Dimensionality Reduction for Tukey Regression

Supplementary Material for ‘“Dimensionality Reduction for Tukey Regression”

A. Preliminaries

For two real numbers @ and b, we use the notation a = (1 £ e)bifa € [(1 — ¢)b, (1 + €)b)].

We use || - ||, to denote the ¢, norm of a vector, and || - || .., to denote the weighted £, norm, i.e.,

n 1/p
1yllp,w = <Z wi|yi|p> :
=1

For a vector y € R", a weight vector w € R™ whose entries are all non-negative and a loss function M : R — R that
satisfies Assumption 1, ||y||as,. is defined to be

[Yllarw =D wi - M(ys).
i=1

We also define ||y||as to be
lyllae = M(ys).
i=1

For a vector y € R™ and a real number 7 > 0, we define H,, to be the set H, = {i € [n] | |y;| > 7}, and L, to be the set
Ly={ien] ||yl <7}
A.1. Tail Inequalities

Lemma A.1 (Bernstein’s inequality). Suppose X1, Xa, ..., X, are independent random variables taking values in [—b, b].
Let X =" | X; and Var[X]| = Y7, Var[X,] be the variance of X. For any t > 0 we have

Pr[|X — E[X]| > t] < 2exp (—2Var[Xt] + 2bt/3) '

A.2. Facts Regarding the Loss Function

Lemma A.2. Under Assumption 1, there is a constant C > 0 that depends only on p, for which for any a,b with |b| < €|a
we have M (a +b) = (1 £ Ce)M (a).

5

Proof. Without loss of generality we assume a > 0. When b > 0, by Assumption 1.3, we have
M(a) < M(a+b) <(1+e)’ - M(a) < (1+Ce)M(a).

When b < 0, we have
a

a+b

M(a)ZM(a+b)Z( >pM(a)Z(1C’5)M(a).

O

Lemma A.3. Under Assumption 1, there is a constant C' > 0 that depends only on p, for which for any e,y € R™ and any
weight vector w with |le|| a1 < 2Py || 0w

ly + ellarw = (1 £ C'e) [yl as,w-

Proof. Clearly, by Assumption 1.3,

lle/e* larw < e llellarw < ellyllar-
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Let S = {i € n| |e;] < ¢ly;|}. By Lemma A.2, for all i € S we have M (y; +¢;) = (1 £ Ce)M(y;). Foralli € [n] \ S,
we have |e;| > €ly;|. For sufficiently small €, by Assumption 1.2 and Lemma A.2,

M (e +yi) < Meife® +yi) < (1+ Ce)M(es/<?),

which implies
Z w;M(y; +e;) < (14 Ce)lle/e* |mrw < (14 C)e|yll s,

i€[n]\S
Furthermore,
> w Z M(ei/e) < lle/eatw < &Yl asw-
icn)\s i€ln]
Thus,
ly + ellar,w
—sz yz—i—el + Z wiM(yi—&-ei)
€S i€[n]\S
=(1+Ce) sz yi) £ (1 + Ce)ellyllarw
€S

=1+ Cls) ”yHM,w-

A.3. Facts Regarding Lewis Weights

In this section we recall some facts regarding leverage scores and Lewis weights.

Definition A.1. Given a matrix A € R™*9, The leverage score of arow A, . is defined to be
Ti(A) = Ai (AT A (AT

Definition A.2 ((Cohen & Peng, 2015)). For a matrix A € R"*9, its ¢, Lewis weights {u;}7_, are the unique weights such

that for each ¢ € [n] we have
U; = Ti<U1/2_1/pA).

Here 7; is the leverage score of the i-th row of a matrix and U is the diagonal matrix formed by putting the elements of u on
the diagonal.

Theorem A.4 ((Cohen & Peng, 2015)). There is an algorithm that receives a matrix A € R™*?% and outputs {u}?q such
that

u; <y < 2uy,
where {u;}7_, are the {,, Lewis weights of A. Furthermore, the algorithm runs in O(nnz(A) 4 dP/2+0W) gime,

Theorem A.5 (Lewis’s change of density (Lewis, 1978), see also (Wojtaszczyk, 1996, p. 113)). Given a matrix A € R™xd
and p > 1, there exists a basis matrix H € R™*? of the column space of A, such that if we define a weight vector T € R™
where U; = || H; .||2, then the following hold:

L |z < d;

—p/2—1__ . .
2. Up/ H is an orthonormal matrix.

Here U is the diagonal matrix formed by putting the elements of u on the diagonal.

Lemma A.6 (See, e.g., (Wojtaszczyk, 1996, p. 115)). Given a matrix A € R7xd for the basis matrix H and the weight
vector T defined in Theorem A.5, for all x € R* we have

—p/2-1 p/2—1

1T Halls < [|Hz|, < d/P=V2 U7 Hzl)y
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when1 < p < 2, and
|Hz, < [T Ha|)y < /27| Hal,

when p > 2.
Since Up/z_lH is an orthonormal matrix, for all x € R we have
|zl < [|Hall, < dVP~12)|2])

when1 < p < 2, and
|Hal, < [|lz]l2 < /2717 || Hal,

when p > 2.

Lemma A.7. Given a matrix A € R"*% and p > 1, the weight vector u defined in Definition A.2 and the weight vector T
defined in Theorem A.5 satisfies

Uy = U, .

Proof. We show that substituting u; = u! will satisfy
U; = Ti(Ul/Qil/pA),

and thus the theorem follows by the uniqueness of Lewis weights.

Since leverage scores are invariant under change of basis (see, e.g., (Woodruff, 2014, p. 30)), we have
Ti(Ul/Q_l/pA) — Ti(U1/2_1/pH),
where H is the basis matrix defined in Theorem A.5. Substituting u; = u! we have
Ti(Ul/Q—l/pA) _ Ti(Up/271H).

. =p/2—=1 . . . .
However, since U v/ H is an orthonormal matrix, and the leverage scores of an orthonormal matrix are just squared ¢
norm of rows (see, e.g., (Woodruff, 2014, p. 29)), we have

2
r(UYEVPA) = (ﬂf/zflllHi,* |2) =7;.

Lemma A.8. Given a matrix A € R"*? and p > 1, for all y € im(A) and i € [n], we have

|yi|p < dmax{O,p/2—1}ui . ||ZU||§

Here {u;}7_, are the {,, Lewis weights defined in Definition A.2.

Proof. Forall y € im(A), we can write y = Hx for some vector z € R and the basis matrix H in Theorem A.5. By the
Cauchy-Schwarz inequality,
lyil” = (2, Hi ) [P < [J]l - [ Hi s 12,

which implies
il ? < dm ORIy |P |

by Lemma A.6, which again implies
O e L R [

since U; = ||H; .||2 and u; = u’ by Lemma A.7. O
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Lemma A.9. Under Assumption 1, given a matrix A € R™ §iewis € (0,1), and a weight vector w € R™ such that (i)
w; > 1 foralli € [n] and (ii) max;c[,) w; < 2minep,) w;. Let w’ € R™ be another weight vector which is defined to be

, w;/p;  with probability p;
w,; =
! 0 with probability 1 — p;

and p; satisfies
p; > min{1,0(Unr/Lay - d™*OP/27 2y, - log(1/dewis) /£2) ]},

then for any fixed vectors x € R® such that || Az|| o < T, with probability at least 1 — jewis we have

[Az[ a0 = (1% &) | Az]| arwr-

Proof. Without loss of generality we assume 1 < w; < 2 for all ¢ € [n]. Let y = Az. We use the random variable Z; to
denote
Z; = wiM (y;)-
Clearly E[Z;] = w; M (y;), which implies
Elllyllaz.w] = lyllaz,-

Furthermore, Z; < 2M (y;)/pi. Since ||yllco < 7 and Lps|y; [P < M (y;) < Unrl|ys|? when |y;| < 7, by Lemma A.8 we
have

Z;i < 22U |yilP /o < O(Lay - ||yl|% - €2/ 1og(1/biewis)) < Oyl az,w - €%/ 108(1/brewis))-
Moreover, E[Z2] < O((M (y;))?/p:), which implies

> E[Z}]<0 (Z(M(yi)f/pi) :

i=1 i=1
By Holder’s inequality,

n

ZE[ZE] < O(llyllar) - max M (i) /pi < O|Iyll3 1.0 - €2/ 108(1/Glewis))-

Furthermore, since
n

. Z

i=1

Var

= Var[z] < 3 B|Z])

Bernstein’s inequality in Lemma A.1 implies

Prl[lyllasw — 1yl as,w

t2
>t <exp|—6 .

] ( (Hy”M,w -€2/1og(1/dlewis) - t + ||y||?\4’u} e/ log(l/élew15)>>
Taking t = ¢ - ||y|| m,.o implies the desired result. O
Theorem A.10. Given a matrix A € R"*¢, dsubspace € (0, 1), and a weight vector w € R™ such that (i) w; > 1 for all
i € [n] and (i) max;c(,) w; < 2minep,) w;. Let w' € R™ be another weight vector which is defined to be
W — w;/p;  with probability p;

! 0 with probability 1 — p;

and p; satisfies
pi > min{1, e(dmax{o’pﬂil}ui - (dlog(1/e) + lOg(1/55ubspace))/52)}7

then with probability at least 1 — Osubspace, for all vectors x € RY, we have

[Az([} . = (1% &) [|Az[[} -
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Proof. Let N be an e-net for {Az | ||Az|/p. = 1}. Standard facts (see, e.g., (Woodruff, 2014, p. 48)) imply that
log |NV| < O(dlog(1/e)). Now we invoke Lemma A.9 with djewis = Osubspace/|/N|. Notice that f(x) = |x|? is also a loss
function that satisfies Assumption 1, with Ly = Up; = 1 and 7 = oo. Thus, if p; satisfies

Di 2 @(dmax{o’pp_l}ui - (dlog(1/e) + IOg(l/(Ssubspace))/52)v
then with probability 1 — dsubspace, simultaneously for all z € N we have
Az}, = (1 £e)|| Az} -

Now we can invoke the standard successive approximation argument (see, e.g., (Woodruff, 2014, p. 47)) to show that with
probability 1 — dsupspace, simultaneously for all x € R< we have

[Az[[}., = (1 £ O@E) | Az -

Adjusting constants implies the desired result. O

B. Finding Heavy Coordinates
B.1. A Polynomial Time Algorithm

1. LetJ = 0.

2. Repeat the following for a times:
(a) Calculate {u;};e[,)\ s, Which are the £, Lewis weights of the matrix Ap,)\ 7.
(b) Foreachi € [n]\ J, if

drnax{O,p/2—1}ui > i
=9y’

then add ¢ into J.

