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Abstract

We show how to turn any classifier that classifies
well under Gaussian noise into a new classifier
that is certifiably robust to adversarial perturba-
tions under the `2 norm. While this “randomized
smoothing” technique has been proposed before
in the literature, we are the first to provide a tight
analysis, which establishes a close connection
between `2 robustness and Gaussian noise. We
use the technique to train an ImageNet classifier
with e.g. a certified top-1 accuracy of 49% un-
der adversarial perturbations with `2 norm less
than 0.5 (=127/255). Smoothing is the only ap-
proach to certifiably robust classification which
has been shown feasible on full-resolution Im-
ageNet. On smaller-scale datasets where com-
peting approaches to certified `2 robustness are
viable, smoothing delivers higher certified accura-
cies. The empirical success of the approach sug-
gests that provable methods based on randomiza-
tion at prediction time are a promising direction
for future research into adversarially robust classi-
fication. Code and models are available at http:
//github.com/locuslab/smoothing.

1. Introduction
Modern image classifiers achieve high accuracy on i.i.d.
test sets but are not robust to small, adversarially-chosen
perturbations of their inputs (Szegedy et al., 2014; Biggio
et al., 2013). Given an image x correctly classified by, say,
a neural network, an adversary can usually engineer an ad-
versarial perturbation δ so small that x + δ looks just like
x to the human eye, yet the network classifies x + δ as a
different, incorrect class. Many works have proposed heuris-
tic methods for training classifiers intended to be robust to
adversarial perturbations. However, most of these heuristics
have been subsequently shown to fail against suitably pow-
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Figure 1. Evaluating the smoothed classifier at an input x. Left:
the decision regions of the base classifier f are drawn in differ-
ent colors. The dotted lines are the level sets of the distribution
N (x, σ2I). Right: the distribution f(N (x, σ2I)). As discussed
below, pA is a lower bound on the probability of the top class and
pB is an upper bound on the probability of each other class. Here,
g(x) is “blue.”

.

erful adversaries (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). In response, a line of work on
certifiable robustness studies classifiers whose prediction at
any point x is verifiably constant within some set around x
(e.g. Wong & Kolter, 2018; Raghunathan et al., 2018a). In
most of these works, the robust classifier takes the form of a
neural network. Unfortunately, all existing approaches for
certifying the robustness of neural networks have trouble
scaling to networks that are large and expressive enough to
solve problems like ImageNet.

One workaround is to look for robust classifiers that are not
neural networks. In this paper, we analyze an operation we
call randomized smoothing1 which transforms any arbitrary
base classifier f into a new “smoothed classifier” g that is
certifiably robust in `2 norm. Let f be an arbitrary classifier
which maps inputs Rd to classes Y . For any input x, the
smoothed classifier’s prediction g(x) is defined to be the
class which f is most likely to classify the random vari-
able N (x, σ2I) as. That is, g(x) returns the most probable
prediction by f of random Gaussian corruptions of x.

If the base classifier f is most likely to classify N (x, σ2I)
as x’s correct class, then the smoothed classifier g will be

1We adopt this term because it has been used to describe as
similar technique in a different context (Duchi et al., 2012).
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correct at x. But the smoothed classifier g will also possess
a desirable property that the base classifier may lack: one
can verify that g’s prediction is constant within an `2 ball
around any input x, simply by estimating the probabilities
with which f classifiesN (x, σ2I) as each class. The higher
the probability with which f classifies N (x, σ2I) as the
most probable class, the larger the `2 radius around x in
which g provably returns that class.

Lecuyer et al. (2019) proposed randomized smoothing as
a provable adversarial defense, and used it to train the first
certifiably robust classifier for ImageNet. Subsequently, Li
et al. (2018) proved a stronger robustness guarantee. How-
ever, both of these guarantees are loose, in the sense that
the smoothed classifier g is provably always more robust
than the guarantee indicates. In this paper, we prove the
first tight robustness guarantee for randomized smoothing.
Our analysis reveals that smoothing with Gaussian noise
naturally induces certifiable robustness under the `2 norm.
We suspect that other, as-yet-unknown noise distributions
might induce robustness to other perturbation sets such as
general `p norm balls.

Randomized smoothing has one major drawback. If f is
a neural network, it is not possible to exactly compute the
probabilities with which f classifies N (x, σ2I) as each
class. Therefore, it is not possible to exactly evaluate the
smoothed classifier g or to exactly compute the radius in
which g is robust. Instead, we present Monte Carlo algo-
rithms for both tasks that are guaranteed to succeed with
arbitrarily high probability.

Despite this drawback, randomized smoothing enjoys sev-
eral compelling advantages over other certifiably robust
classifiers proposed in the literature: it makes no assump-
tions about the base classifier’s architecture, it is simple to
implement and understand, and, most importantly, it per-
mits the use of arbitrarily large neural networks as the base
classifier. In contrast, other certified defenses do not cur-

Table 1. Approximate certified accuracy on ImageNet. Each row
shows a radius r, the best hyperparameter σ for that radius, the
approximate certified accuracy at radius r of the corresponding
smoothed classifier, and the standard accuracy of the corresponding
smoothed classifier. To give a sense of scale, a perturbation with
`2 radius 1.0 could change one pixel by 255, ten pixels by 80, 100
pixels by 25, or 1000 pixels by 8. Random guessing on ImageNet
would attain 0.1% accuracy.

