However, the estimation performed in the sketch space needs to be the same as in
the original space, which necessitates a new analysis.

The entries of S are Sj,p ← Λp, where p ∈ [n] and j ← gp +Nhp and

Λp ← ±1 with equal probability

gp ∈ [N ] chosen with equal probability

hp ← h with probability 1/βbh for integer h ∈ [0, hmax],

(4)

all independently. Let Lh be the multiset {zp | hp = h}, and Lh,i the multiset {zp | hp = h, gp = i}; that
is, Lh is multiset of values at a given level, Lh,i is the multiset of values in a bucket. We can write ‖Sz‖M,w as∑
h∈[0,hmax],i∈[N ] βb

hM(‖Lh,i‖Λ), where ‖L‖Λ denotes |
∑
zp∈L Λpzp|.

E.1. Accuracy Bounds for Sketching One Vector

We will show that our sketching construction has the property that for a given vector z ∈ Rn, with high probability, ‖Sz‖M,w

is not too much smaller than ‖z‖M . We assume that ‖z‖M = 1, for notational convenience.

Define y ∈ Rn by yp = M(zp), so that ‖y‖1 = ‖z‖M = 1. Let Z denote the multiset comprising the coordinates of z, and
let Y denote the multiset comprising the coordinates of y. For Ẑ ⊂ Z, let M(Ẑ) ⊂ Y denote {M(zp) | zp ∈ Ẑ}. Let ‖Y ‖k
denote

(∑
y∈Y |y|k

)1/k

, so ‖Y ‖1 = ‖y‖1. Hereafter multisets will just be called “sets”.

Weight classes. Fix a value γ > 1, and for integer q ≥ 1, let Wq denote the multiset comprising weight class {yp ∈ Y |
γ−q ≤ yp ≤ γ1−q}. We have βbh E[‖M(Lh) ∩Wq‖1] = ‖Wq‖1. For a set of integers Q, let WQ denote ∪q∈QWq .

Defining qmax and h(q). For given ε > 0, consider y′ ∈ Rn with y′i ← yi when yi > ε/n, and y′i ← 0 otherwise. Then
‖y′‖1 ≥ 1− n(ε/n) = 1− ε. We can neglect Wq for q > qmax ≡ logγ(n/ε), up to error ε. Moreover, we can assume that
‖Wq‖1 ≥ ε/qmax, since the contribution to ‖y‖1 of weight classes Wq of smaller total weight, added up for q ≤ qmax, is at
most ε.
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Let h(q) denote blogb(|Wq|/βm)c for |Wq| ≥ βm, and zero otherwise, so that

m ≤ E[|M(Lh(q)) ∩Wq|] ≤ bm

for all Wq except those with |Wq| < βm, for which the lower bound does not hold.

Since |Wq| ≤ n for all q, we have h(q) ≤ blogb(n/βm)c ≤ hmax.

E.2. Contraction Bounds

Here we will show that ‖Sz‖M,w is not too much smaller than ‖z‖M . We will need some weak conditions among the
parameters. Recall that N = bcm.

Assumption 3. We will assume b ≥ m, b > c, m = Ω(log log(n/ε)), log b = Ω(log log(n/ε)), γ ≥ 2 ≥ β, an error
parameter ε ∈ [1/10, 1/3], and logN ≤ ε2m. We will consider γ to be fixed throughout, that is, not dependent on the other
parameters.

We need lemmas that allow lower bounds on the contributions of the weight classes. First, some notation. For h =
0, 1, . . . , hmax, let

M< ≡ logγ(m/ε) = O(logγ(b/ε))

Q< ≡ {q | |Wq| < βm, q ≤M<}
Q̂h ≡ {q | h(q) = h, |Wq| ≥ βm}
M≥ ≡ logγ(2(1 + 3ε)b/ε)

Qh ≡ {q ∈ Q̂h | q ≤M≥ + min
q∈Q̂h

q}

Q∗ ≡ Q< ∪ [∪hQh].

(5)

Here Q< is the set of indices of weight classes that have relatively few members, but contain relatively large weights. Q̂h
gives the indices of Wq that are “large” and have h as the level at which between m and bm members of Wq are expected in
Lh. The set Qh cuts out the weight classes that can be regarded as negligible at level h.

Lemma E.1. If N ≥ max{O(|M<|dm3ε), Õ(d2m2/ε2)}, then with constant probability, for all z ∈ im(A) and all
q ∈ Q<, the following event Ev holds: there are sets W ∗q ⊂Wq , with |W ∗q | ≥ (1− ε)|Wq|, such that for all y ∈W ∗q ,

1. they are isolated: they are the sole members of WQ< in their bucket;

2. their buckets are low-weight: the set L of other entries in bucket containing y ∈W ∗q has ‖L‖1 ≤ 1/ε2m3.