Figure 6. Algorithm for finding the set .J.

Theorem B.1. For a given matrix A € R"*?, 7 > 0 and p > 1, the algorithm in Figure 6 returns a set of indices J C [n]
with size | J| < O(d™®>{P/21} . o2), such that for all y € im(A), if y satisfies (i) ||yz, b <a-7Pand (i) |Hy| < a, then
H, CJ.

Proof. Consider a fixed vector y € im(A) that satisfies (i) |y, ||} < a - 77 and (ii) | H,| < a. For ease of notation, we

assume |y1| > |y2| > -+ > |yn|. Of course, this order is unknown and is not used by our algorithm. Under this assumption,
H,={1,2,...,|H,|}.

We prove H, C J by induction. For any ¢ < |H,|, suppose [i] C J and i + 1 ¢ J after the i-th repetition of Step 2, we
show that we will add 7 4 1 into .J in the (i + 1)-th repetition of Step 2. Since, [¢] C J and |y1| > |y2| > -+ > |ynl,

Iy sl < llye, 15 + alyiv1 | < a7t + alyip]P.
Since ¢ + 1 € H,, we must have |y, 1| > 7, which implies
)
|yz+1| . > i
lympslle — 2
By Lemma A8, this implies

b

N 1
qma {0,p/2 l}uiJrl > T
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1. Let |J]| = O(d™>{r/2:1} . 42) as in Corollary B.2.

2. Repeat the following for O(log(|J|/dstruct)) times:

(a) Randomly partition [n] into T'y, T, ..., T4.
(b) For each j € [a], use the algorithm in Theorem A.2 to obtain weights {i;};er; such that u; < @; < 2u;,
where {u; }icr, are the £, Lewis weights of the matrix Ar, .
(c) Foreachj € [a], foreachi € T';, if
dmax{0p/2=1} g > 1
25
then add 7 to I.

Figure 7. Algorithm for finding the set 1.

where u; 1 is the £, Lewis weight of the row A; 1 . in A}, s+, in which case we will add ¢ + 1 into J. Thus, H, C J
since |H,| < a.

Now we analyze the size of J. For the algorithm in Figure 6, we repeat the whole procedure « times. Each time, an index ¢
will be added into I if and only if

dmax{O,p/Z—l}ui > i
2«

Z U; = Z ﬂfgd

ien]\J i€n]\J

However, since

by Theorem A.5, there are at most O(dma"{p/ 21} «) such indices i. Thus, the total size of J is upper bounded by
O(dm{p/2:1} . o2), O

The above algorithm also implies the following existential result.

Corollary B.2. For a given matrix A € R"™%, 7 > 0 and p > 1, there exists a set of indices J C [n] with size
|J| < O(d™={P/2:1} - o2), such that for all y € im(A), if y satisfies (i) ||yz, | < a-71Pand (i) |[Hy| < o, then H, C J.

B.2. An Input-sparsity Time Algorithm

To find a set of heavy coordinates, the algorithm in Theorem B.1 runs in polynomial time. In this section we present an
algorithm for finding heavy coordinates that runs in input-sparsity time. The algorithm is described in Figure 7.

Theorem B.3. For a given matrix A € R™ 4 7 > 0, Stryet € (0,1), and p > 1, the algorithm in Figure 7 returns a set of
indices I C [n] with size |I| < 5(dmax{p/2’1}a -1log(1/dstruct) ), such that with probability at least 1 — dstryct, simultaneously
forally € im(A), if y satisfies (i) ||lyz, || < o - 7P and (i) |Hy| < «, then H, C I. Furthermore, the algorithm runs in
O ((nnz(A) + gp/2+00) . a) . log(l/éstruct)) time.

Proof. Let J be the set with size |.J| < O(d™®{P/2:1} . 42) whose existence is proved in Corollary B.2. For all y € im(A),
if y satisfies (i) ||y, b < a- 7P and (i) |Hy| < a, then H, C J. We only consider those ¢ € J for which there
exists y € im(A) such that () [|yr, |5 < o - 7P, (i) [Hy| < « and (iii) ¢ € H,, since we can remove other ¢ from
J and the properties of J still hold. For such ¢ € H,, and the corresponding y € im(A), suppose for some j € [a]
we have ¢ € T;. Since |H,| < a, with probability (1 — 1/a)/Hs|=* > 1/e, we have T'; N H, = {c}. Furthermore,
ElllyL,nr; 5] = llyr, I5 /o < 7P. By Markov’s inequality, with probability at least 0.8, we have ||yr,r; |5 < 577. Thus,
by a union bound, with probability at least 1/e — 0.2 > 0.1, we have |y, r, ||) < 577 and I'; N H, = {c}. By repeating
O(log(]J|/dstruct)) times, the success probability is at least 1 — ds¢ruct/|J|- Applying a union bound over all ¢ € J, with
probability 1 — dstryuct, the stated conditions hold for all ¢ € J. We condition on this event in the rest of the proof.
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Consider any ¢ € J and y € im(A) with the properties stated above. Since |y.| > 7, we have

|ye|P |ye|P
5= P
lyr; lp — llyr;nc, o + [vel?

Y

1
5
By Lemma A.8, we must have

dmax{O,p/Qfl}uC > 1
- 67
where u, is the £, Lewis weight of the row A . in the matrix Ap]. > Which also implies

dmax{O,p/Zfl}ac >

S| =

since . > U, in which case we will add c to I.

Now we analyze the size of I. For each j € [a], we have
dai<2d uw=2> u<2d
i€l i€l i€l

by Theorem A.5. For each j € [a], there are at most O(d™*{P/2:1}) indices 7 which satisfy

dmax{O,p/Q—l}ai > 17

which implies we will add at most O (a - dmax{r/ 2’1}) elements into I during each repetition. The bound on the size of I
follows since there are only O(log(|J|/dstruct)) = O(log d + log a4 log(1/dstruct)) repetitions.

For the running time of the algorithm, since we invoke the algorithm in Theorem A.4 for O(log(|J|/dstruct)) times, and
each time we estimate the ¢, Lewis weights of Ar, ., Ar, «, ..., Ar,,,,«, Which implies the running time for each repetition
is upper bounded by

||

Z 9] (IIHZ(AF].’*) + d”/2+o(1)) =0 (nnz(A) 4 qp/2+001) a) )
j=1
The bound on the running time follows since we repeat for O(log(|.J|/dstryct)) times. O

The above algorithm and the probabilisitic method also imply the following existential result.

Corollary B.4. For a given matrix A € R**d + > 0 and p > 1, there exists a set of indices I C [n] with size
[I| < O(d™»{P/2:1} . o), such that for all y € im(A), if y satisfies (i) | yr,lIh < o 7P and (i) |H,| < o, then H, C I.

C. The Net Argument
C.1. Bounding the Norm

We will generally assume that for product Az, the 2 involved is in im(AT), which is the orthogonal complement of the
nullspace of A; any nullspace component of  would not affect Ax or S Az, and so can be neglected for our purposes.

Lemma C.1. When the entries of A are integral, for any nonempty S C [n], A;* ||2 < ||A||gCP(A) \Vd, and under also

2
AL I, < O,

Assumption 2.2,

Proof. When S is a nonempty proper subset of [r2], then since || As ||, < [|A||, and CP(As ) < CP(A), we have that if
HA;* I, < [l As, ||;CP(A5,*)\/a, then the lemma follows. So we can assume S = [n].

First suppose A has full column rank, so that AT A is invertible. For any y € R", A%y is the unique solution z* of
AT Az = ATy. Applying Cramer’s rule, the entries of z* have the form z; = 9B where B; is the same as AT A,
except that the 4’th column of B; is ATy. The integrality of A implies | det AT A| > 1; using that together with Hadamard’s
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determinant inequality and the definition of the spectral norm, we have ||z* ||, < ||AH§CP(A) lyl,V/d. Since this holds for
any y, we have || A*|, < [|A||2CP(A)v/d as claimed.

