
Certified Adversarial Robustness via Randomized Smoothing

A. Proofs of Theorems 1 and 2
Here we provide the complete proofs for Theorem 1 and Theorem 2. We fist prove the following lemma, which is essentially
a restatement of the Neyman-Pearson lemma (Neyman & Pearson, 1933) from statistical hypothesis testing.

Lemma 3 (Neyman-Pearson). Let X and Y be random variables in Rd with densities µX and µY . Let h : Rd → {0, 1}
be a random or deterministic function. Then:

1. If S =
{
z ∈ Rd : µY (z)

µX(z) ≤ t
}

for some t > 0 and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥ P(Y ∈ S).

2. If S =
{
z ∈ Rd : µY (z)

µX(z) ≥ t
}

for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤ P(Y ∈ S).

Proof. Without loss of generality, we assume that h is random and write h(1|x) for the probability that h(x) = 1.

First we prove part 1. We denote the complement of S as Sc.

P(h(Y ) = 1)− P(Y ∈ S) =

∫
Rd

h(1|z)µY (z)dz −
∫
S

µY (z)dz

=

[∫
Sc

h(1|z)µY (z)dz +

∫
S

h(1|z)µY (z)dx

)
−
(∫

S

h(1|z)µY (z)dz +

∫
S

h(0|z)µY (z)dz

)
=

∫
Sc

h(1|z)µY (z)dz −
∫
S

h(0|z)µY (z)dz

≥ t
[∫

Sc

h(1|z)µX(z)dz −
∫
S

h(0|z)µX(z)

]
= t

(∫
Sc

h(1|z)µX(z)dz +

∫
S

h(1|z)µX(z)dz −
∫
S

h(1|z)µX(z)dz −
∫
S

h(0|z)µX(z)

]
= t

[∫
Rd

h(1|z)µX(z)dz −
∫
S

µX(z)dz

]
= t [P(h(X) = 1)− P(X ∈ S)]

≥ 0

The inequality in the middle is due to the fact that µY (z) ≤ t µX(z) ∀z ∈ S and µY (z) > tµX(z) ∀z ∈ Sc. The inequality
at the end is because both terms in the product are non-negative by assumption.

The proof for part 2 is virtually identical, except both “≥” become “≤.”

Remark: connection to statistical hypothesis testing. Part 2 of Lemma 3 is known in the field of statistical hypothesis
testing as the Neyman-Pearson Lemma (Neyman & Pearson, 1933). The hypothesis testing problem is this: we are given a
sample that comes from one of two distributions over Rd: either the null distribution X or the alternative distribution Y .
We would like to identify which distribution the sample came from. It is worse to say “Y ” when the true answer is “X”
than to say “X” when the true answer is “Y .” Therefore we seek a (potentially randomized) procedure h : Rd → {0, 1}
which returns “Y ” when the sample really came from X with probability no greater than some failure rate α. In particular,
out of all such rules h, we would like the uniformly most powerful one h∗, i.e. the rule which is most likely to correctly
say “Y ” when the sample really came from Y . Neyman & Pearson (1933) showed that h∗ is the rule which returns “Y ”
deterministically on the set S∗ = {z ∈ Rd : µY (z)

µX(z) ≥ t} for whichever t makes P(X ∈ S∗) = α. In other words, to state
this in a form that looks like Part 2 of Lemma 3: if h is a different rule with P(h(X) = 1) ≤ α, then h∗ is more powerful
than h, i.e. P(h(Y ) = 1) ≤ P(Y ∈ S∗).

Now we state the special case of Lemma 3 for when X and Y are isotropic Gaussians.

Lemma 4. Let X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I). Let h : Rd → {0, 1} be any deterministic or random function.
Then:

1. If S =
{
z ∈ Rd : δT z ≤ β

}
for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥ P(Y ∈ S)
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2. If S =
{
z ∈ Rd : δT z ≥ β

}
for some β and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) = 1) ≤ P(Y ∈ S)

Proof. This lemma is the special case of Lemma 3 when X and Y are isotropic Gaussians with means x and x+ δ.

By Lemma 3 it suffices to simply show that for any β, there is some t > 0 for which:

{z : δT z ≤ β} =

{
z :

µY (z)

µX(z)
≤ t
}

and {z : δT z ≥ β} =

{
z :

µY (z)

µX(z)
≥ t
}

(5)

The likelihood ratio for this choice of X and Y turns out to be:

µY (z)

µX(z)
=

exp
(
− 1

2σ2

∑d
i=1(zi − (xi + δi))

2)
)

exp
(
− 1

2σ2

∑d
i=1(zi − xi)2

)
= exp

(
1

2σ2

d∑
i=1

2ziδi − δ2i − 2xiδi

)
= exp(aδT z + b)

where a > 0 and b are constants w.r.t z, specifically a = 1
σ2 and b = −(2δT x+‖δ‖2)

2σ2 .

Therefore, given any β we may take t = exp(aβ + b), noticing that

δT z ≤ β ⇐⇒ exp(aδT z + b) ≤ t
δT z ≥ β ⇐⇒ exp(aδT z + b) ≥ t

Finally, we prove Theorem 1 and Theorem 2.

Theorem 1 (restated). Let f : Rd → Y be any deterministic or random function. Let ε ∼ N (0, σ2I). Let g(x) =
arg maxc P(f(x+ ε) = c). Suppose that for a specific x ∈ Rd, there exist cA ∈ Y and pA, pB ∈ [0, 1] such that:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (6)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (7)

Proof. To show that g(x+ δ) = cA, it follows from the definition of g that we need to show that

P(f(x+ δ + ε) = cA) > max
cB 6=cA

P(f(x+ δ + ε) = cB)

We will prove that P(f(x+ δ+ ε) = cA) > P(f(x+ δ+ ε) = cB) for every class cB 6= cA. Fix one such class cB without
loss of generality.