Proof. Without loss of generality we assume h(q) are the same for all q ∈M<, since otherwise we can deal with each h(q)
separately.

Let α = m/(LM · ε). By Lemma B.4, there exists a set I ⊆ [n] with size |I| = Õ(d · α) = Õ(d ·m/ε) such that for any
z ∈ im(A), if z satisfies (i) ‖zLz‖pp ≤ α · τp and (ii) |Hz| ≤ α, then Hz ⊆ I . Let {u}i∈[n]\I be the `p Lewis weights of
A[n]\I,∗ and let J ⊆ [n] \ I be the set of indices of the d ·m/ε ·UM/LM largest coordinates of u. Thus, |J | ≤ O(d ·m/ε).
Since J contains the d ·m/ε · UM/LM largest coordinates of u and∑

i∈[n]\I

ui =
∑

i∈[n]\I

upi ≤ d

by Theorem A.5, for each i ∈ [n] \ (I ∪ J) , we have ui ≤ d/(d ·m/ε · UM/LM ) ≤ ε/m · LM/UM .

If τp < ‖z‖M · ε/m, by Assumption 1.2, we have M(zi) ≤ τp < ‖z‖M · ε/m for all i ∈ [n]. In this case, we have
WQ< = ∅. Thus we assume τp ≥ ‖z‖M · ε/m in the remaining part of the analysis.

Since ‖z‖M ≥ |Hz| ·τp, we have |Hz| ≤ m/ε. Furthermore, by Assumption 1.4, ‖zLz‖pp ≤ ‖zLz‖M/LM ≤ ‖z‖M/LM ≤
τp ·m/(LM · ε). Thus by setting α = m/(LM · ε) we have Hz ⊆ I . For each i ∈ [n] \ I , we have |zi| ≤ τ . By Lemma
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A.8 and Assumption 1.4, for each i ∈ [n] \ I , M(zi) ≤ |zi|p/LM ≤ ui · ‖z[n]\I‖pp/LM ≤ ui · ‖z[n]\I‖M · UM/LM <
ui · ‖z‖M · UM/LM . Thus for each entry i ∈ [n] \ (I ∪ J), we have M(zi) < ε/m · ‖z‖M .

Thus, the indices of all members of WQ< are in I ∪ J . By setting N ≥ |I ∪ J |2/κ = Õ(d2m2/ε2)/κ, the expected number
of total collisions in I ∪ J is |I ∪ J |2/N ≤ κ. Thus, by Markov’s inequality, with probability 1− 2κ, the total number of
collisions is upper bounded by 1/2, i.e., there is no collision. This implies the first condition.

For the second condition, we use {ui}i∈[n]\(I∪J) to denote the `p Lewis weights of Ai∈[n]\(I∪J),∗. Consider a fixed
q ∈ M<. By the first condition, all elements in Wq are the sole members of WQ< in their buckets. For each bucket

we define Bh,i to be the multiset {up | hp = h, gp = i, p ∈ [n] \ (I ∪ J)}. By setting N ≥ UM ·|M<|·dm3ε
LM ·κ , for each

y ∈ Wq, E[‖Bh,i‖1] ≤ d/N ≤ LM
UM
· 1
ε2m3 · ε·κ

|M<| where Lh,i is the bucket that contains y. This is simply because∑
i∈N Bh,i ≤

∑
i∈[n]\(I∪J) ui ≤ d by Theorem A.5. We say a bucket is good if ‖Bh,i‖1 ≤ LM

UM
· 1
ε2m3 . Notice that for

y ∈Wq , if y is in a good bucket Bh,i, then the set L of other entries in that bucket satisfies

‖L‖1 =
∑
y∈L

y

=
∑

p∈[n]\(I∪J)|hp=h,gp=i

M(zp)

≤
∑

p∈[n]\(I∪J)|hp=h,gp=i

UM · |zp|p (Assumption 1.4)

≤
∑

p∈[n]\(I∪J)|hp=h,gp=i

UM · up · ‖z[n]\(I∪J)‖pp (Lemma A.8)

≤
∑

p∈[n]\(I∪J)|hp=h,gp=i

UM/LM · up · ‖z[n]\(I∪J)‖M (Assumption 1.4)

≤‖Bh,i‖1 · UM/LM · ‖z‖M

≤ 1

ε2m3
· ‖z‖M .

Thus, it suffices to show that at least (1− ε)|Wq| buckets associated with y ∈Wq are good.