Now suppose A has rank k& < d. Then there is 7 C [d] of size k whose members are indices of a set of k linearly independent
columns of A. Moreover, if z* = ATy is a solution to min, || Az — y||,, then there is another solution where the entries
with indices in [d] \ T are zero, since a given column not in 7 is a linear combination of columns in 7. That is, the solution
to min, cgr || A« 72 — yl|, can be mapped directly to a solution z* in R* with the same Euclidean norm. Since A, 7 has
full column rank, the analysis above implies that

% k d
z]l; < 4w, 7lI3CP(Aw ) lyll,VE < |AIISCP(A) Iyl Vd,
so the bound on || A™||, holds also when A has less than full rank.
The last statement of the lemma follows directly, using the definitions of ||A||,, CP(A), and Assumption 2.2. O
Lemma C.2. If A has integral entries, and if Assumptions 1, 2.2, 2.3 hold, then Assumption 2.1 holds.
Proof. Let 25} be a C-approximate solution of min, || Az — b|| 7> Which Assumption 2.1 requires to have bounded

Euclidean norm. Let M (a) = min{7?, |a|}, so that Assumptions 1.4 and 1.5 imply that L, M (a) < M(a) < Up; M (a)

for all a. Letting z3, = argmin, ||Az — b|[,, and similarly defining 2. , this condition implies that

1
C C
HA‘Z‘JMI - bHM < mlleN} - bHM

&
< —|| Az, = b
< Tl Ay by
< Co|| Az — bl
< Coll Azt bl 3)
where 02 = ClUM/L]\/[.
Let S denote the set of indices at which |Az*mfj —b;| < 7. If S is empty, then xAC/} can be assumed to be zero.

Similarly to our general assumption that z{} € im(AT), we can assume that 25} € im(A;*), since any component of

xfj in the nullspace of As , can be removed without changing A57*xg}, and without increasing the n — |S| contributions
of 77 from the remaining summands in || Az$} — b|| - (Here we used Assumption 1.5 that M (a) = 77 for |a| > 7.)

From 2§} € im(AT) it follows that |25}, = HA;*A&*.%‘]C\;}HQ < ||A§*||2HA3*:ECA;} |,» and since
1As w25t 1, < Vil As a5t

< V(|| As,«xfi = bsll,, + bsll,)
< Cov/n([| Az, — 0| P + |lbs],)  (by (3)

< 202\/ﬁ||b”p7
we have [|lz37 ]|, < [|AS, ||2|\A5,*a:61\;} Iy < 145 .1,2C2+/n]b]|,,, and so from Lemma C.1 and Assumption 2.2, the bound
on ||z} ||, of Assumption 2.1 follows. O
C.2. Net Constructions

Lemma C.3. Under the given assumptions, for U as in Assumption 2.1, there exists a set N C im([A b]) with size
INL| < nOW) . (1/£)0W), such that for any w satisfying ||z||2 < U, there exists y' € N such that

I(Az = b) =yl < P

Proof. Let M (a) = min{7?, |a|’}. Assume for now that & < /2, so that if | Az||;, < &P, then every entry of Az is no
more than 7 in magnitude, and so || Az||y, = [[Az|].
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Let
B.={Az —b| [ Az —b|ly < e} = {Az b Az —b]|, < ¢}

and
By ={Az - b| |zl <U} C{Az —b | [|[Az = bll, < Vn- ([[Al,U +[[b]ly)}-

From the scale invariance of the ¢, norm, and the volume in at-most d dimensions, Vol(B.) > (¢/(v/n - (||[A|l,U +
16]15)))? Vol(By), so that at most (v/7 - (|| A]|,U + ||b]|,)/)? translates of B. can be packed into By, without intersecting.
Thus the set NV of centers of such a maximal packing of translates is an eP-cover of By, that is, for any point y € By, there

is some y' € N such that |y’ — y||, < e, so that [y — y| y, < €.

If ¢ > 7/2, we just note that a (7/2)P-cover is also an e”-cover, and so there is an eP-cover of size (v/n - (||[A[|,U +
1Bll,)/ min{r/2,e})".

Plugging in the bounds for U from Assumption 2.1, and for 7,
and 2.3, the cardinality bound of the lemma follows.

b

9> and [|All, < max;eqg) | Axil|, from Assumptions 2.2

This argument is readily adapted to more general || - || ,,, by noticing that ||y —%/||»s < Uns-|ly—3'|| ;; using Assumption 1.4
and adjusting constants. U

Lemma C.4. Under the given assumptions, there exists a set M2P C im([A b]) with size |M2P| < O (5/0‘) 0@ .

€

(1/€)°9D, such that for any x satisfying o < || Az — b||, < B < 7, there exists y' € M2P such that

[(Az = b) — ¢/ ||lar < &P || Az — bl as-

Proof. We assume € < T, since otherwise we can take ¢ to be 7. By standard constructions (see, e.g., (Woodruff, 2014,
p. 48)), there exists a set M., C im([A b]) with size |M.,| < (1/£)°(@), such that for any y = Az — b with ||y|, = 7,
there exists ' € M., such that ||y — /||, < v-e.

Let M2 be
M?’ﬁ =M, U M(1+5)a U M(1+5)2a U---UMg.

Clearly, by Assumption 2,

|M?’5

< 10812 (8/a) - 1O (1/2)°0 < 0 (EL2) 0 (1000,

Now we show that M2# satisfies the desired properties. For any z € R? such that y = Az — b satisfies o < ||y||, <
B8 < 7, we must have |y;| < 7 for all entries of y. By normalization, there exists ¢ such that ||y — 4|, < € ||y|l, and
ll9]l, = (1 +¢&)* - « for some i € N. Furthermore, by the property of M (14 c)iqn there exists y' € M1 4¢)iq C M7 such
that |7 — ¢/'|l, < e |¥|l, < 2¢-||y|lp. Thus, by triangle inequality, we have ||y — ¢/||, < 3¢||y||,. For sufficiently small ¢,

since ||y||, < 7, we also have ||y — y/'||, < 7, which implies ||y — 3'||oc < 7. Thus, using Assumption 1.4, we have

ly =¥/ llar < Untlly = 91l < Unt - (36)7 - Iyl < Une/Lar(3€)" |yl as-

Adjusting constants implies the desired properties. [

C.3. The Net Argument
Theorem C.5. For any A € R"*? and b € R, given a matrix S € R™ "™ and a weight vector w € R™ such that w; > 0
foralli € [n]. Let ¢ = miny || Az — b||,. If there exist Up,Ua, La, Ly < poly(n) such that

1. ||S(Azh, — )|l mw < Uol|Azh, — bllv, where 2}, = argmin,, || Az — b||a;

2. LallAz —bl|ar < [|S(Az — b)||arw < Ual|Az — b|ar for all x € RY;

-, c-pol
3. 118y llarw > Lvllyllar for all y € Nyot(e.r ny U MESESS),
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then, any C-approximate solution of ming ||S(Az — b)||ar,0 with C < poly(n) isa C - (1 + O(¢)) - Uo/ L n-approximate

solution of min,, || Ax —b|| ps. Here Npoly(E_T /n) and M;’(i;’gﬁ?) are as defined in Lemma C.3 and Lemma C.4, respectively.

Proof. We distinguish two cases in the proof.

Case 1: (C - Uy - Ua/(Lpr - La)) - ¢? < 7P, 1In this case, we prove that any C-approximate solution xg Mo Of

ming || S(Ax—0b)||ar, satisfies ¢ < ||AxSMw—pr (C-Unr-Ua/(Las-La))P-c < 7. Letz;, = argmin,, [|Az 0|,
we have

1Az 07,0 — blls
<|1S(AZS ar0p = D)l asw/ L a
<C-||S(Azp, = b)||m,w/La
<C || Azt~ bllns - Ua/La
<C-||Az, = b|[} - (Unr-Ua)/La
=C - (Up-Ua)/La.

I AN

Since Ly < 1, this implies [[Az§ ; , — bllar < 77, which implies [|Az§ \; ,, — blloe < 7. Thus, [|[Az§ /., — b7
HA‘TSMw_bH]VI/LM (C U]\/[ UA/(LM LA))~Cp, WhiChimpliCSHAJJg)Myw pr (C UM UA/(L]\/[ LA))I/p
Moreover, by the definition of ¢ we have || Az§ s —bllp >

o

Since (C' - Ups - Ua/(Las - La))Y? < poly(n), by Lemma C.4, there exists i’ € M;(;;&l}/fg) such that ||(Ax§7M’w

b) — y'|lm < poly(e/n) - ||Aa:g7M7w — b|| as- Notice that
1S(AZG g1 = B)llar0 = 1Y + S(ATS a1 — 0) = 4| at,0-

¢,c-poly(n)
poly(e/n) >

159/ l1ar.0 = Lv |1y ar = Lvl|Az§ pg0 = b+ (4 = (A§ ag0 = D)lar-

For Sy, since yy/ € M , we have

Since ||y’ — (Az§ 5, — )l < poly(e/n) - [[Az§ 30, — bllar, by Lemma A.3, we have [|Az§ ,,,, — b+ (v —
(AxSMw -0 >(1- a)HAxSMw — b|| ps, which 1mpl1es 1Sy | st > Lv(1 — s)HAxSMw — b||as- On the other

hand, [[S((Az§ . — 0) = ¥ |arw < Uall(A2§ 50 —b) = 9'llar < poly(e/n) - | Az 5y ., — bllas- Again by Lemma
A3, we have ||S(Az§ 5/ — b)llarw = (1 —€)[1SY a1, 2 Ly (1—0(e))||Az§ 5, ,, — bl as. Furthermore, since 2§, ,,
is a C-approximate solution of min,, ||S(Az — b)|| s, We must have

IAZS pp0p = bllar < (14 O(€))/Lv - 1S(AZ§ g0 — Ol at,0
<C-(1+0())/Ln - [|S(Az}y = b) || mt00
<C-(140()) - Uo/Ln - || Az} — bl m-
Case 2: (C-Up -Ua/(Lps - La)) - P > 7P, 1In this case, we first prove that any C-approximate solution :L'g,MﬂU

of min, ||S(Az — b)||a.w is a poly(n)-approximate solution of min, ||Axz — b||5;. By Assumption 2.1, this implies all
C-approximate solution z§ ;. of min, ||S(Az — b)||ar,. satisfies [|2§ y; ,[l2 < U.