For brevity, define the random variables

X := x+ ε = N (x, σ2I)

Y := x+ δ + ε = N (x+ δ, σ2I)

In this notation, we know from (6) that

P(f(X) = cA) ≥ pA and P(f(X) = cB) ≤ pB (8)
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Figure 9. Illustration of the proof of Theorem 1. The solid line concentric circles are the density level sets of X := x+ ε; the dashed
line concentric circles are the level sets of Y := x+ δ + ε. The set A is in blue and the set B is in red. The figure on the left depicts
a situation where P(Y ∈ A) > P(Y ∈ B), and hence g(x + δ) may equal cA. The figure on the right depicts a situation where
P(Y ∈ A) < P(Y ∈ B) and hence g(x+ δ) 6= cA.

and our goal is to show that

P(f(Y ) = cA) > P(f(Y ) = cB) (9)

Define the half-spaces:

A := {z : δT (z − x) ≤ σ‖δ‖Φ−1(pA)}
B := {z : δT (z − x) ≥ σ‖δ‖Φ−1(1− pB)}

Algebra (deferred to the end) shows that P(X ∈ A) = pA. Therefore, by (8) we know that P(f(X) = cA) ≥ P(X ∈ A).
Hence we may apply Lemma 4 with h(z) := 1[f(z) = cA] to conclude:

P(f(Y ) = cA) ≥ P(Y ∈ A) (10)

Similarly, algebra shows that P(X ∈ B) = pB . Therefore, by (8) we know that P(f(X) = cB) ≤ P(X ∈ B). Hence we
may apply Lemma 4 with h(z) := 1[f(z) = cB ] to conclude:

P(f(Y ) = cB) ≤ P(Y ∈ B) (11)

To guarantee (9), we see from (10, 11) that it suffices to show that P(Y ∈ A) > P(Y ∈ B), as this step completes the chain
of inequalities

P(f(Y ) = cA) ≥ P(Y ∈ A) > P(Y ∈ B) ≥ P(f(Y ) = cB) (12)

We can compute the following:

P(Y ∈ A) = Φ

(
Φ−1(pA)− ‖δ‖

σ

)
(13)

P(Y ∈ B) = Φ

(
Φ−1(pB) +

‖δ‖
σ

)
(14)

Finally, algebra shows that P(Y ∈ A) > P(Y ∈ B) if and only if:

‖δ‖ < σ

2
(Φ−1(pA)− Φ−1(pB)) (15)

which recovers the theorem statement.
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We now restate and prove Theorem 2, which shows that the bound in Theorem 1 is tight. The assumption below in Theorem
2 that pA + pB ≤ 1 is mild: given any pA and pB which do not satisfy this condition, one could have always redefined
pB ← 1 − pA to obtain a Theorem 1 guarantee with a larger certified radius, so there is no reason to invoke Theorem 1
unless pA + pB ≤ 1.

Theorem 2 (restated). Assune pA + pB ≤ 1. For any perturbation δ ∈ Rd with ‖δ‖2 > R, there exists a base classifier f∗

consistent with the observed class probabilities (6) such that if f∗ is the base classifier for g, then g(x+ δ) 6= cA.

Proof. We re-use notation from the preceding proof.

Pick any class cB arbitrarily. Define A and B as above, and consider the function

f∗(x) :=


cA if x ∈ A
cB if x ∈ B
other classes otherwise

This function is well-defined, since A ∩B = ∅ provided that pA + pB ≤ 1.

By construction, the function f∗ satisfies (6) with equalities, since

P(f∗(x+ ε) = cA) = P(X ∈ A) = pA P(f∗(x+ ε) = cB) = P(X ∈ B) = pB

It follows from (13) and (14) that

P(Y ∈ A) < P(Y ∈ B) ⇐⇒ ‖δ‖2 > R

By assumption, ‖δ‖2 > R, so P(Y ∈ A) < P(Y ∈ B), or equivalently,

P(f∗(x+ δ + ε) = cA) < P(f∗(x+ δ + ε) = cB)

Therefore, if f∗ is the base classifier for g, then g(x+ δ) 6= cA.

A.0.1. DEFERRED ALGEBRA

Claim. P(X ∈ A) = pA

Proof. Recall that X ∼ N (x, σ2I) and A = {z : δT (z − x) ≤ σ‖δ‖Φ−1(pA)}.

P(X ∈ A) = P(δT (X − x) ≤ σ‖δ‖Φ−1(pA))

= P(δTN (0, σ2I) ≤ σ‖δ‖Φ−1(pA))

= P(σ‖δ‖Z ≤ σ‖δ‖Φ−1(pA)) (Z ∼ N (0, 1))

= Φ(Φ−1(pA))

= pA

Claim. P(X ∈ B) = pB

Proof. Recall that X ∼ N (x, σ2I) and B = {z : δT (z − x) ≤ σ‖δ‖Φ−1(1− pB)}.

P(X ∈ A) = P(δT (X − x) ≥ σ‖δ‖Φ−1(1− pB))

= P(δTN (0, σ2I) ≥ σ‖δ‖Φ−1(1− pB))

= P(σ‖δ‖Z ≥ σ‖δ‖Φ−1(1− pB)) (Z ∼ N (0, 1))

= P(Z ≥ Φ−1(1− pB))

= 1− Φ(Φ−1(1− pB))

= pB
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Claim. P(Y ∈ A) = Φ
(

Φ−1(pA)− ‖δ‖σ
)

Proof. Recall that Y ∼ N (x+ δ, σ2I) and A = {z : δT (z − x) ≤ σ‖δ‖Φ−1(pA)}.

P(Y ∈ A) = P(δT (Y − x) ≤ σ‖δ‖Φ−1(pA))

= P(δTN (0, σ2I) + ‖δ‖2 ≤ σ‖δ‖Φ−1(pA))

= P(σ‖δ‖Z ≤ σ‖δ‖Φ−1(pA)− ‖δ‖2) (Z ∼ N (0, 1))

= P
(
Z ≤ Φ−1(pA)− ‖δ‖

σ

)
= Φ

(
Φ−1(pA)− ‖δ‖

σ

)

Claim. P(Y ∈ B) = Φ
(

Φ−1(pB) + ‖δ‖
σ

)
Proof. Recall that Y ∼ N (x+ δ, σ2I) and B = {z : δT (z − x) ≥ σ‖δ‖Φ−1(1− pB)}.

P(Y ∈ B) = P(δT (Y − x) ≥ σ‖δ‖Φ−1(1− pB))

= P(δTN (0, σ2I) + ‖δ‖2 ≥ σ‖δ‖Φ−1(1− pB))

= P(σ‖δ‖Z + ‖δ‖2 ≥ σ‖δ‖Φ−1(1− pB)) (Z ∼ N (0, 1))

= P
(
Z ≥ Φ−1(1− pB)− ‖δ‖

σ

)
= P

(
Z ≤ Φ−1(pB) +

‖δ‖
σ

)
= Φ

(
Φ−1(pB) +

‖δ‖
σ

)
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B. Smoothing a two-class linear classifier
In this appendix, we analyze what happens when the base classifier f is a two-class linear classifier f(x) = sign(wTx+ b).
For mathematical convenience, we take sign(0) to be undefined (to match the definition of g).

x

x

Figure 10. Illustration of Proposition 3. A binary linear classifier f(x) = sign(wTx+ b) partitions Rd into two half-spaces, drawn here
in blue and red. An isotropic Gaussian N (x, σ2I) will put more mass on whichever half-space its center x lies in: in the figure on
the left, x is in the blue half-space and N (x, σ2I) puts more mass on the blue than on red. In the figure on the right, x is in the red
half-space andN (x, σ2I) puts more mass on red than on blue. Since the smoothed classifier’s prediction g(x) is defined to be whichever
half-spaceN (x, σ2I) puts more mass in, and the base classifier’s prediction f(x) is defined to be whichever half-space x is in, we have
that g(x) = f(x) for all x.