By Markov’s inequality, for each y ∈ Wq, with probability 1− ε · κ/|M<|, the bucket that contains y is good. Thus, for
the |Wq| buckets associated with y ∈ Wq, the expected number of good buckets is at least (1 − ε · κ/M<)|Wq|. Again,
by Markov’s inequality, with probability at least 1 − κ/|M<|, at least (1 − ε)|Wq| buckets associated with y ∈ Wq are
good, and we just take these (1− ε)|Wq| good buckets to be W ∗q . By applying a union bound over all q ∈M<, the second
condition holds with probability at least 1− κ. The lemma follows by applying a union bound over the two conditions and
setting κ to be a small constant.

Lemma E.2 (Lemma 3.8 of (Clarkson & Woodruff, 2015b)). Let Q′h ≡ {q | q ≤M ′h}, where M ′h ≡ logγ(βbh+1m2qmax).
Then for large enoughN = O(m2bε−1qmax), with probability at least 1−C−ε2m for a constantC > 1, for each q ∈ ∪hQh,
there is W ∗q ⊂ Lh(q) ∩Wq such that:

1. |W ∗q | ≥ (1− ε)β−1b−h(q)|Wq|.

2. each x ∈W ∗q is in a bucket with no other member of WQ∗ .

3. ‖W ∗q ‖1 ≥ (1− 4γε)β−1b−h‖Wq‖1.

4. each x ∈W ∗q is in a bucket with no member of WQ′h
.

For v ∈ T ⊂ Z, let T − v denote T \ {v}.
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Lemma E.3 (Lemma 3.6 of (Clarkson & Woodruff, 2015b)). For v ∈ T ⊂ Z,

M(‖T‖Λ) ≥
(

1−
‖T − v‖Λ
|v|

)2

M(v),

and if M(v) ≥ ε−1‖T − v‖M , then
‖T − v‖2
|v|

≤ ε1/2, (6)

and for a constant C, EΛ[M(‖T‖Λ)] ≥ (1− Cε1/2)M(v).

Lemma E.4 (Lemma 3.9 of (Clarkson & Woodruff, 2015b)). Assume Assumption 3. There is N = O(ε−2m2bqmax), so
that for all 0 ≤ h ≤ hmax and q ∈ Qh with ‖Wq‖1 ≥ ε/qmax, we have∑

yp∈W∗q

M(‖L(yp)‖Λ) ≥ (1− ε1/2)‖Wq‖1

with failure probability at most C−ε
2m for fixed C > 1.

Lemma E.5. Assume that Ev of Lemma E.1 holds, and Assumption 3. Then for q ∈ Q<,∑
yp∈W∗q

M(‖L(yp)‖Λ) ≥ (1− ε1/2)‖Wq‖1

with failure probability at most C−ε
2m for a constant C > 1.

Proof. Let v ≡ zp where yp = M(zp), let L(v) denote the {zp′ |M(zp′) ∈ L}. Condition Ev and M(v) ≥ ε/m imply that

‖L(v)− v‖22 ≤ ‖L‖1 ≤ 1/ε2m3 < M(v)/εm,

so that using (6) we have
‖L(v)− v‖22
|v|2

≤
‖L(v)− v‖M

M(v)
≤ 1

εm
. (7)

Since ‖L‖∞ ≤ ‖L‖1, we also have, for all v′ ∈ L(v)− v, and using again M(v) ≥ ε/m,∣∣∣∣v′v
∣∣∣∣ ≤ (M(v′)

M(v)

)1/2

≤ 1

mε3/2
. (8)

From (8), we have that the summands determining ‖L(v)− v‖Λ have magnitude at most |v|ε1/2/ε2m. From (7), we
have ‖L(v)− v‖22 is at most v2ε/ε2m. It follows from Bernstein’s inequality that with failure probability exp(−ε2m),
‖L(v)− v‖Λ ≤ ε1/2|v|. Applying the first claim of Lemma E.3, we have M(‖L(v)‖Λ) ≥ (1 − 2ε1/2)M(v), for all
v ∈M−1(W ∗q ) with failure probability βmM< exp(−ε2m). Summing over W ∗q , we have∑

v∈M−1(Wq∗)

M(‖L(v)‖Λ) ≥ (1− ε1/2)‖W ∗q ‖1 ≥ (1− 2εγ)(1− ε1/2)‖Wq‖1.

This implies the bound, using Assumption 3, after adjusting constants.

The above lemmas imply that overall, with high probability, the sketching-based estimate of ‖z‖M of a single given vector z
is very likely to not much smaller than ‖z‖M , as stated next.