Consider any C-approximate solution 2 ,, ,, of min, ||S(Az — b)||as,4, we have

| AZE praw — bllas < 1S(AZE pp o — B)lInrw/La < C - [|S(Axh; — b)||ar,w/La
< C-Ua/La-||Axy; — bl|p < poly(n) - ||Azy, — bl as-

We further show that || Az — b||ar > 7P/ poly(n) for all x € RY. If || Az — b||oo > T, then the statement clearly holds.
Otherwise, [|Az — bllas > Las - |[Az — 0|2 > Lye? > L3, La/(C - Uy - Ua) - 72 > 72/ poly(n). Thus, for any
C-approximate solution :Ug M Of ming [|S(Az — b)|[as,w, there exists y' € Npoly(e-r/n) such that

1y = (AZ§ pr0 — b)llar < poly(e - 7/n) < poly(e/n) - | Az§ s 0 — bllas-
The rest of the proof is exactly the same as that of Case 1. O
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D. A Row Sampling Algorithm for Tukey Loss Functions

In this section we present the row sampling algorithm. The row sampling algorithm proceeds in a recursive manner. We
describe a single recursive step in Section D.1 and the overall algorithm in Section D.2.

D.1. One Recursive Step

The goal of this section is to design one recursive step of the row sampling algorithm. For a weight vector w € R™, the
recursive step outputs a sparser weight vector w’ € R™ such that for any set N' C im(A) with size |[A/|, with probability at
least 1 — d,, simultaneously for all y € N,

Yllarw = (L £ ) lyllaz,-

We maintain that if w; # 0, then w; > 1 and ||w]||s, < n? as an invariant in the recursion. These conditions imply that we

can partition the positive coordinates of w into 2logn groups P;, for which P; = {i | 277! < w; < 27}

Now we define one recursive step of our sampling procedure. We split the matrix A into Ap, «, Ap, +, ..., Ap,,, .+ and
deal with each of them separately. For each 1 < j < 2log n, we invoke the algorithm in Theorem B.3 to identify a set I; for
the matrix A P; %> for some parameter o and Ostruct to be determined. For each 1 < j < 2logn, we also use the algorithm in
Theorem A.4 to calculate {; };cp; such that u; < i; < 2u; where {u; };cp,; are the £, Lewis weights of the matrix Ap, ..

Now for each i € P}, we define its sampling probability p; to be

o 1 1€ Ij
Pr= min{1,1/2 + ©(@x(0r/2-115, . y)} i ¢ L’

where Y = dlog(1/¢) + log(logn/do) + Unr/ L log(|N| - logn/d,) /2.

For each i € [n], we set w, = 0 with probability 1 — p;, and set w; = w;/p; with probabliity p;. The finishes the definition
of one step of the sampling procedure.

Let
F= Y (nl+ Yo ) e(@ o2, y).

1<j<2logn 1<j<2log n i€ P\

Our first lemma shows that with probability at least 1 — &,, the number of non-zero entries in w’ is at most 2|[|w||o, provided
||w]|o is large enough.

Lemma D.1. When ||w||o > 10F, with probability at least 1 — §,,
2
/]l < 2ol

Proof. Notice that

Ef[jw'[lo] < [lwllo/2 + F.
By Bernstein’s inequality in Lemma A.1, since F' > (log(1/d,)), with probability at least 1 — exp(—Q(||wllo)) >
1 —exp(—Q(F)) > 1 -, we have

2
l'lo < lwllo/2 + F + Jwllo/10 < Zlwllo-

Our second lemma shows that ||w’||« is upper bounded by 2||w|| so-

Lemma D.2. ||v/]|x < 2||w]]so

Proof. Since p; > 1/2 for all i € [n], we have ||w'||c < 2||w]|co- O
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We show that for sufficiently large constant C, if we set
a=C-Uy/Ly - log(|N]| - logn/d,)/e?
and dstruct = o/ (4logn), then with probability at least 1 — d,, simultaneously for all y € A/ we have

Yllar,wr = (L £ ) |yllaraw-

By Theorem B.3 and Theorem A.5, since

S Y @< O(dlogn),

1<j<2lognicP;\I;

this also implies _
F = O(d™>{1p/2 100 - (log(|N|/8o) - log(1/d0) + d) /€2).

Furthermore, for each 1 < j < 2logn, we invoke the algorithm in Theorem A.4 and the algorithm in Theorem B.3 on
Apy s, APy s+ APy, %> and thus the running time of each recursive step is thus upper bounded by

O((nnz(A) + d?/>t0M . ) - log(1/bstruct)) = O((nnz(A) + d?/>OW og(IN/) - /€2) - log(1/65)).

Now we consider a fixed vector y € im(A). We use the following two lemmas in our analysis.
Lemma D.3. With probability 1 — §,/O(|N| - logn), the following holds:

o Ifllya,np; | vw = C - Unp - 72 - 2771 - log(|N] - logn/d,) /€2, then
lye,ap, I = (1 £/2)llym,np, || aw;
o Ifllya,np; v < C-Unp - 72 - 2771 - log(|N] - logn/d,) /€2, then
Wym,np, I — 1ya,np, |vw] < C - U -7P - 2772 log(IN| - log n/do) /.
Proof. Foreachi € Hy N P;, we use Z; to denote the random variable
7 - {wiM(yi) /pi with probability pi
0 with probability 1 — p;

Since Z; = w; M (y;), we have
lym,np; ||w = Z Zi.
i€ HyNP;
It is clear that Z; < 271 . Uy - 7P since p; > 1/2 and w; < 27, E[Z;] = w; M (y;) and E[Z2] = w?(M (y;))?/pi- By
Holder’s inequality,
Y. EIZ <27 ym,om e - Use - 77
i€H,NP;

Thus by Bernstein’s inequality in Lemma A.1, we have

t2
Pr Zi = lya,np; lImw| >t §2exp(— _ _ )
ief%ij i = lye,np, v 22 Upy 77 1)3 + 272 - |lym o llarw - Ung - 77
When ,
lye,ap, Inrw = C - Ung - 7 - 2771 - log(IN] - logn /o) /2,
we take

t=¢/2 lya,np;lsw = C - Upp -7 - 2772 - log(|N| - log n/do) /.
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By taking C to be some sufficiently large constant, with probability at least 1 — §,/O(|N] - log n),
e, np;law = (LEe/2)lym,np |l mw.

When
lyr,np, | Mw < C-Un -7 - 277 - log(IN] - logn/do) /€2,
we take
t=C Uy -7P 2772 log(|N] - logn/d,) /c.
By taking C' to be some sufficiently large constant, with probability at least 1 — §,/O(|JN] - logn),

Nye,np, v — lya,np, s < C-Unp- 722772 - log(|N] - log n/d,) /.

The proof of the following lemma is exactly the same as Lemma D.3.
Lemma D.4. With probability 1 — §,/O(|N| - logn), the following holds:
o Ifllyr,np,l|mw = C - Ung - 72 - 2771 - log(|N] - logn/8,) /€2, then
1YL, np; v = (1 £ &/2)lyL,np; || ar,w;
o IflyL,np, lnw < C - U - 722971 log(|N] - log n/d,) /€2, then
lyL,np; | — YL, np; larw| < C-Unp - 77 - 2972 og(|N| - logn/ds) /.

Now we use Lemma D.3 and Lemma D.4 to analyze the sampling procedure.

Lemma D.5. [fwe set « = C - Upr/ Ly - log(|N] - logn/d0) /2, Sstruct = 0o/ (4logn), then for each 1 < j < 2logn,
with probability at least 1 — 6, /(2logn), simultaneously for ally € N,

”ij ”M,’w’ = (1 + E)Hypj ”M,w-

Applying a union bound over all 1 < j < 2logn, with probability at least 1 — &, simultaneously for ally € N,

IYllarwr = (L) lyllaraw-

Proof. By Theorem B.3, foreach 1 < j < 2logn, with probability 1—d,/(4 log n), simultaneously forally € N' C im(A),
if y satisfies (i) ||y, np; |5 < o - 7P and (ii) [H, N P;| < o, then we have H, N P; C I;. We condition on this event in the
remaining part of the proof.

Now we consider a fixed y € NV. We show that ||yp, ||ar,.r = (1%£€)||lyp, || a1, With probability at least 1—4d, /O(|N|-log n).
The desired bound follows by applying a union bound over all y € V.