Proposition 3. If f is a two-class linear classifier f(x) = sign(wTx+ b), and g is the smoothed version of f with any σ,
then g(x) = f(x) for all x.

Proof. By the definition of g, we know that g(x) = 1 if and only if:

g(x) = 1 ⇐⇒ Pε(f(x+ ε) = 1) ≥ 1

2
(ε ∼ N (0, σ2I))

⇐⇒ Pε
(
sign(wT (x+ ε) + b) = 1

)
≥ 1

2

⇐⇒ Pε
(
wTx+ wT ε+ b ≥ 0

)
≥ 1

2

⇐⇒ P
(
σ‖w‖Z ≥ −wTx− b

)
≥ 1

2
(Z ∼ N (0, 1))

⇐⇒ P
(
Z ≤ wTx+ b

σ‖w‖

)
≥ 1

2

⇐⇒ wTx+ b

σ‖w‖
≥ 0

⇐⇒ wTx+ b ≥ 0

⇐⇒ f(x) = 1

Proposition 4. If f is a two-class linear classifier f(x) = sign(wTx+ b), and g is the smoothed version of f with any σ,
then invoking Theorem 1 at any x with pA = pA and pB = pB will yield the certified radius R = |wT x+b|

‖w‖ .

Proof. In binary classification, pA = 1− pB , so Theorem 1 returns R = σΦ−1(pA).
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We have:

pA = Pε(f(x+ ε) = g(x))

= Pε(sign(wT (x+ ε) + b) = sign(wTx+ b)) (By Proposition 3, g(x) = f(x))

= Pε(sign(wTx+ σ‖w‖Z + b) = sign(wTx+ b))

There are two cases: if wTx+ b ≥ 0, then

pA = Pε(wTx+ σ‖w‖Z + b ≥ 0)

= Pε
(
Z ≥ −w

Tx− b
σ‖w‖

)
= Pε

(
Z ≤ wTx+ b

σ‖w‖

)
= Φ

(
wTx+ b

σ‖w‖

)
On the other hand, if wTx+ b < 0, then

pA = Pε(wTx+ σ‖w‖Z + b < 0)

= Pε
(
Z <

−wTx− b
σ‖w‖

)
= Φ

(
−wTx− b
σ‖w‖

)
In either case, we have:

pA = Φ

(
|wTx+ b|
σ‖w‖

)

Therefore, the bound in Theorem 1 returns a radius of

R = σΦ−1(pA)

=
|wTx+ b|
‖w‖

Proposition 5. Let f be a two-class linear classifier f(x) = sign(wTx+ b), let g be the smoothed version of f for some σ,
let x be any point, and let R be the radius certified around x by Theorem 1 with pA = pA and pB = pB . Then there always
exists a perturbation δ with ‖δ‖2 = R for which g(x+ δ) 6= g(x).

Proof. By Proposition 3 it suffices to show that there exists some perturbation δ with ‖δ‖2 = R for which f(x+ δ) 6= f(x).

By Proposition 4, we know that R = |wT x+b|
‖w‖2 .

Consider the perturbation δ = −w
T x+b
‖w‖22

w. This perturbation satisfies ‖δ‖2 = R and

wT (x+ δ) + b = wTx+ b+ wT δ

= wTx+ b− (wTx+ b)

= 0

Therefore, f(x+ δ) = sign(wT (x+ δ) + b) is undefined.
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x x

x+ δ

Figure 11. Left: Illustration of of Proposition 4. The red/blue half-spaces are the decision regions of both the base classifier f and the
smoothed classifier g. (Since the base classifier is binary linear, g = f everywhere.) The black circle is the robustness radius R certified
by Theorem 1. Right: Illustration of Proposition 5. There exists a perturbation δ with ‖δ‖2 = R for which g(x+ δ) 6= g(x).

C. Practical algorithms
In this appendix, we elaborate on the prediction and certification algorithms described in Section 3.2. The pseudocode in
Section 3.2 makes use of several helper functions:

• SAMPLEUNDERNOISE(f , x, num, σ) works as follows:

1. Draw num samples of noise, ε1 . . . εnum ∼ N (0, σ2I).
2. Run the noisy images through the base classifier f to obtain the predictions f(x+ ε1), . . . , f(x+ εnum).
3. Return the counts for each class, where the count for class c is defined as

∑num
i=1 1[f(x+ εi) = c].

• BINOMPVALUE(nA, nA+nB , p) returns the p-value of the two-sided hypothesis test that nA ∼ Binomial(nA+nB , p).
Using scipy.stats.binom test, this can be implemented as: binom test(nA, nA + nB, p).

• LOWERCONFBOUND(k, n, 1 − α) returns a one-sided (1 − α) lower confidence interval for the Binomial pa-
rameter p given that k ∼ Binomial(n, p). In other words, it returns some number p for which p ≤ p with prob-
ability at least 1 − α over the sampling of k ∼ Binomial(n, p). Following Lecuyer et al. (2019), we chose to
use the Clopper-Pearson confidence interval, which inverts the Binomial CDF (Clopper & Pearson, 1934). Using
statsmodels.stats.proportion.proportion confint, this can be implemented as

proportion_confint(k, n, alpha=2*alpha, method="beta")[0]

C.1. Prediction

The randomized algorithm given in pseudocode as PREDICT leverages the hypothesis test given in Hung & Fithian (2019)
for identifying the top category of a multinomial distribution. PREDICT has one tunable hyperparameter, α. When α is small,
PREDICT abstains frequently but rarely returns the wrong class. When α is large, PREDICT usually makes a prediction, but
may often return the wrong class. We now prove that with high probability, PREDICT will either return g(x) or abstain.

Proposition 1 (restated). With probability at least 1− α over the randomness in PREDICT, PREDICT will either abstain
or return g(x). (Equivalently: the probability that PREDICT returns a class other than g(x) is at most α.)

Proof. For notational convenience, define pc = P(f(x+ ε) = c). Let cA = maxc pc. Notice that by definition, g(x) = cA.

We can describe the randomized procedure PREDICT as follows:

1. Sample a vector of class counts {nc}c∈Y from Multinomial({pc}c∈Y , n).

2. Let ĉA = arg maxc nc be the class whose count is largest. Let nA and nB be the largest count and the second-largest
count, respectively.
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3. If the p-value of the two-sided hypothesis test that nA is drawn from Binom
(
nA + nB ,

1
2

)
is less than α, then return

ĉA. Else, abstain.