Theorem E.6 (Theorem 3.2 of (Clarkson & Woodruff, 2015b)). Assume Assumption 3, and condition Ev of Lemma E.1.
Then ‖Sz‖M,w ≥ ‖z‖M (1− ε1/2), with failure probability no more than C−ε

2m, for an absolute constant C > 1.
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E.3. A “Clipped” Version

For a vector z, we use ‖Sz‖Mc,w to denote a “clipped” version of ‖Sz‖M,w, in which we ignore small buckets and use a
subset of the coordinates of Sz as follows: ‖Sz‖Mc,w is obtained by adding in only those buckets in level h that are among
the top

M∗ ≡ bmM≥ + βmM<

in ‖Lh,i‖Λ, recalling M≥ and M< defined in (5). Formally, we define ‖Sz‖Mc,w to be

‖Sz‖Mc,w =
∑

h∈[0,hmax],i∈[M∗]

βbhM(‖Lh,(i)‖Λ),

where Lh,(i) denotes the level h bucket with the i-th largest ‖Lh,i‖Λ among all the level h buckets.

The proof of the contraction bound of ‖Sz‖M,w in Theorem E.6 requires only lower bounds on M(‖Lh,i‖Λ) for those
at most M∗ buckets on level h. Thus, the proven contraction bounds continue to hold for ‖Sz‖Mc,w, and in particular
‖Sz‖Mc,w ≥ (1− ε)‖Sz‖M,w.

E.4. Dilation Bounds

We use two prior bounds of (Clarkson & Woodruff, 2015b) on dilation; the first shows that the dilation is at most O(log n)
in expectation, while the second shows that the “clipped” version gives O(1) dilation with constant probability. Note that
we need only expectations, since we need the dilation bound to hold only for the optimal solution as in Theorem C.5.

Theorem E.7 (Theorem 3.3 of (Clarkson & Woodruff, 2015b)). E[‖Sz‖M,w] = O(hmax)‖z‖M .

Better dilation is achieved by using the “clipped” version ‖Sz‖Mc,w, as described in (Clarkson & Woodruff, 2015b).

Theorem E.8 (Theorem 3.4 of (Clarkson & Woodruff, 2015b)). There is c = O(logγ(b/ε)(logb(n/m))) and b ≥ c,
recalling N = mbc, such that

E[‖Sz‖Mc,w] ≤ C‖z‖M
for a constant C.

E.5. Regression Theorem

Lemma E.9. There is N = O(d2hmax), so that with constant probability, simultaneously for all x ∈ Rd,

0.9/(n · UM/LM )‖Ax− b‖M ≤ ‖S(Ax− b)‖M,w ≤ UM/LM · n2 · ‖Ax− b‖M .

Proof. For the upper bound,
‖Sz‖M,w =

∑
h∈[0,hmax],i∈[N ]

βbhM(‖Lh,i‖Λ).

The weights βbh are less than n, and

M(‖Lh,i‖Λ)

≤M(‖Lh,i‖1)

≤M(n1−1/p‖Lh,i‖p) (Assumption 1.2)

≤UM · np−1‖Lh,i‖pp (Assumption 1.4)

≤UM/LM · n ·
∑

zp∈Lh,i

M(zp). (Assumption 1.4)

Since any given zp contributes once to ‖Sz‖M,w, ‖Sz‖M,w ≤ UM/LM · n2 · ‖z‖M .

For the lower bound, notice that
‖Sz‖22,w =

∑
h∈[0,hmax],i∈[N ]

βbh‖Lh,i‖2Λ.
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For each h ∈ [0, hmax], since N = O(d2hmax), with probability at least 1− 1/(10hmax), simultaneously for all z ∈ im(A)
we have ∑

i∈[N ]

‖Lh,i‖2Λ = (1± 0.1)
∑
zp∈Lh

z2
p,

since the summation on the left-hand side can be equivalently viewed as applying CountSketch (Clarkson & Woodruff,
2013; Nelson & Nguyen, 2012; Meng & Mahoney, 2012) on Lh. Thus, by applying union bound over all h ∈ [0, hmax], we
have

‖Sz‖22,w =
∑

h∈[0,hmax],i∈[N ]

βbh‖Lh,i‖2Λ ≥ 0.9‖z‖22. (9)

If there exists some i ∈ HSz , since wi ≥ 1 for all i, we have

‖Sz‖M,w ≥ wiM((Sz)i) ≥M((Sz)i) ≥ τp.

On the other hand,
‖z‖M ≤ n · UM · τp,

which implies
‖Sz‖M,w ≥ ‖z‖M/(n · UM ).