We distinguish four cases in our analysis. We use 7" to denote a fixed threshold
T=C-Uy-7F-271 log(|N| - logn/s,) /g%
Case (i): ||ym,np, || vw < T and ||lyp, qp, || aw < T. Since |ym,np,; ||ar,0 < T, we must have
|H, N Pj| < C-U/L -log(JN] -logn/d,)/e? = a.
Furthermore, we also have
lyz,np, |l < C-Unr/Las - 70 - log(IN| -logn/6,) /e* = o - 7.
By Lemma A.9, with probability at least 1 — §,/O(|N] - log n), we have

lyp1; I = (L E)|lyppr, [ arws

since H, N P; C I;. Moreover, |y1, |[ar,w = [|y1; || 0,0 since w; = wj for all i € I;. Thus, we have ||yp, || 17,0 =
(L e)llyr; llar,w-
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Case (ii): |lym,np; | m0 > T and ||y, np; ||arw > T. By Lemma D.3 and Lemma D.4, with probability at least 1 —
30/ O(|N] - logn),
e, np; a0 = (L Ee/2) |y, np; |l mw

and
HyLyij HMﬂU' = (1 + 5/2)||yLyﬂPj ||M,w7

which implies
lyp, lar,wr = (L £ €/2)llyp, | a1,0-

Case (iii): ||ym,np,||a,0 > T and |lyr, p, || m,0 < T. By Lemma D.3 and Lemma D.4, with probability at least 1 —
do/O(IN| - logn),
lyer,op; 1w = (L Ee/2)|lym,np; M

and

lyL,np, | aw = 1YL, ap, |aw] < C - Un -7 - 2772 -log(JN] - log n/8,) /.
Since

lyp, | arw = Nlym,op; law =T > C - Un - 77 - 2771 - log(IN] - log n/6,) /€2,
we have

lyz,np, e = 1YL, np, |aw] < /2 lyp, || arw,
which implies

lyp; 7w = (L&) lyp; | M-

Case (iv): |lyu,np; 1m0 < T and |lyr,np, ||arw > T. By Lemma D.3 and Lemma D.4, with probability at least 1 —
b0/ O(NT " logn),

lyr,np v = (1 £e/2)llyr,np; | arw

and

e, np, v — 1y, np, | maw| < C - U - 77 - 2772 - log(IN| - log n/é,) /.
Since

lyp; a0 = Nz, np;Iaw = T > C - Unp - 72 - 2271 - log(IN] - log n/8) /€%,
we have

e, np; 0w = 1y, np; || < 2/2 lyp, | 1w,

which implies
1yp; 2,00 = (L £ ) |yp; [ a1,

Now we show that with probability 1 — ., simultaneously for all z € R9, Az}, = (1 £e)[| Az} .
Lemma D.6. Forany 1 < j < 2logn, with with probability at least 1 — 6,/(2logn), simultaneously for all y = Ax,

lyp, 1w = (L) yp, 17,0

Applying a union bound over all 1 < j < 2logn, this implies with probability at least 1 — 6,
1Yl = A E )Y -

Proof. For any fixed 1 < j < 2logn, by Theorem A.10, if we take dsybspace = 0o/ (21log 1), with probability at least
1 —do/(21og n), simultaneously for all y = Az, we have

lyp1, Hg,w’ =1 xe)llypi, I},

Moreover, ||lyr, |5 ., = lyr; [}, since w; = wj for all i € I;. Thus, we have |lyp, |7, = (1 £ &)llyp, 5 .- O
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D.2. The Recursive Algorithm

We start by setting w = 1™. In each recursive step, we use the sampling procedure defined in Section D.1 to obtain w’, by
setting §, = §/O(logn) and e = &’ /O(log n) for some &’ > 0. By Lemma D.1, for each recursive step, with probability at
least 1 — 6/(101logn), we have ||w’|lg < 2/3||w||o. We repeat the recursive step until ||w||o < 10F.

By applying a union bound over all recursive steps, with probability 1 — 6/10, the recursive depth is at most logs /2 1. By
Lemma D.2, this also implies with probability 1 — /10, during the whole recursive algorithm, the weight vector w always
satisfies ||w]|oo < 2'°815™ < n2. If we use wgnal to denote the final weight vector, then we have

[ winatllo < 10F = O(d™>11:2/2} jog - (log(IN]/8o) - log(1/8,) + d) /€2).

By Lemma D.5, and a union bound over all the log; 5 n recursive depths, with probability 1 — ¢, simultaneously for all
y € N, we have
[ Az (| at g = (1% O(e - logn)) | Az|[ar = (L £ O()) | Az| -

Moreover, by Lemma D.6 and a union bound over all the log; 5 n recursive depths, with probability 1 — /10, simultaneously
for all y = Ax we have

IAZ][} oy, = (1 £ O(e -logm)) [ Az}, = (1 £ O(EN)[| Az} -

P> Wfinal
We further show that conditioned on this event, simultaneously for all x € R4,

Ly
U]w n

[ AZ | a1 o = || Az || ar-
Consider a fixed vector x € R, if there exists a coordinate i € H 4, such that w; > 0, since w; > 1 if w; > 0, we must

have
| AZ[| M, w0y = wiM ((Az);) > M((Az);) > Lag - 7.

On the other hand,
[Az|ar <m-Unp - 77,

which implies
Ly

Upy - n

1A a7 g > [ Az|[ar-

Otherwise, i € L 4, for all i € [n], which implies

1-0())L
Al st > Lt [A2] sy 2 (1= OE D Lagl el > LAV g,

Finally, since each recursive step runs in O((nnz(A) + d?/2+0M) . 1og(|N|/68) - /2) - log(1/4)) time, and the number
of recursive steps is upper bounded by log; 5 n with probability 1 — §/10, the total running time is also upper bounded
O((nnz(A) + dP/?+00) .log(|N'|/6) - /€2) - log(1/§)) with probability 1 — §/10.

The following lemma can be proved by applying a union bound over all observations above, changing &’ to € and changing
Ato [ADb].

Lemma D.7. The algorithm outputs a vector wena € R™, such that for any set N' C im([A b]) with size |N|, with

probability 1 — 6, the algorithm runs in O((nnz(A) + d?/2t0M) 1og(|N|/6) - /€2) - log(1/6)) time and the following
holds:

L |[wgnalllo < O(a™@{12/2 1og® n - (log(IN|/6) - log(1/8) + d) /€2);
2. [[whinallloo < n?;

3. Forall x € RY,

Az — bHM7wﬁnaI > ULMMn . ||Al‘ - bHM

4. Forallz € N, || Az — b|| Mgy = (1 £ )| Az — b]| s
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Combining Lemma D.7 with the net argument in Theorem C.5, we have the following theorem.

Theorem D.8. By setting |N'| = nO@) . (1/€)°D, the algorithm outputs a vector wina € R™, such that with probability
1 — 6, the algorithm runs in O((nnz(A) + dP/2+0W) /2 . 1og(1/6)) - log(1/6)) ti 0 < O(dr/>T0M og p .
log?(1/8)/e?) and any C-approximate solution of min,, || Az — b||pf g, With C' < poly(n) is a C - (1 + €)-approximate
solution of min,, || Az — b||ps.

Proof. Lemma D.7 impliesthat Up = 1+¢, Ly =1—¢, Ly = ULMVn and Ug < ||Whinal||oo < n%. Adjusting constants

and applying Theorem C.5 imply the desired result. O

E. The M -sketch

In this section we give an oblivious sketch for Tukey loss functions. Throughout this section we assume 1 < p < 2 in
Assumption 1.

For convenience and to set up notation, we first describe the construction.

The sketch. Each coordinate z, of a vector z to be sketched is mapped to a level h,, and the number of coordinates
mapped to level h is exponentially small in h: for an integer branching factor b > 1, we expect the number of coordinates at
level h to be about a b~" fraction of the coordinates. The number of buckets at a given level is N = bem, where integers
m, c > 1 are parameters to be determined later.

Our sketching matrix is S € RNhmax*" \where hya = [log,(n/m)|. Our weight vector w € RNmax has entries
wiy1 <+ B, fori € [Nh,N(h + 1)) and integer h = 0,1,..., hyax, and 8 = (b — b~ "max) /(b — 1). Our sketch is
reminiscent of sketches in the data stream literature, where we hash into buckets at multiple levels of subsampling (Indyk &
Woodruff, 2005; Verbin & Zhang, 2012). However, the estimation performed in the sketch space needs to be the same as in
the original space, which necessitates a new analysis.

The entries of S are S}, - A, where p € [n] and j < g, + Nh,, and

A, < £1 with equal probability
gp € [N] chosen with equal probability 4)
hy < h with probability 1/Bb" for integer h € [0, hmax),

all independently. Let L; be the multiset {z, | h, = h}, and L, the multiset {z, | h, = h,g, = i}; that
is, Ly, is multiset of values at a given level, Ly, ; is the multiset of values in a bucket. We can write [|Sz||,,,, as

Zhe B Bth(HLh illA)» where | L||, denotes | ZZ cr Mp2pl.

E.1. Accuracy Bounds for Sketching One Vector

We will show that our sketching construction has the property that for a given vector z € R™, with high probability, ||.Sz|| ,, .,
is not too much smaller than ||z|| ,,. We assume that ||z||,, = 1, for notational convenience.

Define y € R™ by y, = M(2,), so that ||y||; = ||z, = 1. Let Z denote the multiset comprising the coordinates of z, and
let Y denote the multiset comprising the coordinates of y. For Z C Z,let M(Z) C Y denote {M (z,) | z, € Z}. Let |V,

1/k
denote (ZyGY ly] ) .50 [|Y|l; = |lyl|,. Hereafter multisets will just be called “sets”.

Weight classes. Fix a value v > 1, and for integer ¢ > 1, let W, denote the multiset comprising weight class {y, € Y |
779 <y, <4177} We have 80" E[|| M (L) N Wy||,] = [[Wq,. For a set of integers @, let W, denote UgeqWj,.

Defining ¢,,.x and h(q). For given € > 0, consider ' € R™ with y} < y; when y; > €/n, and y; < 0 otherwise. Then
ly'[l, =1 —mn(e/n) =1 — . We can neglect W, for ¢ > gmax = log, (n/c), up to error . Moreover, we can assume that
[Wyll; > €/@max. since the contribution to |||/, of weight classes W, of smaller total weight, added up for ¢ < gmax, is at
most €.
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Let h(q) denote |log, (|W,|/Bm)] for |W,| > Sm, and zero otherwise, so that
m < EHM(Lh(q)) n Wq” <bm

for all W, except those with |WW,| < Sm, for which the lower bound does not hold.
Since |[W,| < n for all ¢, we have h(q) < |log,(n/fm)| < hmax.

E.2. Contraction Bounds

Here we will show that ||.Sz||,, ., is not too much smaller than ||z||,,. We will need some weak conditions among the
parameters. Recall that N = bem.

Assumption 3. We will assume b > m, b > ¢, m = Q(loglog(n/¢)), logb = Q(loglog(n/e)), v > 2 > B, an error
parameter € € [1/10,1/3)], and log N < e2m. We will consider ~y to be fixed throughout, that is, not dependent on the other
parameters.