The quantities cA and the pc’s are fixed but unknown, while the quantities ĉA, the nc’s, nA, and nB are random.

We’d like to prove that the probability that PREDICT returns a class other than cA is at most α. PREDICT returns a class
other than cA if and only if (1) ĉA 6= cA and (2) PREDICT does not abstain.

We have:

P(PREDICT returns class 6= cA) = P(ĉA 6= cA, PREDICT does not abstain)

= P(ĉA 6= cA) P(PREDICT does not abstain|ĉA 6= cA)

≤ P(PREDICT does not abstain|ĉA 6= cA)

Recall that PREDICT does not abstain if and only if the p-value of the two-sided hypothesis test that nA is drawn from
Binom(nA + nB ,

1
2 ) is less than α. Theorem 1 in Hung & Fithian (2019) proves that the conditional probability that this

event occurs given that ĉA 6= cA is exactly α. That is,

P(PREDICT does not abstain|ĉA 6= cA) = α

Therefore, we have:

P(PREDICT returns class 6= cA) ≤ α

C.2. Certification

The certification task is: given some input x and a randomized smoothing classifier described by (f, σ), return both (1) the
prediction g(x) and (2) a radius R in which this prediction is certified robust. This task requires identifying the class cA
with maximal weight in f(x+ ε), estimating a lower bound pA on pA := P(f(x+ ε) = cA) and estimating an upper bound
pB on pB := maxc 6=cA P(f(x+ ε) = c) (Figure 1).

Suppose for simplicity that we already knew cA and needed to obtain pA. We could collect n samples of f(x+ ε), count
how many times f(x + ε) = cA, and use a Binomial confidence interval to obtain a lower bound on pA that holds with
probability at least 1− α over the n samples.

However, estimating pA and pB while simultaneously identifying the top class cA is a little bit tricky, statistically speaking.
We propose a simple two-step procedure. First, use n0 samples from f(x+ ε) to take a guess ĉA at the identity of the top
class cA. In practice we observed that f(x+ ε) tends to put most of its weight on the top class, so n0 can be set very small.
Second, use n samples from f(x+ ε) to obtain some pA and pB for which pA ≤ pA and pB ≥ pB with probability at least
1− α. We observed that it is much more typical for the mass of f(x+ ε) not allocated to cA to be allocated entirely to one
runner-up class than to be allocated uniformly over all remaining classes. Therefore, the quantity 1− pA is a reasonably
tight upper bound on pB . Hence, we simply set pB = 1− pA, so our bound becomes

R =
σ

2
(Φ−1(pA)− Φ−1(1− pA))

=
σ

2
(Φ−1(pA) + Φ−1(pA))

= σΦ−1(pA)

The full procedure is described in pseudocode as CERTIFY. If pA < 1
2 , we abstain from making a certification; this can

occur especially if ĉA 6= g(x), i.e. if we misidentify the top class using the first n0 samples of f(x+ ε).

Proposition 2 (restated). With probability at least 1− α over the randomness in CERTIFY, if CERTIFY returns a class ĉA
and a radius R (i.e. does not abstain), then we have the robustness guarantee

g(x+ δ) = ĉA whenever ‖δ‖2 < R
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Proof. From the contract of LOWERCONFBOUND, we know that with probability at least 1 − α over the sampling of
ε1 . . . εn, we have pA ≤ P[f(x+ ε) = ĉA]. Notice that CERTIFY returns a class and radius only if pA > 1

2 (otherwise it
abstains). If pA ≤ P[f(x+ ε) = ĉA] and 1

2 < pA, then we can invoke Theorem 1 with pB = 1− pA to obtain the desired
guarantee.
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D. Estimating the certified test-set accuracy
In this appendix, we show how to convert the “approximate certified test accuracy” considered in the main paper into a
lower bound on the true certified test accuracy that holds with high probability over the randomness in CERTIFY.

Consider a classifier g, a test set S = {(x1, c1) . . . (xm, cm)}, and a radius r. For each example i ∈ [m], let zi indicate
whether g’s prediction at xi is both correct and robust at radius r, i.e.

zi = 1[g(xi + δ) = ci ∀‖δ‖2 < r]

The certified test set accuracy of g at radius r is defined as 1
m

∑m
i=1 zi. If g is a randomized smoothing classifier, we cannot

compute this quantity exactly, but we can estimate a lower bound that holds with arbitrarily high probability over the
randomness in CERTIFY. In particular, suppose that we run CERTIFY with failure rate α on each example xi in the test set.
Let the Bernoulli random variable Yi denote the event that on example i, CERTIFY returns the correct label cA = ci and a
certified radius R which is greater than r. Let Y =

∑m
i=1 Yi. In the main paper, we referred to Y/m as the “approximate

certified accuracy.” It is “approximate” because Yi = 1 does not mean that zi = 1. Rather, from Proposition 2, we know
the following: if zi = 0, then P(Yi = 1) ≤ α. We now show how to exploit this fact to construct a one-sided confidence
interval for the unobserved quantity 1

m

∑m
i=1 zi using the observed quantities Y and m.

Theorem 5. For any ρ > 0, with probability at least 1− ρ over the randomness in CERTIFY,

1

m

m∑
i=1

zi ≥
1

1− α

(
Y

m
− α−

√
2α(1− α) log(1/ρ)

m
− log(1/ρ)

3m

)
(16)

Proof. Let mgood =
∑m
i=1 zi and mbad =

∑m
i=1(1 − zi) be the number of test examples on which zi = 1 or zi = 0,

respectively. We model Yi ∼ Bernoulli(pi), where pi is in general unknown. Let Ygood =
∑
i:zi=1 Yi and Ybad =

∑
i:zi=0 Yi.

The quantity of interest, the certified accuracy 1
m

∑m
i=1 zi, is equal tomgood/m. However, we only observe Y = Ygood +Ybad.

Note that if zi = 0, then pi ≤ α, so we have E[Yi] = pi ≤ α and assuming α ≤ 1
2 , we have Var[Yi] = pi(1−pi) ≤ α(1−α).

Since Ybad is a sum of mbad independent random variables each bounded between zero and one, with E[Ybad] ≤ αmbad and
Var(Ybad) ≤ mbadα(1− α), Bernstein’s inequality (Blanchard, 2007) guarantees that with probability at least 1− ρ over the
randomness in CERTIFY,

Ybad ≤ αmbad +
√

2mbadα(1− α) log(1/ρ) +
log(1/ρ)

3

From now on, we manipulate this inequality — remember that it holds with probability at least 1− ρ.