If HSz = ∅, then

‖Sz‖M,w

≥
∑
i

wi|(Sz)i|p · LM (Assumption 1.4)

=‖Sz‖pp,w · LM
≥‖Sz‖p2,w · LM (p ≤ 2)

≥0.9‖z‖p2 · LM ((9))
≥0.9‖z‖pp · LM/n
≥0.9‖z‖M/(n · UM/LM ). (Assumption 1.4)

The following theorem states that M -sketches can be used for Tukey regression, under the conditions described above.

Theorem E.10. Under Assumption 1 and Assumption 2, there is an algorithm running in O(nnz(A)) time, that with
constant probability creates a sketched regression problem minx ‖S(Ax− b)‖M,w where SA and Sb have poly(d log n)
rows, and any C-approximate solution x̃ of minx ‖S(Ax− b)‖M,w with C ≤ poly(n) satisfies

‖Ax̃− b‖M ≤ O(C · logd n) min
x∈Rd

‖Ax− b‖M .

Moreover, any C-approximate solution x̂ of minx ‖S(Ax− b)‖Mc,w with C ≤ poly(n) satisfies

‖Ax̂− b‖M ≤ O(C) min
x∈Rd

‖Ax− b‖M .

Proof. We set S to be an M -sketch matrix with large enough N = poly(d log n). We note that, up to the trivial scaling by
β, SA satisfies Assumption 2 if A does. We also set m = O(d3 log n), and ε = 1/10. We apply Theorem C.5 to prove the
desired result.

The givenN is large enough for Theorem E.6 and Lemma E.9 to apply, obtaining a contraction bound with failure probability
C−m1 . By Theorem E.6, since the needed contraction bound holds for all members of Npoly(ε·τ/n) ∪M

c,c·poly(n)
poly(ε/n) , with

failure probability nO(d3)C−m1 < 1, for m = O(d3 log n), assuming the condition Ev .
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Thus, by Theorem E.7, we have UO ≤ O(logd n). By Lemma E.9, LA = 0.9/(n · UM/LM ) and UA = UM/LM · n2. By
Theorem E.6, LN = 1− ε1/2 = Ω(1). Thus, by Theorem C.5 we have

‖Ax̃− b‖M ≤ O(C · logd n) min
x∈Rd

‖Ax− b‖M .

A similar argument holds for C-approximate solution x̂ of minx ‖S(Ax− b)‖Mc,w.

F. Hardness Results and Provable Algorithms for Tukey Regression
F.1. Hardness Results

In this section, we prove hardness results for Tukey regression based on the Exponential Time Hypothesis (Impagliazzo &
Paturi, 2001). We first state the hypothesis.

Conjecture 1 (Exponential Time Hypothesis (Impagliazzo & Paturi, 2001)). For some constant δ > 0, no algorithm can
solve 3-SAT on n variables and m = O(n) clauses correctly with probability at least 2/3 in O(2δn) time.

Using Dinur’s PCP Theorem (Dinur, 2007), Hypothesis 1 implies a hardness result for MAX-3SAT.

Theorem F.1 ((Dinur, 2007)). Under Hypothesis 1, for some constant ε > 0 and c > 0, no algorithm can, given a
3-SAT formula on n variables and m = O(n) clauses, distinguish between the following cases correctly with probability at
least 2/3 in 2n/ logc n time:

• There is an assignment that satisfies all clauses in φ;

• Any assignment can satisfy at most (1− ε)m clauses in φ.

We make the following assumptions on the loss function M : R→ R+. Notice that the following assumptions are more
general than those in Assumption 1.

Assumption 4. There exist real numbers τ ≥ 0 and C > 0 such that

1. M(x) = C for all |x| ≥ τ .

2. 0 ≤M(x) ≤ C for all |x| ≤ τ .

3. M(0) = 0.

Now we give an reduction that transforms a 3-SAT formula φ with d variables and m = O(d) clauses to a Tukey regression
instance

min
x
‖Ax− b‖M ,

such that A ∈ Rn×d and b ∈ Rn with n = O(d), and all entries in A are in {0,+1,−1} and all entries in b are in
{±kτ | k ∈ N, k ≤ O(1)}. Furthermore, there are at most three non-zero entries in each row of A.

For each variable vi in the formula φ, there is a variable xi in the Tukey regression that corresponds to vi. For each variable
vi, if vi appears in Γi clauses in φ, we add 2Γi rows into [A b]. These 2Γi rows are chosen such that when calculating
‖Ax− b‖M , there are Γi terms of the form M(xi), and another Γi terms of the form M(xi − 10τ). This can be done by
taking the i-th entry of the corresponding row of A to be 1 and taking the corresponding entry of b to be either 0 or 10τ .
Since

∑d
i=1 Γi = 3m in a 3-SAT formula φ, we have added 6m = O(d) rows into [A b]. We call these rows Part I of [A b].