We need lemmas that allow lower bounds on the contributions of the weight classes. First, some notation. For h =
0,1,..., hmax, let

M. = log, (m/z) = O(log, (b/2))

Q< ={q|IW,| <Bm,q < M}

Qn ={a| h(q) = h,|W,| > Bm}

M =log,(2(1 + 3¢)b/e) (&)
Qn=1{q€Qn|q<Ms+ min ¢}
q€EQn
Q" = Q< U [UpQpr].

Here () - is the set of indices of weight classes that have relatively few members, but contain relatively large weights. Qn
gives the indices of W, that are “large” and have h as the level at which between m and bm members of W, are expected in
Lj,. The set (), cuts out the weight classes that can be regarded as negligible at level h.

Lemma E.1. If N > max{O(|M|dm3¢),O0(d*m?/c?)}, then with constant probability, for all z € im(A) and all
q € Q<, the following event £, holds: there are sets Wy C W, with W[ > (1 — €)|W,|, such that for all y € W,

1. they are isolated: they are the sole members of Wq_ in their bucket;

2. their buckets are low-weight: the set L of other entries in bucket containing y € W has || L[|, < 1/e2m?.

Proof. Without loss of generality we assume h(q) are the same for all ¢ € M, since otherwise we can deal with each h(q)
separately.

Let o = m/(Lys - €). By Lemma B.4, there exists a set I C [n] with size |I| = O(d - o) = O(d - m/e) such that for any
z € im(A), if z satisfies (i) [|z2_ ||} < o - 77 and (ii) [H.| < «, then H, C I. Let {u};c[n)\1 be the £, Lewis weights of
Ap1,« and let J C [n] \ I be the set of indices of the d - m/e - Ups / Ly largest coordinates of w. Thus, |J| < O(d - m/e).
Since .J contains the d - m/e - Ups/ Ly largest coordinates of « and

Z U; = Z ﬂfgd

i€[n)\I i€[n)\I

by Theorem A.5, for each i € [n] \ (I UJ), we have u; < d/(d-m/e-Un/Lp) <e/m- Ly /Upyp.

If 77 < ||z||as - €/m, by Assumption 1.2, we have M (z;) < 7P < ||z||aps - €/m for all i € [n]. In this case, we have
Wg< = (0. Thus we assume 77 > ||z||as - €/m in the remaining part of the analysis.

Since ||z||ar > |H.| 77, we have |H| < m/e. Furthermore, by Assumption 1.4, ||z_[|} < ||z |[ar/Lar < [|2]lar/Las <
7P -m/(Lps - €). Thus by setting « = m/(Lys - €) we have H, C I. For each ¢ € [n] \ I, we have |z;| < 7. By Lemma
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A.8 and Assumption 1.4, for each i € [n] \ I, M(2;) < |zi|?/Lar < wi - [[2papgllh/Lar < wi - [[2ppallar - Une /L <
u; - ||2]|ar - Ung/Lag. Thus for each entry ¢ € [n] \ (I U J), we have M (z;) < e/m - ||z||pm-

Thus, the indices of all members of W, _ arein I U J. By setting N > [T U J|?/x = O(d*m? /&%) /k, the expected number
of total collisions in 7 U J is [T U J|?/N < k. Thus, by Markov’s inequality, with probability 1 — 2, the total number of
collisions is upper bounded by 1/2, i.e., there is no collision. This implies the first condition.

For the second condition, we use {ui}ie[n]\( rug) to denote the £, Lewis weights of Ajcin)\(ru.),«- Consider a fixed
g € M. By the first condition, all elements in W, are the sole members of Wq_ in their buckets. For each bucket
we define By, ; to be the multiset {u, | h, = h,g, = i,p € [n] \ (I U J)}. By setting N > %}:m%, for each
y € Wy, E[||Brlli] < d/N < [LJ—JE S maro] Where Ly ; is the bucket that contains y. This is simply because
Yien Bri < Zie[n]\(IUJ) u; < d by Theorem A.5. We say a bucket is good if || By ;|1 < 5—% . 62;3. Notice that for
y € Wy, if y is in a good bucket B, ;, then the set L of other entries in that bucket satisfies

LI =>"y

yeL

= Z M(z)

pERI\(IUJ)|hp=h,gp=1

< Z Un - |zp|P (Assumption 1.4)
pEN\{IUT)|hp=h,gp=i

< Z Unr - uyp - ||Z[n]\([UJ) ||g (Lemma A.8)
pE\[IUT)|hp=h,gp=i

< > Unt/Lax -ty - |z oy llar (Assumption 1.4)

p€[n]\(JUJ)|hp=h,gp=i
<|Bn.ills - Unt/Las - 2] s

22m3 |zl ar-

Thus, it suffices to show that at least (1 — ¢)|W,| buckets associated with y € W, are good.

By Markov’s inequality, for each y € W, with probability 1 — ¢ - x/| M|, the bucket that contains y is good. Thus, for
the |IW,| buckets associated with y € W,, the expected number of good buckets is at least (1 — ¢ - /M )|W,|. Again,
by Markov’s inequality, with probability at least 1 — x/| M|, at least (1 — £)|W,| buckets associated with y € W, are
good, and we just take these (1 — )|, | good buckets to be W, By applying a union bound over all ¢ € M, the second
condition holds with probability at least 1 — «. The lemma follows by applying a union bound over the two conditions and
setting ~ to be a small constant.

O
Lemma E.2 (Lemma 3.8 of (Clarkson & Woodruff, 2015b)). Let Q}, = {q | ¢ < M} }, where M; = log, (86" ™' m?gmax).

Then for large enough N = O(m?be ™ quax ), with probability at least 1 — C’fsszor a constant C' > 1, for each q € UpQp,
there is Wy C Ly q) N Wy such that:

LWy = (1= )8~ 16w,
2. each x € W is in a bucket with no other member of W-.
3 WGl = (1= dy2) 87107 W,

4. each x € W is in a bucket with no member of Wy, .

ForveT C Z,letT — v denote T\ {v}.
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Lemma E.3 (Lemma 3.6 of (Clarkson & Woodruff, 2015b)). Forv € T C Z,
IT = vl \*
m(iy = (1- ) aro)
and if M (v) > e Y|T — vl|,,, then

T—-v
H |v| HQ SEI/Q7 (6)

and for a constant C, EA[M (||T||,)] > (1 — Ce¥/?)M (v).

Lemma E.4 (Lemma 3.9 of (Clarkson & Woodruff, 2015b)). Assume Assumption 3. There is N = O(c~?m?bgumax ), 50
that for all 0 < h < hyax and q € Qp, with |We ||, > €/qmax, we have

Y MIL)ll,) = (1 =)Wl
ypEWS

with failure probability at most C‘Eszorﬁxed C>1
Lemma E.5. Assume that £, of Lemma E.1 holds, and Assumption 3. Then for q € Q«,

> M(IL(gp)lly) = (1 =e2)Wl,

ypEWy

with failure probability at most C"E2mfor a constant C' > 1.

Proof. Letv = z, where y, = M(z,), let L(v) denote the {2,/ | M(z,) € L}. Condition £, and M (v) > ¢/m imply that
IL(v) = vll3 < L]l < 1/e*m® < M(v)/em,

so that using (6) we have

1L@) —oll3 _ L) — ol _ 1
WP S M@ Cem @

Since ||L|| ., < ||L]|;, we also have, for all v" € L(v) — v, and using again M (v) > ¢/m,

M)\ "2 1
< < . 8
_(M(v) ~ me3/2 ®

From (8), we have that the summands determining ||L(v) — v||, have magnitude at most |v|g!/2/e?m. From (7), we

,U/

v

have ||L(v) — 11||§ is at most v?e/e?m. It follows from Bernstein’s inequality that with failure probability exp(—&2m),
| L(v) —v|, < e'/2|v|. Applying the first claim of Lemma E.3, we have M (||L(v)|,) > (1 — 2e'/2)M (v), for all
v e M~ (W) with failure probability Sm M exp(—e®m). Summing over W, we have

> M(IL@)Il,) = (1 =) Wall, > (1= 2ey)(1 = '/2)[W,ll;.
vEM=1(Wyx)

This implies the bound, using Assumption 3, after adjusting constants. O

The above lemmas imply that overall, with high probability, the sketching-based estimate of || z|| 5s of a single given vector z
is very likely to not much smaller than || z|| zs, as stated next.

Theorem E.6 (Theorem 3.2 of (Clarkson & Woodruff, 2015b)). Assume Assgmption 3, and condition &, of Lemma E. 1.
Then ||Sz| 5z 0 = 11215 (1 = £/2), with failure probability no more than C~°"™, for an absolute constant C' > 1.
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E.3. A “Clipped” Version

For a vector z, we use ||.Sz|| ar¢,w to denote a “clipped” version of ||.Sz||ar,w, in which we ignore small buckets and use a
subset of the coordinates of Sz as follows: ||Sz||asc,w is Obtained by adding in only those buckets in level / that are among
the top

M* = bmMs> + fmM.

in ||Ly, ;|

A, recalling M> and M. defined in (5). Formally, we define ||Sz|| az¢,w to be

152 ) reyw = > B M (|| Ly, )l )

he[0,hmax],i€[M*]

where Ly, ;) denotes the level h bucket with the i-th largest || L, ;|| o among all the level i buckets.