Since Y = Ygood + Ybad, may write

Ygood ≥ Y − αmbad −
√

2mbadα(1− α) log(1/ρ)− log(1/ρ)

3

Since mgood ≥ Ygood, we may write

mgood ≥ Y − αmbad −
√

2mbadα(1− α) log(1/ρ)− log(1/ρ)

3

Since mgood +mbad = m, we may write

mgood ≥
1

1− α

(
Y − αm−

√
2mbadα(1− α) log(1/ρ)− log(1/ρ)

3

)
Finally, in order to make this confidence interval depend only on observables, we use mbad ≤ m to write

mgood ≥
1

1− α

(
Y − αm−

√
2mα(1− α) log(1/ρ)− log(1/ρ)

3

)
Dividing both sides of the inequality by m recovers the theorem statement.
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E. ImageNet and CIFAR-10 Results
E.1. Certification

Tables 2 and 3 show the approximate certified top-1 test set accuracy of randomized smoothing on ImageNet and CIFAR-10
with various noise levels σ. By “approximate certified accuracy,” we mean that we ran CERTIFY on a subsample of the
test set, and for each r we report the fraction of examples on which CERTIFY (a) did not abstain, (b) returned the correct
class, and (c) returned a radius R greater than r. There is some probability (at most α) that any example’s certification is
inaccurate. We used α = 0.001 and n = 100000. On CIFAR-10 our base classifier was a 110-layer residual network and
we certified the full test set; on ImageNet our base classifier was a ResNet-50 and we certified a subsample of 500 points.
Note that the certified accuracy at r = 0 is just the standard accuracy of the smoothed classifier. See Appendix J for more
experimental details.

r = 0.0 r = 0.5 r = 1.0 r = 1.5 r = 2.0 r = 2.5 r = 3.0

σ = 0.25 0.67 0.49 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.57 0.46 0.37 0.29 0.00 0.00 0.00
σ = 1.00 0.44 0.38 0.33 0.26 0.19 0.15 0.12

Table 2. Approximate certified test accuracy on ImageNet. Each row is a setting of the hyperparameter σ, each column is an `2 radius.
The entry of the best σ for each radius is bolded. For comparison, random guessing would attain 0.001 accuracy.

r = 0.0 r = 0.25 r = 0.5 r = 0.75 r = 1.0 r = 1.25 r = 1.5

σ = 0.12 0.83 0.60 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.77 0.61 0.42 0.25 0.00 0.00 0.00
σ = 0.50 0.66 0.55 0.43 0.32 0.22 0.14 0.08
σ = 1.00 0.47 0.41 0.34 0.28 0.22 0.17 0.14

Table 3. Approximate certified test accuracy on CIFAR-10. Each row is a setting of the hyperparameter σ, each column is an `2 radius.
The entry of the best σ for each radius is bolded. For comparison, random guessing would attain 0.1 accuracy.

E.2. Prediction

Table 4 shows the performance of PREDICT as the number of Monte Carlo samples n is varied between 100 and 10,000.
Suppose that for some test example (x, c), PREDICT returns the label ĉA. We say that this prediction was correct if ĉA = c
and we say that this prediction was accurate if ĉA = g(x). For example, a prediction could be correct but inaccurate if g is
wrong at x, yet PREDICT accidentally returns the correct class. Ideally, we’d like PREDICT to be both correct and accurate.

With n = 100 Monte Carlo samples and a failure rate of α = 0.001, PREDICT is cheap to evaluate (0.15 seconds on our
hardware) yet it attains relatively high top-1 accuracy of 65% on the ImageNet test set, and only abstains 12% of the time.
When we use n = 10,000 Monte Carlo samples, PREDICT takes longer to evaluate (15 seconds), yet only abstains 4% of the
time. Interestingly, we observe from Table 4 that most of the abstentions when n = 100 were for examples on which g was
wrong, so in practice we would lose little accuracy by taking n to be as small as 100.

CORRECT, ACCURATE CORRECT, INACCURATE INCORRECT, ACCURATE INCORRECT, INACCURATE ABSTAIN
N

100 0.65 0.00 0.23 0.00 0.12
1000 0.68 0.00 0.28 0.00 0.04
10000 0.69 0.00 0.30 0.00 0.01

Table 4. Performance of PRECICT as n is varied. The dataset was ImageNet and σ = 0.25, α = 0.001. Each column shows the fraction
of test examples which ended up in one of five categories; the prediction at x is “correct” if PREDICT returned the true label, while the
prediction is “accurate” if PREDICT returned g(x). Computing g(x) exactly is not possible, so in order to determine whether PREDICT

was accurate, we took the gold standard to be the top class over n =100,000 Monte Carlo samples.
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F. Training with Noise
As mentioned in section 3.3, in the experiments for this paper, we followed Lecuyer et al. (2019) and trained the base
classifier by minimizing the cross-entropy loss with Gaussian data augmentation. We now provide some justification for this
idea.

Let {(x1, c1), . . . , (xn, cn)} be a training dataset. We assume that the base classifier takes the form f(x) =
arg maxc∈Y fc(x), where each fc is the scoring function for class c.

Suppose that our goal is to maximize the sum of of the log-probabilities that f will classify each xi + ε as ci:

n∑
i=1

logPε(f(xi + ε) = ci) =

n∑
i=1

logEε 1
[
arg max

c
fc(xi + ε) = ci

]
(17)

Recall that the softmax function can be interpreted as a continuous, differentiable approximation to arg max:

1

[
arg max

c
fc(xi + ε) = ci

]
≈ exp(fci(xi + ε))∑

c∈Y exp(fc(xi + ε))

Therefore, our objective is approximately equal to:

n∑
i=1

logEε
[

exp(fci(xi + ε))∑
c∈Y exp(fc(xi + ε))

]
(18)

By Jensen’s inequality and the concavity of log, this quantity is lower-bounded by:

n∑
i=1

Eε
[
log

exp(fci(xi + ε))∑
c∈Y exp(fc(xi + ε))

]
which is the negative of the cross-entropy loss under Gaussian data augmentation.

Therefore, minimizing the cross-entropy loss under Gaussian data augmentation will maximize (18), which will approxi-
mately maximize (17).
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G. Noise Level can Scale with Input Resolution
Since our robustness guarantee (3) in Theorem 1 does not explicitly depend on the data dimension d, one might worry that
randomized smoothing is less effective for images in high resolution — certifying a fixed `2 radius is “less impressive” for,
say, 224× 224 image than for a 56× 56 image. However, it turns out that in high resolution, images can be corrupted with
larger levels of isotropic Gaussian noise while still preserving their content. This fact is made clear by Figure 12, which
shows an image at high and low resolution corrupted by Gaussian noise with the same variance. The class (“hummingbird”)
is easy to discern from the high-resolution noisy image, but not from the low-resolution noisy image. As a consequence,
in high resolution one can take σ to be larger while still being able to obtain a base classifier that classifies noisy images
accurately. Since our Theorem 1 robustness guarantee scales linearly with σ, this means that in high resolution one can
certify larger radii.