Now for each clause C ∈ φ, we add three rows into [A b]. Suppose the three variables in C are vi, vj and vk. The first
row is chosen such that when calculating ‖Ax− b‖M , there is a term of the form M(a+ b+ c− 10τ), where a = xi if
there is a positive literal that corresponds to vi in C and a = 10τ − xi if there is a negative literal that corresponds to vi in
C. Similarly, b = xj if there is a positive literal that corresponds to vj in C and b = 10τ − xj if there is a negative literal
that corresponds to vj in C. The same holds for c, xk, and vk. The second and the third row are designed such that when
calculating ‖Ax− b‖M , there is a term of the form M(a+ b+ c− 20τ) and another term of the form M(a+ b+ c− 30τ).
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Clearly, this can also be done while satisfying the constraint that all entries in A are in {0,+1,−1} and all entries in b are in
{±kτ | k ∈ N, k ≤ O(1)}. We have added 3m rows into [A b]. We call these rows Part II of [A b].

This finishes our construction, with 6m+ 3m = O(d) rows in total. It also satisfies all the restrictions mentioned above.

Now we show that when φ is satisfiable, if we are given any solution x such that

‖Ax− b‖M ≤ (1 + η) min
x
‖Ax− b‖M ,

then we can find an assignment to φ that satisfies at least (1− 5η)m clauses.

We first show that when φ is satisfiable, the regression instance we constructed satisfies

min
x
‖Ax− b‖M ≤ 5C ·m.

We show this by explicitly constructing a vector x. For each variable vi in φ, if vi = 0 in the satisfiable assignment, then we
set xi to be 0. Otherwise, we set xi to be 10τ . For each variable vi, since xi ∈ {0, 10τ}, for all the 2Γi rows added for it,
there will be Γi rows contributing 0 when calculating ‖Ax− b‖M , and another Γi rows contributing C when calculating
‖Ax− b‖M . The total contribution from this part will be 3C ·m. For each clause C ∈ φ, for the three rows added for it,
there will be one row contributing 0 when calculating ‖Ax− b‖M , and another two rows contributing C when calculating
‖Ax− b‖M . This is by construction of [A b] and by the fact that C is satisfied. Notice that M(a+ b+ c− 10τ) = 0 if only
one literal in C is satisfied, M(a+ b+ c− 20τ) = 0 if two literals are satisfied, and M(a+ b+ c− 30τ) = 0 if all three
literals in C are satisfied. Thus, we must have minx ‖Ax− b‖M ≤ 5C ·m, which implies ‖Ax− b‖M ≤ (1 + η)5C ·m.

We first show that we can assume each xi satisfies xi ∈ [−τ, τ ] or xi ∈ [9τ, 11τ ]. This is because we can set xi = 0
otherwise without increasing ‖Ax− b‖M , as we will show immediately. For any xi that is not in the two ranges mentioned
above, its contribution to ‖Ax− b‖M in Part I is at least C · 2Γi. However, by setting xi = 0, its contribution to ‖Ax− b‖M
in Part I will be at most C · Γi. Thus, by setting xi = 0 the total contribution to ‖Ax− b‖M in Part I has been decreased by
at least C · Γi. Now we consider Part II of the rows in [A b]. The contribution to ‖Ax− b‖M of all rows in [A b] created for
clauses that do not contain vi will not be affected after changing xi to be 0. For the 3Γi rows in [A b] created for clauses that
contain vi, their contribution to ‖Ax− b‖M is lower bounded by C · 2Γi and upper bounded by C · 3Γi. The lower bound
follows since for any three real numbers a, b and c, at least two elements in {a+b+c−10τ, a+b+c−20τ, a+b+c−30τ}
have absolute value at least τ , and M(x) = C for all |x| ≥ τ . Thus, by setting xi = 0 the total contribution to ‖Ax− b‖M
in Part II will be increased by at most C · Γi, which implies we can set xi = 0 without increasing ‖Ax− b‖M .