The proof of the contraction bound of ||Sz| s, in Theorem E.6 requires only lower bounds on M (|| Ly, ;||a) for those
at most M * buckets on level h. Thus, the proven contraction bounds continue to hold for ||.Sz||psc ., and in particular
152l are,w = (1 = &) [1S2] ar,0-

E.4. Dilation Bounds

We use two prior bounds of (Clarkson & Woodruff, 2015b) on dilation; the first shows that the dilation is at most O(logn)
in expectation, while the second shows that the “clipped” version gives O(1) dilation with constant probability. Note that
we need only expectations, since we need the dilation bound to hold only for the optimal solution as in Theorem C.5.

Theorem E.7 (Theorem 3.3 of (Clarkson & Woodruff, 2015b)). E[[|Sz||y; ,,] = O(hmax)2]l -

Better dilation is achieved by using the “clipped” version ||.Sz|| pc,w, as described in (Clarkson & Woodruff, 2015b).

Theorem E.8 (Theorem 3.4 of (Clarkson & Woodruff, 2015b)). There is ¢ = O(log, (b/¢)(log,(n/m))) and b > ¢,
recalling N = mbc, such that
B[Szl are,0] < Clizlly

for a constant C.

E.5. Regression Theorem

Lemma E.9. There is N = O(d?hmax), so that with constant probability, simultaneously for all x € R,

0.9/(n - Unr/Lar) | Az — bllas < IS(Az — b)l|aso < Unt/Laz - 1% - | Az — bl 2z

Proof. For the upper bound,
1520 prw = > BO" M (||Lnill)-

h€[0,hmax],i€[N]

The weights Bbh are less than n, and

M(||Lnlly)
<M ([|Ln.qll;)
SM(nl_l/pHLh,in) (Assumption 1.2)
<Unm 'np_1||Lh,i||§ (Assumption 1.4)
<Unm/Ln - Z M(zp). (Assumption 1.4)
ZPGLhJ;

Since any given z, contributes once to [ Sz | 5/, 152l 57,00 < Unt/Lax - 12 - || 2| -

For the lower bound, notice that

2 2
15213, = > BLnlly

RE[0,hmax],i€[N]
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For each h € [0, hax), since N = O(d?hpax ), with probability at least 1 — 1/(10hyay ), simultaneously for all 2z € im(A)
we have
2
S lLnall = (1 20.0) 3 22,
i€[N] zp€Lp

since the summation on the left-hand side can be equivalently viewed as applying CountSketch (Clarkson & Woodruff,
2013; Nelson & Nguyen, 2012; Meng & Mahoney, 2012) on Lj,. Thus, by applying union bound over all & € [0, hyax], We
have

2 2
15212, = > BLnally = 0.9]Iz]5. 9)
h€[0, hmax]i€[N]

If there exists some i € Hg,, since w; > 1 for all i, we have
152l a,w = wiM((S2);) > M((S2);) > 7.

On the other hand,
2l <n-Unp- 7P,
which implies
152]lat,w = Izl ae/(n - Unr).

If Hg, = 0, then

152l 7,00

> wil(S2)il” - L (Assumption 1.4)

:HSZ”g,w Ly

2152012, - Lt <2

>0.9||z||5 - L ()

>0.9)2[% - Ls/m

>0.9||z||a/(n - Uni /Las)- (Assumption 1.4)
O

The following theorem states that M -sketches can be used for Tukey regression, under the conditions described above.

Theorem E.10. Under Assumption 1 and Assumption 2, there is an algorithm running in O(nnz(A)) time, that with
constant probability creates a sketched regression problem min, ||S(Ax — b)|, ,, where SA and Sb have poly(dlogn)
rows, and any C-approximate solution & of min,, ||S(Ax — b)|| ar,. with C < poly(n) satisfies

|AZ = b]| 5, < O(C - logm) ;TEHRIZ [ Az — bl ;-

Moreover, any C-approximate solution & of min,, ||S(Ax — b)|| pe,w with C < poly(n) satisfies

Az — ]|, < O(C) ;rel%}l [ Az —b][ ;-

Proof. We set S to be an M-sketch matrix with large enough N = poly(dlogn). We note that, up to the trivial scaling by
B, S A satisfies Assumption 2 if A does. We also set m = O(d>logn), and e = 1/10. We apply Theorem C.5 to prove the
desired result.

The given N is large enough for Theorem E.6 and Lemma E.9 to apply, obtaining a contraction bound with failure probability

Cy ™. By Theorem E.6, since the needed contraction bound holds for all members of Npoly(E‘T Jn) U ./\/l;jl;) (0517'3’;)’ with

failure probability n@(@)C;™ < 1, for m = O(d® log n), assuming the condition &,.
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Thus, by Theorem E.7, we have Up < O(log,n). By LemmaE.9, L4 = 0.9/(n - Upr/Lys) and Uy = Uypg /Ly - n2. By
Theorem E.6, Ly = 1 —e¢l/2 = (1). Thus, by Theorem C.5 we have

|43 = b, < O(C'+logyn) min Az bl

A similar argument holds for C-approximate solution & of min, ||S(Az — b)||rmc,w- O

F. Hardness Results and Provable Algorithms for Tukey Regression
F.1. Hardness Results

In this section, we prove hardness results for Tukey regression based on the Exponential Time Hypothesis (Impagliazzo &
Paturi, 2001). We first state the hypothesis.

Conjecture 1 (Exponential Time Hypothesis (Impagliazzo & Paturi, 2001)). For some constant § > 0, no algorithm can
solve 3-SAT on n variables and m = O(n) clauses correctly with probability at least 2/3 in O(2°™) time.

Using Dinur’s PCP Theorem (Dinur, 2007), Hypothesis 1 implies a hardness result for MAX-3SAT.

Theorem F.1 ((Dinur, 2007)). Under Hypothesis 1, for some constant € > 0 and ¢ > 0, no algorithm can, given a
3-SAT formula on n variables and m = O(n) clauses, distinguish between the following cases correctly with probability at
least 2/3 in 2"/ 1°8° " time:

o There is an assignment that satisfies all clauses in ¢;

e Any assignment can satisfy at most (1 — £)m clauses in ¢.

We make the following assumptions on the loss function M : R — R™. Notice that the following assumptions are more
general than those in Assumption 1.

Assumption 4. There exist real numbers T > 0 and C > 0 such that

1. M(z) =C forall|z| > T.
2. 0< M(z) < Cjorall|z| <.

3. M(0) = 0.

Now we give an reduction that transforms a 3-SAT formula ¢ with d variables and m = O(d) clauses to a Tukey regression
instance

min || Az — b||ar,
x

such that A € R"*< and b € R"™ with n = O(d), and all entries in A are in {0,+1,—1} and all entries in b are in
{xk7 | k € N,k < O(1)}. Furthermore, there are at most three non-zero entries in each row of A.

For each variable v; in the formula ¢, there is a variable x; in the Tukey regression that corresponds to v;. For each variable
vy, if v; appears in I'; clauses in ¢, we add 2I'; rows into [A b]. These 2I'; rows are chosen such that when calculating
||[Az — b||as, there are T'; terms of the form M (x;), and another I'; terms of the form M (z; — 107). This can be done by
taking the i-th entry of the corresponding row of A to be 1 and taking the corresponding entry of b to be either 0 or 107.
Since Z?Zl I'; = 3m in a 3-SAT formula ¢, we have added 6m = O(d) rows into [A b]. We call these rows Part I of [A b].

Now for each clause C € ¢, we add three rows into [A b]. Suppose the three variables in C are v;, v; and vj. The first
row is chosen such that when calculating || Az — bl| as, there is a term of the form M (a + b + ¢ — 107), where a = x; if
there is a positive literal that corresponds to v; in C and a = 107 — z; if there is a negative literal that corresponds to v; in
C. Similarly, b = x; if there is a positive literal that corresponds to v; in C and b = 107 — z; if there is a negative literal
that corresponds to v; in C. The same holds for c, xy, and vy. The second and the third row are designed such that when
calculating || Az — b|| ps, there is a term of the form M (a + b+ ¢ — 207) and another term of the form M (a + b + ¢ — 307).
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Clearly, this can also be done while satisfying the constraint that all entries in A are in {0, 41, —1} and all entries in b are in
{£k7 | k € N,k < O(1)}. We have added 3m rows into [A b]. We call these rows Part IT of [A b].

This finishes our construction, with 6m + 3m = O(d) rows in total. It also satisfies all the restrictions mentioned above.

Now we show that when ¢ is satisfiable, if we are given any solution Z such that
[AZ = bl[ar < (1 +n) min [[Az — b ar,

then we can find an assignment to ¢ that satisfies at least (1 — 57)m clauses.

We first show that when ¢ is satisfiable, the regression instance we constructed satisfies
min [|[Az — b||pr < 5C - m.
x

We show this by explicitly constructing a vector . For each variable v; in ¢, if v; = 0 in the satisfiable assignment, then we
set x; to be 0. Otherwise, we set z; to be 107. For each variable v;, since z; € {0, 107}, for all the 2T"; rows added for it,
there will be T'; rows contributing 0 when calculating || Az — b|| s, and another I'; rows contributing C' when calculating
||Az — b||ar. The total contribution from this part will be 3C' - m. For each clause C € ¢, for the three rows added for it,
there will be one row contributing 0 when calculating || Az — b|| 57, and another two rows contributing C' when calculating
||[Az — b||as. This is by construction of [A b] and by the fact that C is satisfied. Notice that M (a + b+ ¢ — 107) = 0 if only
one literal in C is satisfied, M (a + b + ¢ — 207) = 0 if two literals are satisfied, and M (a + b+ ¢ — 307) = 0 if all three
literals in C are satisfied. Thus, we must have min,, ||Az — b||ps < 5C - m, which implies || AZ — b||ar < (1 4+ 1)5C - m.