Figure 12. Top: An ImageNet image from class “hummingbird” in resolutions 56x56 (left) and 224x224 (right). Bottom: the same
images corrupted by isotropic Gaussian noise at σ = 0.5. On noiseless images the class is easy to distinguish no matter the resolution, but
on noisy data the class is much easier to distinguish when the resolution is high.

The argument above can be made rigorous, though we first need to decide what it means for two images to be high- and
low-resolution versions of each other. Here we present one solution:

LetX denote the space of “high-resolution” images in dimension 2k×2k×3, and letX ′ denote the space of “low-resolution”
images in dimension k × k × 3. Let AVGPOOL : X → X ′ be the function which takes as input an image x in dimension
2k × 2k × 3, averages together every 2x2 square of pixels, and outputs an image in dimension k × k × 3.

Equipped with these definitions, we can say that (x, x′) ∈ X ×X ′ are a high/low resolution image pair if x′ = AVGPOOL(x).

Proposition 6. Given any smoothing classifier g′ : X ′ → Y , one can construct a smoothing classifier g : X → Y with
the following property: for any x ∈ X and x′ = AVGPOOL(x), g predicts the same class at x that g′ predicts at x′, but is
certifiably robust at twice the radius.

Proof. Given some smoothing classifier g′ = (f ′, σ′) from X ′ to Y , define g to be the smoothing classifier (f, σ) from X
to Y with noise level σ = 2σ′ and base classifier f(x) = f ′(AVGPOOL(x)). Note that the average of four independent
copies of N (0, (2σ)2) is distributed as N (0, σ2). Therefore, for any high/low-resolution image pair x′ = AVGPOOL(x),
the random variable AVGPOOL(x+ ε), where ε ∼ N (0, (2σ)2I2k×2k×3), is equal in distribution to the random variable
x′ + ε′, where ε′ ∼ N (0, σ2Ik×k×3). Hence, f(x+ ε) = f ′(AVGPOOL(x+ ε)) has the same distribution as f ′(x′ + ε′).
By the definition of smoothing, this means that g(x) = g′(x′), Additionally, by Theorem 1, since σ = 2σ′, this means that
g’s prediction at x is certifiably robust at twice the radius as g′’s prediction at x′.
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H. Additional Experiments
H.1. Comparisons to baselines

Figure 13 compares the certified accuracy of a smoothed 20-layer resnet to that of the released models from two recent works
on certified `2 robustness: the Lipschitz approach from Tsuzuku et al. (2018) and the approach from Zhang et al. (2018).
Note that in these experiments, the base classifier for smoothing was larger than the networks of competing approaches. The
comparison to Zhang et al. (2018) is on CIFAR-10, while the comparison to Tsuzuku et al. (2018) is on SVHN. Note that
for each comparison, we preprocessed the dataset to follow the preprocessing used when the baseline was trained; therefore,
the radii reported for CIFAR-10 here are not comparable to the radii reported elsewhere in this paper. Full experimental
details are in Appendix J.
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(b) Zhang et al. (2018)

Figure 13. Randomized smoothing with a 20-layer resnet base classifier attains higher certified accuracy than the released models from
two recent works on certified `2 robustness.

H.2. High-probability guarantees

Appendix D details how to use CERTIFY to obtain a lower bound on the certified test accuracy at radius r of a randomized
smoothing classifier that holds with high probability over the randomness in CERTIFY. In the main paper, we declined to do
this and simply reported the approximate certified test accuracy, defined as the fraction of test examples for which CERTIFY
gives the correct prediction and certifies it at radius r. Of course, with some probability (guaranteed to be less than α), each
of these certifications is wrong.

However, we now demonstrate empirically that there is a negligible difference between a proper high-probability lower
bound on the certified accuracy and the approximate version that we reported in the paper. We created a randomized
smoothing classifier g on ImageNet with a ResNet-50 base classifier and noise level σ = 0.25. We used CERTIFY with
α = 0.001 to certify a subsample of 500 examples from the ImageNet test set. From this we computed the approximate
certified test accuracy at each radius r. Then we used the correction from Appendix D with ρ = 0.001 to obtain a lower
bound on the certified test accuracy at r that holds pointwise with probability at least 1− ρ over the randomness in CERTIFY.
Figure 14 plots both quantities as a function of r. Observe that the difference is so negligible that the lines almost overlap.

H.3. How much noise to use when training the base classifier?

In the main paper, whenever we created a randomized smoothing classifier g at noise level σ, we always trained the
corresponding base classifier f with Gaussian data augmentation at noise level σ. In Figure 15, we show the effects of
training the base classifier with a different level of Gaussian noise. Observe that g has a lower certified accuracy if f was
trained using a different noise level. It seems to be worse to train with noise < σ than to train with noise > σ.
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Figure 14. The difference between the approximate certified accuracy, and a high-probability lower bound on the certified accuracy, is
negligible.
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Figure 15. Vary training noise while holding prediction noise fixed at σ = 0.50.

I. Derivation of Prior Randomized Smoothing Guarantees
In this appendix, we derive the randomized smoothing guarantees of Lecuyer et al. (2019) and Li et al. (2018) using the
notation of our paper. Both guarantees take same general form as ours, except with a different expression for R:

Theorem (generic guarantee): Let f : Rd → Y be any deterministic or random function, and let ε ∼ N (0, σ2I). Let g
be defined as in (1). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

P(f(x+ ε) = c) (19)

Then g(x+ δ) = cA for all ‖δ‖2 < R.

For convenience, define the notation X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I).

I.1. Lecuyer et al. (2019)

Lecuyer et al. (2019) proved a version of the generic robustness guarantee in which

R = sup
0<β≤min

(
1, 12 log

pA
pB

) σβ√
2 log

(
1.25(1+exp(β))
pA−exp(2β)pB

)

Proof. In order to avoid notation that conflicts with the rest of this paper, we use β and γ where Lecuyer et al. (2019) used ε
and δ.
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Suppose that we have some 0 < β ≤ 1 and γ > 0 such that

σ2 =
‖δ‖2

β2
2 log

1.25

γ
(20)

The “Gaussian mechanism” from differential privacy guarantees that:

P(f(X) = cA) ≤ exp(β)P(f(Y ) = cA) + γ (21)

and, symmetrically,

P(f(Y ) = cB) ≤ exp(β)P(f(X) = cB) + γ (22)

See Lecuyer et al. (2019), Lemma 2 for how to obtain this form from the standard form of the (β, γ) DP definition.