Now we show how to construct an assignment to the 3-SAT formula φ which satisfies at least (1− 5η)m clauses, using a
vector x ∈ Rd which satisfies (i) ‖Ax − b‖M ≤ (1 + η)5C ·m and (ii) xi ∈ [−τ, τ ] or xi ∈ [9τ, 11τ ] for all xi. We set
vi = 0 if xi ∈ [−τ, τ ] and set vi = 1 if xi ∈ [9τ, 11τ ]. To count the number of clauses satisfied by the assignment, we
show that for each clause C ∈ φ, C is satisfied whenever a+ b+ c ≥ 7τ . Recall that a = xi if there is a positive literal that
corresponds to vi in C and a = 10τ − xi if there is a negative literal that corresponds to vi in C. Similarly, b = xj if there is
a positive literal that corresponds to vj in C and b = 10τ − xj if there is a negative literal that corresponds to vj in C. The
same holds for c, xk, and vk. Since a, b and c are all in the range [−τ, τ ] or in the range [9τ, 11τ ], whenever a+ b+ c ≥ 7τ ,
we must have a ≥ 9τ , b ≥ 9τ or c ≥ 9τ , in which case clause C will be satisfied. Thus, at least (1− 5η)m clauses will be
satisfied, since otherwise ‖Ax− b‖M will be larger than 3C ·m+ 2C ·m+ 5ηC ·m = (1 + η)5C ·m. Here the first term
3C ·m corresponds to the contribution from Part I, since any xi must satisfy |xi| ≥ τ or |xi − 10τ | ≥ τ . The second and
the third term 2C ·m+ 5ηC ·m corresponds to the contribution from Part II when at least 5ηm clauses are not satisfied.

Our reduction implies the following theorem.

Theorem F.2. Suppose there is an algorithm that runs in T (d) time and succeeds with probability 2/3 for Tukey regression
with approximation ratio 1 + η when the loss function M satisfies Assumption 4 and the input data satisfies the following
restrictions:

1. A ∈ Rn×d and b ∈ Rn with n = O(d).

2. All entries in A are in {0,+1,−1} and all entries in b are in {±kτ | k ∈ N, k ≤ O(1)}.

3. There are at most three non-zero entries in each row of A.
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Then, there exists an algorithm that runs in T (d) time for a 3-SAT formula on d variables and m = O(d) clauses which
distinguishes between the following cases correctly with probability at least 2/3:

• There is an assignment that satisfies all clauses in φ.

• Any assignment can satisfy at most (1− 5η)m clauses in φ.

Combining Theorem F.1 and Theorem F.2 with the Hypothesis 1, we have the following corollary.

Corollary F.3. Under Hypothesis 1, for some constant η > 0 and C > 0, no algorithm can solve Tukey regression with
approximation ratio 1 + η and success probability 2/3, and runs in 2d/ logC d time, when the loss function M satisfies
Assumption 4 and the input data satisfies the following restrictions:

1. A ∈ Rn×d and b ∈ Rn with n = O(d).

2. All entries in A are in {0,+1,−1} and all entries in b are in {±kτ | k ∈ N, k ≤ O(1)}.

3. There are at most three non-zero entries in each row of A.

F.2. Provable Algorithms

In this section, we use the polynomial system verifier to develop provable algorithms for Tukey regression.

Theorem F.4 ((Renegar, 1992; Basu et al., 1996)). Given a real polynomial system P (x1, x2, · · · , xd) with d variables and
n polynomial constraints {fi(x1, x2, · · · , xd)∆i0}ni=1, where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤, <},
let D denote the maximum degree of all the polynomial constraints and let H denote the maximum bitsize of the coefficients
of all the polynomial constraints. Then there exists an algorithm that runs in

(Dn)O(d) poly(H)

time that can determine if there exists a solution to the polynomial system P .

Besides Assumption 1, we further assume that the loss function M(x) can be approximated by a polynomial P (x) with
degree D, when |x| ≤ τ . Formally, we assume there exist two constants LP ≤ 1 ≤ UP such that when |x| ≤ τ , we have

LPP (|x|) ≤M(|x|) ≤ UPP (|x|).

Indeed, Assumption 1 already implies we can take P (x) = xp, with LP = LM and UP = UM when p is an integer.
However, for some loss function (e.g., the one defined in (1)), one can find a better polynomial to approximate the loss
function. Since the approximation ratio of our algorithm depends on UP /LP , for those loss functions we can get an
algorithm with better approximation ratio. We also assume Assumption 2 and all entries in A and b are integers.

We first show that under Assumption 2 and the assumption that all entries in A and b are integers, either ‖Ax− b‖M = 0 for
some x ∈ Rd, or ‖Ax− b‖M ≥ 1/2poly(nd) for all x ∈ Rd.

Lemma F.5. Suppose all entries in A and b are integers, under Assumption 1 and Assumption 2, either ‖Ax− b‖M = 0 for
some x ∈ Rd, or ‖Ax− b‖M ≥ 1/2poly(nd) for all x ∈ Rd.