We first show that we can assume each ; satisfies T; € [—7,7] or T; € [97,117]. This is because we can set T; = 0
otherwise without increasing || AT — b|| ps, as we will show immediately. For any Z; that is not in the two ranges mentioned
above, its contribution to || AT — b||ps in Part I is at least C - 2T';. However, by setting Z; = 0, its contribution to || AZ — b|| s
in Part I will be at most C - I';. Thus, by setting Z; = 0 the total contribution to || AT — b||ps in Part I has been decreased by
atleast C - I';. Now we consider Part I of the rows in [A b]. The contribution to || AT — b||as of all rows in [A b] created for
clauses that do not contain v; will not be affected after changing Z; to be 0. For the 3T'; rows in [A b] created for clauses that
contain v;, their contribution to || AZ — b|| 5 is lower bounded by C - 2T"; and upper bounded by C - 3T;. The lower bound
follows since for any three real numbers a, b and ¢, at least two elements in {a+b+c—107,a+b+c—207,a+b+c—307}
have absolute value at least 7, and M (x) = C for all || > 7. Thus, by setting Z; = 0 the total contribution to || AT — b||as
in Part IT will be increased by at most C' - I';, which implies we can set Z; = 0 without increasing || AT — b as.

Now we show how to construct an assignment to the 3-SAT formula ¢ which satisfies at least (1 — 5n)m clauses, using a
vector T € R? which satisfies (i) || AT — b||as < (1 +n)5C - m and (i) T; € [~7,7] or T; € [97, 117] for all T;. We set
v, = 0if T; € [-7,7] and set v; = 1if Z; € [97,117]. To count the number of clauses satisfied by the assignment, we
show that for each clause C € ¢, C is satisfied whenever a + b 4+ ¢ > 77. Recall that a = x; if there is a positive literal that
corresponds to v; in C and a = 107 — ; if there is a negative literal that corresponds to v; in C. Similarly, b = x; if there is
a positive literal that corresponds to v; in C and b = 107 — z; if there is a negative literal that corresponds to v; in C. The
same holds for ¢, xj, and vi. Since a, b and c are all in the range [—7, 7] or in the range [97, 117], whenever a + b+ ¢ > 77,
we must have a > 97, b > 97 or ¢ > 97, in which case clause C will be satisfied. Thus, at least (1 — 57)m clauses will be
satisfied, since otherwise | AZ — b|| s will be larger than 3C - m + 2C - m + 5nC - m = (1 + 1)5C - m. Here the first term
3C' - m corresponds to the contribution from Part I, since any Z; must satisfy |Z;| > 7 or |Z; — 107| > 7. The second and
the third term 2C - m + 51nC' - m corresponds to the contribution from Part II when at least 5nym clauses are not satisfied.

Our reduction implies the following theorem.

Theorem F.2. Suppose there is an algorithm that runs in T'(d) time and succeeds with probability 2 /3 for Tukey regression
with approximation ratio 1 + 1 when the loss function M satisfies Assumption 4 and the input data satisfies the following
restrictions:

1. A€ R and b € R™ withn = O(d).
2. All entriesin A are in {0,+1, —1} and all entries in b are in {£k7 | k € N,k < O(1)}.

3. There are at most three non-zero entries in each row of A.
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Then, there exists an algorithm that runs in T(d) time for a 3-SAT formula on d variables and m = O(d) clauses which
distinguishes between the following cases correctly with probability at least 2/3:

o There is an assignment that satisfies all clauses in ¢.

o Any assignment can satisfy at most (1 — 5n)m clauses in .

Combining Theorem F.1 and Theorem F.2 with the Hypothesis 1, we have the following corollary.

Corollary F.3. Under Hypothesis 1, for some constant 1 > 0 and C' > 0, no algorithm can solve Tukey regression with
approximation ratio 1 + 1 and success probability 2/3, and runs in 94/ 10g d time, when the loss function M satisfies
Assumption 4 and the input data satisfies the following restrictions:

1. A€ R andb € R™ withn = O(d).
2. All entries in A are in {0,+1, —1} and all entries inb are in {£k7 | k € N,k < O(1)}.

3. There are at most three non-zero entries in each row of A.

F.2. Provable Algorithms

In this section, we use the polynomial system verifier to develop provable algorithms for Tukey regression.

Theorem F.4 ((Renegar, 1992; Basu et al., 1996)). Given a real polynomial system P(x1,xo, - ,xq4) with d variables and
n polynomial constraints { f;(x1, 2, ,x4) N0}, where A, is any of the “standard relations”: {>,>,=,#,<,<},
let D denote the maximum degree of all the polynomial constraints and let H denote the maximum bitsize of the coefficients
of all the polynomial constraints. Then there exists an algorithm that runs in

(Dn)°' poly(H)
time that can determine if there exists a solution to the polynomial system P.

Besides Assumption 1, we further assume that the loss function M () can be approximated by a polynomial P(x) with
degree D, when |z| < 7. Formally, we assume there exist two constants Lp < 1 < Up such that when |z| < 7, we have

LpP(|z]) < M(|z|) < UpP(|x]).

Indeed, Assumption 1 already implies we can take P(x) = 2P, with Lp = Lj; and Up = Uy, when p is an integer.
However, for some loss function (e.g., the one defined in (1)), one can find a better polynomial to approximate the loss
function. Since the approximation ratio of our algorithm depends on Up/Lp, for those loss functions we can get an
algorithm with better approximation ratio. We also assume Assumption 2 and all entries in A and b are integers.

We first show that under Assumption 2 and the assumption that all entries in A and b are integers, either || Az — b|| s = 0 for
some z € R?, or || Az — b|pr > 1/2P°Y () for all 2 € R,

Lemma E.5. Suppose all entries in A and b are integers, under Assumption 1 and Assumption 2, either || Az — b||y; = 0 for
some x € RY, or || Az — b||pr > 1/2P°% D) for all x € RY.

Proof. We show that either there exists € R? such that Az = b, or | Az — b||z > 1/2P°¥ () for all 2 € R?. Notice that
| Az — ||y > 1/2P°Y () implies || Az — b||oo > 1/2P°Y(7d) /\ /i, and thus the claimed bound follows from Assumption 1.

Without loss of generality we assume A is non-singular. By the normal equation, we know z* = (AT A)~1(ATb) is
an optimal solution to min,, ||Az — b||2. By Cramer’s rule, all entries in 2* are either 0 or have absolute value at least
1/2p°y(nd) This directly implies either Az* — b = 0 or ||Az* — by > 1/2PeW(nd), O

Lemma F.5 implies that either || Az — b||,y = 0 for some 2 € R%, or || Az — b||pr > 1/2P°¥ () for all x € RY. The former
case can be solved by simply solving the linear system Az = b. Thus we assume || Az — b|| 5y > 1/2P°¥ () for all x € R?
in the rest part of this section.
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To solve the Tukey regression problem min,, ||Az — b|| s, we apply a binary search to find the optimal solution value OPT.
Since 1/ opoly(nd) < OPT < n - 7P < 2poly(nd) by Assumption 1 and Assumption 2, the binary search makes at most
log (2P (") /&) = poly(nd) + log(1/¢) guesses to the value of OPT to find a (1 + )-approximate solution.

For each guess )\, we need to decide whether there exists = € R? such that || Az — b|[5; < A or not. We use the polynomial
system verifier in Theorem F.4 to solve this problem. We first enumerate a set of coordinates S C [n], which are the
coordinates with |(Az* — b);| > 7, where * = argmin,, || Az — b|| s, and then solve the following decision problem:

> P(oi(Az —b);) +1]S] -7 < A
iefm\s
sto? =1,Y¥ie [n]\S
0<o0;(Az—0b); <T1,Vien]\S.

Clearly, UZ(Am — b)l = \(Aac — b)l|, and thus LPP(UZ(AZ‘ — b)z) < M((A.%‘ — b)z) < UPP(O'z(A.’)S — b)l) Thus by
Assumption 1, for all z € R% and S C [n],

Lp|Az bl < Y Ploi(Az — b)) +|S] - 7.
i€[n]\S

Moreover,
> P(oi(Az" = b)) +|S| - 77 < Up||Az* —b||m
i€[n]\S

when S = {i € [n] | |(Az* — b);| > 7}, which implies the binary search will return a ((1 + ¢) - Up/L p)-approximate
solution.

Now we analyze the running time of the algorithm. We make at most poly(nd) + log(1/<) guesses to the value of OPT.
For each guess, we enumerate a set of coordinates S, which takes O(2") time. For each set S C [n], we need to solve the
decision problem mentioned above, which has n + d variables and O(n) polynomial constraints with degree at most D. By
Theorem F.4 this decision problem can be solved in (n.D)?("™) time. Thus, the overall time complexity is upper bounded by
(nD)°™ -log(1/e).

Notice that we can apply the row sampling algorithm in Theorem D.8 to reduce the size of the problem before ap-
plying this algorithm. This reduces the running time from (nD)°(™) . log(1/e) = 200 (egn+log D)) . 1og(1/c) to

90(log D-d"/ poly(dlogn)/=*) Formally, we have the following theorem.

Theorem F.6. Under Assumption 1 and 2, and suppose all entries in A and b are integers, and there exists a polynomial
P(x) with degree D and two constants Lp < 1 < Uy such that when |z| < T, we have

LpP(|z]) < M(|z]) < UpP(|z|).
Then there exists an algorithm that returns a ((1 + €) - Up /L p)-approximate solution to min,, || Az — b||as and runs in
25(10g D-d?/? poly(dlogn)/e?) time.

Corollary F.7. Under Assumption 2, and suppose all entries in A and b are integers, for the loss function M defined in (1)

. . A 2
there exists an algorithm that returns a (1 + €)-approximate solution to min,, || Az — ||y and runs in 20(Pely(dlogn)/e%)
time.