Fix a perturbation δ. To guarantee that g(x + δ) = cA, we need to show that P(f(Y ) = cA) > P(f(Y ) = cB) for each
cB 6= cA.

Together, (21) and (22) imply that to guarantee P(f(Y ) = cA) > P(f(Y ) = cB), it suffices to show that:

P(f(X) = cA) > exp(2β)P(f(X) = cB) + γ(1 + exp(β)) (23)

Therefore, by (19), in order to guarantee that g(x+ δ) = cA it suffices to show:

pA > exp(2β)pB + γ(1 + exp(β)) (24)

Now, inverting (20), we obtain:

γ = 1.25 exp

(
− σ

2β2

2‖δ‖2

)
(25)

Plugging (25) into (24), we see that to guarantee g(x+ δ) = cA it suffices to show that:

pA > exp(2β)pB + 1.25 exp

(
− σ

2β2

2‖δ‖2

)
(1 + exp(β)) (26)

which rearranges to:

pA − exp(2β)pB

1.25(1 + exp(β))
> exp

(
− σ

2β2

2‖δ‖2

)
(27)

Since the RHS is always positive, and the denominator on the LHS is always positive, this condition can only possibly hold
if the numerator on the LHS is positive. Therefore, we need to restrict β to

0 < β ≤ min

(
1,

1

2
log

pA

pB

)
(28)

The condition (27) is equivalent to:

‖δ‖2 log
1.25(1 + exp(β))

pA − exp(2β)pB
<
σ2β2

2
(29)

Since pA ≤ 1 and pB ≥ 0, the denominator in the LHS is ≤ 1 which is in turn ≤ the numerator on the LHS. Therefore, the
term inside the log in the LHS is greater than 1, so the log term on the LHS is greater than zero. Therefore, we may divide
both sides of the inequality by the log term on the LHS to obtain:

‖δ‖2 < σ2β2

2 log
(

1.25(1+exp(β))
pA−exp(2β)pB

) (30)

Finally, we take the square root and maximize the bound over all valid β (28) to yield:

‖δ‖ < sup
0<β≤min

(
1, 12 log

pA
pB

) σβ√
2 log

(
1.25(1+exp(β))
pA−exp(2β)pB

) (31)
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Figure 16a plots this bound at varying settings of the tuning parameter β, while Figure 16c plots how the bound varies with
β for a fixed pA and pB .

I.2. Li et al. (2018)

Li et al. (2018) proved a version of the generic robustness guarantee in which

R = sup
α>0

σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB

1−α)1−α
))

Proof. A generalization of KL divergence, the α-Renyi divergence is an information theoretic measure of distance between
two distributions. It is parameterized by some α > 0. The α-Renyi divergence between two discrete distributions P and Q
is defined as:

Dα(P ||Q) :=
1

α− 1
log

(
k∑
i=1

pαi
qα−1i

)
(32)

In the continuous case, this sum is replaced with an integral. The divergence is undefined when α = 1 since a division by
zero occurs, but the limit of Dα(P ||Q) as α→ 1 is the KL divergence between P and Q.

Li et al. (2018) prove that if P is a discrete distribution for which the highest probability class has probability ≥ pA and all
other classes have probability ≤ pB , then for any other discrete distribution Q for which

Dα(P ||Q) < − log

(
1− pA − pB + 2

(
1

2
(pA

1−α + pB
1−α)1−α

))
(33)

the highest-probability class in Q is guaranteed to be the same as the highest-probability class in P .

We now apply this result to the discrete distributions P = f(X) and Q = f(Y ). If Dα(f(X)||f(Y )) satisfies (33), then it
is guaranteed that g(x) = g(x+ δ).

The data processing inequality states that applying a function to two random variables can only decrease the α-Renyi
divergence between them. In particular,

Dα(f(X)||f(Y )) ≤ Dα(X||Y ) (34)

There is a closed-form expression for the α-Renyi divergence between two Gaussians:

Dα(X||Y ) =
α‖δ‖2

2σ2
(35)

Therefore, we can guarantee that g(x+ δ) = cA so long as

α‖δ‖2

2σ2
< − log

(
1− pA − pB + 2

(
1

2
(pA

1−α + pB
1−α)1−α

))
(36)

which simplifies to

‖δ‖ < σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB

1−α)1−α
))

(37)

Finally, since this result holds for any α > 0, we may maximize over α to obtain the largest possible certified radius:

‖δ‖ < sup
α>0

σ

√
− 2

α
log

(
1− pA − pB + 2

(
1

2
(pA1−α + pB

1−α)1−α
))

(38)

Figure 16b plots this bound at varying settings of the tuning parameter α, while figure 16d plots how the bound varies with
α for a fixed pA and pB .



Certified Adversarial Robustness via Randomized Smoothing

(a) The Lecuyer et al. (2019) bound over several settings of β. The
brown line is the pointwise supremum over all eligible β, computed
numerically.

(b) The Li et al. (2018) bound over several settings of α. The
purple line is the pointwise supremum over all eligible α, computed
numerically.

(c) Tuning the Lecuyer et al. (2019) bound wrt β when pA =
0.8, pB = 0.2

(d) Tuning the Li et al. (2018) bound wrtαwhen pA = 0.999, pB =
0.0001

J. Experiment Details
J.1. Comparison to baselines

We compared randomized smoothing against three recent approaches for `2-robust classification (Tsuzuku et al., 2018;
Wong et al., 2018; Zhang et al., 2018). Tsuzuku et al. (2018) and Wong et al. (2018) propose both a robust training method
and a complementary certification mechanism, while Zhang et al. (2018) propose a method to certify generically trained
networks. In all cases we compared against networks provided by the authors. We compared against Wong et al. (2018) and
Zhang et al. (2018) on CIFAR-10, and we compared against Tsuzuku et al. (2018) on SVHN.

In image classification it is common practice to preprocess a dataset by subtracting from each channel the mean over the
dataset, and dividing each channel by the standard deviation over the dataset. However, we wanted to report certified radii
in the original image coordinates rather than in the standardized coordinates. Therefore, throughout most of this work we
first added the Gaussian noise, and then standardized the channels, before feeding the image to the base classifier. (In the
practical PyTorch implementation, the first layer of the base classifier was a layer that standardized the input.) However, all
of the baselines we compared against provided pre-trained networks which assumed that the dataset was first preprocessed
in a specific way. Therefore, when comparing against the baselines we also preprocessed the datasets first, so that we could
report certified radii that were directly comparable to the radii reported by the baseline methods.

Comparison to Wong et al. (2018) Following Wong et al. (2018), the CIFAR-10 dataset was preprocessed by subtracting
(0.485, 0.456, 0.406) and dividing by (0.225, 0.225, 0.225).