Proof. We show that either there exists x ∈ Rd such that Ax = b, or ‖Ax− b‖2 ≥ 1/2poly(nd) for all x ∈ Rd. Notice that
‖Ax− b‖2 ≥ 1/2poly(nd) implies ‖Ax− b‖∞ ≥ 1/2poly(nd)/

√
n, and thus the claimed bound follows from Assumption 1.

Without loss of generality we assume A is non-singular. By the normal equation, we know x∗ = (ATA)−1(AT b) is
an optimal solution to minx ‖Ax − b‖2. By Cramer’s rule, all entries in x∗ are either 0 or have absolute value at least
1/2poly(nd). This directly implies either Ax∗ − b = 0 or ‖Ax∗ − b‖2 ≥ 1/2poly(nd).

Lemma F.5 implies that either ‖Ax− b‖M = 0 for some x ∈ Rd, or ‖Ax− b‖M ≥ 1/2poly(nd) for all x ∈ Rd. The former
case can be solved by simply solving the linear system Ax = b. Thus we assume ‖Ax− b‖M ≥ 1/2poly(nd) for all x ∈ Rd
in the rest part of this section.
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To solve the Tukey regression problem minx ‖Ax− b‖M , we apply a binary search to find the optimal solution value OPT.
Since 1/2poly(nd) ≤ OPT ≤ n · τp ≤ 2poly(nd) by Assumption 1 and Assumption 2, the binary search makes at most
log(2poly(nd)/ε) = poly(nd) + log(1/ε) guesses to the value of OPT to find a (1 + ε)-approximate solution.

For each guess λ, we need to decide whether there exists x ∈ Rd such that ‖Ax− b‖M ≤ λ or not. We use the polynomial
system verifier in Theorem F.4 to solve this problem. We first enumerate a set of coordinates S ⊆ [n], which are the
coordinates with |(Ax∗ − b)i| ≥ τ , where x∗ = argminx ‖Ax− b‖M , and then solve the following decision problem:∑

i∈[n]\S

P (σi(Ax− b)i) + |S| · τp ≤ λ

s.t σ2
i = 1,∀i ∈ [n] \ S

0 ≤ σi(Ax− b)i ≤ τ,∀i ∈ [n] \ S.

Clearly, σi(Ax − b)i = |(Ax − b)i|, and thus LPP (σi(Ax − b)i) ≤ M((Ax − b)i) ≤ UPP (σi(Ax − b)i). Thus by
Assumption 1, for all x ∈ Rd and S ⊆ [n],

LP ‖Ax− b‖M ≤
∑

i∈[n]\S

P (σi(Ax− b)i) + |S| · τp.

Moreover, ∑
i∈[n]\S

P (σi(Ax
∗ − b)i) + |S| · τp ≤ UP ‖Ax∗ − b‖M

when S = {i ∈ [n] | |(Ax∗ − b)i| ≥ τ}, which implies the binary search will return a ((1 + ε) · UP /LP )-approximate
solution.

Now we analyze the running time of the algorithm. We make at most poly(nd) + log(1/ε) guesses to the value of OPT.
For each guess, we enumerate a set of coordinates S, which takes O(2n) time. For each set S ⊆ [n], we need to solve the
decision problem mentioned above, which has n+ d variables and O(n) polynomial constraints with degree at most D. By
Theorem F.4 this decision problem can be solved in (nD)O(n) time. Thus, the overall time complexity is upper bounded by
(nD)O(n) · log(1/ε).

Notice that we can apply the row sampling algorithm in Theorem D.8 to reduce the size of the problem before ap-
plying this algorithm. This reduces the running time from (nD)O(n) · log(1/ε) = 2O(n·(logn+logD)) · log(1/ε) to
2Õ(logD·dp/2 poly(d logn)/ε2). Formally, we have the following theorem.

Theorem F.6. Under Assumption 1 and 2, and suppose all entries in A and b are integers, and there exists a polynomial
P (x) with degree D and two constants LP ≤ 1 ≤ UM such that when |x| ≤ τ , we have

LPP (|x|) ≤M(|x|) ≤ UPP (|x|).

Then there exists an algorithm that returns a ((1 + ε) · UP /LP )-approximate solution to minx ‖Ax − b‖M and runs in
2Õ(logD·dp/2 poly(d logn)/ε2) time.

Corollary F.7. Under Assumption 2, and suppose all entries in A and b are integers, for the loss function M defined in (1)
there exists an algorithm that returns a (1 + ε)-approximate solution to minx ‖Ax− b‖M and runs in 2Õ(poly(d logn)/ε2)

time.