While the body of the Wong et al. (2018) paper focuses on `∞ certified robustness, their algorithm naturally extends to
`2 certified robustness, as developed in the appendix of the paper. We used three `2-trained residual networks publicly
released by the authors, each trained with a different setting of their hyperparameter ε ∈ {0.157, 0.628, 2.51}. We used code
publicly released by the authors at https://github.com/locuslab/convex_adversarial/blob/master/

https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
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examples/cifar_evaluate.py to compute the robustness radius of test images. The code accepts a radius and
returns TRUE (robust) or FALSE (not robust); we incorporated this subroutine into a binary search procedure to find the
largest radius for which the code returned TRUE.

For randomized smoothing we used σ = 0.6 and a 20-layer residual network base classifier. We ran CERTIFY with n0 = 100,
n = 100,000 and α = 0.001.

For both methods, we certified the full CIFAR-10 test set.

Comparison to Tsuzuku et al. (2018) Following Tsuzuku et al. (2018), the SVHN dataset was not preprocessed except
that pixels were divided by 255 so as to lie within [0, 1].

We compared against a pretrained network provided to us by the authors in which the hyperparameter of their method was
set to c = 0.1. The network was a wide residual network with 16 layers and a width factor of 4. We used the authors’ code
at https://github.com/ytsmiling/lmt to compute the robustness radius of test images.

For randomized smoothing we used σ = 0.1 and a 20-layer residual network base classifier. We ran CERTIFY with n0 = 100,
n = 100,000 and α = 0.001.

For both methods, we certified the whole SVHN test set.

Comparison to Zhang et al. (2018) Following Zhang et al. (2018), the CIFAR-10 dataset was preprocessed by subtracting
0.5 from each pixel.

We compared against the cifar 7 1024 vanilla network released by the authors, which is a 7-layer MLP. We used the
authors’ code at https://github.com/IBM/CROWN-Robustness-Certification to compute the robustness
radius of test images.

For randomized smoothing we used σ = 1.2 and a 20-layer residual network base classifier. We ran CERTIFY with n0 = 100,
n = 100,000 and α = 0.001.

For randomized smoothing, we certified the whole CIFAR-10 test set. For Zhang et al. (2018), we certified every fourth
image in the CIFAR-10 test set.

J.2. ImageNet and CIFAR-10 Experiments

Our code is available at http://github.com/locuslab/smoothing.

In order to report certified radii in the original coordinates, we first added Gaussian noise, and then standardized the data.
Specifically, in our PyTorch implementation, the first layer of the base classifier was a normalization layer that performed
a channel-wise standardization of its input. For CIFAR-10 we subtracted the dataset mean (0.4914, 0.4822, 0.4465)
and divided by the dataset standard deviation (0.2023, 0.1994, 0.2010). For ImageNet we subtracted the dataset mean
(0.485, 0.456, 0.406) and divided by the standard deviation (0.229, 0.224, 0.225).

For both ImageNet and CIFAR-10, we trained the base classifier with random horizontal flips and random crops (in addition
to the Gaussian data augmentation discussed explicitly in the paper). On ImageNet we trained with synchronous SGD on
four NVIDIA RTX 2080 Ti GPUs; training took approximately three days.

On ImageNet our base classifier used the ResNet-50 architecture provided in torchvision. On CIFAR-10 we used a
110-layer residual network from https://github.com/bearpaw/pytorch-classification.

On ImageNet we certified every 100-th image in the validation set, for 500 images total. On CIFAR-10 we certified the
whole test set.

In Figure 8 (middle) we fixed σ = 0.25 and α = 0.001 while varying the number of samples n. We did not actually vary
the number of samples n that we simulated: we kept this number fixed at 100,000 but varied the number that we fed the
Clopper-Pearson confidence interval.

In Figure 8 (right), we fixed σ = 0.25 and n =100,000 while varying α.

https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
https://github.com/locuslab/convex_adversarial/blob/master/examples/cifar_evaluate.py
https://github.com/ytsmiling/lmt
https://github.com/IBM/CROWN-Robustness-Certification
http://github.com/locuslab/smoothing
https://github.com/bearpaw/pytorch-classification
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J.3. Adversarial Attacks

As discussed in Section 4, we subjected smoothed classifiers to a projected gradient descent-style adversarial attack. We
now describe the details of this attack.

Let f be the base classifier and let σ be the noise level. Following Li et al. (2018), given an example (x, c) ∈ Rd × Y and a
radius r, we used a projected gradient descent style adversarial attack to optimize the objective:

arg max
δ:‖δ‖2<r

Eε∼N (0,σ2I) [`(f(x+ δ + ε), c)] (39)

where ` is the softmax loss function. (Breaking notation with the rest of the paper in which f returns a class, the function f
here refers to the function that maps an image in Rd to a vector of classwise scores.)

At each iteration of the attack, we drew k samples of noise, ε1 . . . εk ∼ N (0, σ2I), and followed the stochastic gradient
gt =

∑k
i=1∇δt`(f(x+ δt + εk), c).

As is typical (Kolter & Madry, 2018), we used a “steepest ascent” update rule, which, for the `2 norm, means that we
normalized the gradient before applying the update. The overall PGD update is: δt+1 = projr

(
δt + η gt

‖gt‖

)
where the

function projr that projects its input onto the ball {z : ‖z‖2 ≤ r} is given by projr(z) = rz
max(r,‖z‖2) . We used a constant

step size η and a fixed number T of PGD iterations.

In practice, our step size was η = 0.1, we used T = 20 steps of PGD, and we computed the stochastic gradient using
k = 1000 Monte Carlo samples.

Unfortunately, the objective we optimize (39) is not actually the objective of interest. The real goal of an attacker is to find
some perturbation δ with ‖δ‖2 < r and some class cB for which

Pε∼N (0,σ2I)(f(x+ δ + ε) = cB) ≥ Pε∼N (0,σ2I)(f(x+ δ + ε) = c)

Effective adversarial attacks against randomized smoothing are outside the scope of this paper.
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K. Examples of Noisy Images
We now show examples of CIFAR-10 and ImageNet images corrupted with varying levels of noise.

σ = 0.00 σ = 0.25 σ = 0.50 σ = 1.00

Figure 17. CIFAR-10 images additively corrupted by varying levels of Gaussian noiseN (0, σ2I). Pixel values greater than 1.0 (=255) or
less than 0.0 (=0) were clipped to 1.0 or 0.0.
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σ = 0.00 σ = 0.25 σ = 0.50 σ = 1.00

Figure 18. ImageNet images additively corrupted by varying levels of Gaussian noiseN (0, σ2I). Pixel values greater than 1.0 (=255) or
less than 0.0 (=0) were clipped to 1.0 or 0.0.