`2 RADIUS BEST σ CERT. ACC (%) STD. ACC(%)

0.5 0.25 49 67
1.0 0.50 37 57
2.0 0.50 19 57
3.0 1.00 12 44

Figure 2. The smoothed classifier’s prediction at an input x (left)
is defined as the most likely prediction by the base classifier on
random Gaussian corruptions of x (right; σ = 0.5). Note that this
Gaussian noise is much larger in magnitude than the adversarial
perturbations to which g is provably robust. One interpretation
of randomized smoothing in high dimension is that these large
random perturbations “drown out” small adversarial perturbations.

rently scale to large networks. Indeed, smoothing is the only
certified adversarial defense which has been shown feasible
on the full-resolution ImageNet classification task.

We use randomized smoothing to train state-of-the-art certi-
fiably `2-robust ImageNet classifiers; for example, one of
them achieves 49% provable top-1 accuracy under adver-
sarial perturbations with `2 norm less than 127/255 (Table
1). We also demonstrate that on smaller-scale datasets like
CIFAR-10 and SHVN, where competing approaches to cer-
tified `2 robustness are feasible, randomized smoothing can
deliver better certified accuracies, both because it enables
the use of larger networks and because it does not constrain
the expressivity of the base classifier.

2. Related Work
Many works have proposed classifiers intended to be ro-
bust to adversarial perturbations. These approaches can
be broadly divided into empirical defenses, which empiri-
cally seem robust to known adversarial attacks, and certified
defenses, which are provably robust to certain kinds of ad-
versarial perturbations.

Empirical defenses The most successful empirical de-
fense to date is adversarial training (Goodfellow et al.,
2015; Kurakin et al., 2017; Madry et al., 2018), in which
adversarial examples are found during training (often using
projected gradient descent) and added to the training set.
Unfortunately, it is typically impossible to tell whether a
prediction by an empirically robust classifier is truly robust
to adversarial perturbations; the most that can be said is that
a specific attack was unable to find any. In fact, many heuris-
tic defenses proposed in the literature were later “broken”
by stronger adversaries (Carlini & Wagner, 2017; Athalye
et al., 2018; Uesato et al., 2018; Athalye & Carlini, 2018).
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Aiming to escape this cat-and-mouse game, a growing body
of work has focused on defenses with formal guarantees.

Certified defenses A classifier is said to be certifiably ro-
bust if for any input x, one can easily obtain a guarantee that
the classifier’s prediction is constant within some set around
x, often an `2 or `∞ ball. In most work in this area, the
certifiably robust classifier is a neural network. Some works
propose algorithms for certifying the robustness of generi-
cally trained networks, while others (Wong & Kolter, 2018;
Raghunathan et al., 2018a) propose both a robust training
method and a complementary certification mechanism.

Certification methods are either exact (a.k.a “complete”) or
conservative (a.k.a “sound but incomplete”). In the context
of `p norm-bounded perturbations, exact methods take a
classifier g, input x, and radius r, and report whether or
not there exists a perturbation δ within ‖δ‖ ≤ r for which
g(x) 6= g(x+ δ). In contrast, conservative methods either
certify that no such perturbation exists or decline to make a
certification; they may decline even when it is true that no
such perturbation exists. Exact methods are usually based
on Satisfiability Modulo Theories (Katz et al., 2017; Carlini
et al., 2017; Ehlers, 2017; Huang et al., 2017) or mixed
integer linear programming (Cheng et al., 2017; Lomuscio
& Maganti, 2017; Dutta et al., 2017; Fischetti & Jo, 2018;
Bunel et al., 2018). Unfortunately, no exact methods have
been shown to scale beyond moderate-sized (100,000 acti-
vations) networks (Tjeng et al., 2019), and networks of that
size can only be verified when they are trained in a manner
that impairs their expressivity.

Conservative certification is more scalable. Some conser-
vative methods bound the global Lipschitz constant of the
neural network (Gouk et al., 2018; Tsuzuku et al., 2018;
Anil et al., 2019; Cisse et al., 2017), but these approaches
tend to be very loose on expressive networks. Others mea-
sure the local smoothness of the network in the vicinity of a
particular input x. In theory, one could obtain a robustness
guarantee via an upper bound on the local Lipschitz con-
stant of the network (Hein & Andriushchenko, 2017), but
computing this quantity is intractable for general neural net-
works. Instead, a panoply of practical solutions have been
proposed in the literature (Wong & Kolter, 2018; Wang et al.,
2018a;b; Raghunathan et al., 2018a;b; Wong et al., 2018;
Dvijotham et al., 2018b;a; Croce et al., 2019; Gehr et al.,
2018; Mirman et al., 2018; Singh et al., 2018; Gowal et al.,
2018; Weng et al., 2018a; Zhang et al., 2018). Two themes
stand out. Some approaches cast verification as an opti-
mization problem and import tools such as relaxation and
duality from the optimization literature to provide conserva-
tive guarantees (Wong & Kolter, 2018; Wong et al., 2018;
Raghunathan et al., 2018a;b; Dvijotham et al., 2018b;a).
Others step through the network layer by layer, maintaining
at each layer an outer approximation of the set of activations

reachable by a perturbed input (Mirman et al., 2018; Singh
et al., 2018; Gowal et al., 2018; Weng et al., 2018a; Zhang
et al., 2018). None of these local certification methods have
been shown to be feasible on networks that are large and
expressive enough to solve modern machine learning prob-
lems like the ImageNet classification task. Also, all method
either assume specific network architectures (e.g. ReLU
activations or a layered feedforward structure) or require
extensive customization for new network architectures.

Related work involving noise Prior works have proposed
using a network’s robustness to Gaussian noise as a proxy
for its robustness to adversarial perturbations (Weng et al.,
2018b; Ford et al., 2019), and have suggested that Gaussian
data augmentation could supplement or replace adversar-
ial training (Zantedeschi et al., 2017; Kannan et al., 2018).
Smilkov et al. (2017) observed that averaging a classifier’s
input gradients over Gaussian corruptions of an image yields
very interpretable saliency maps. The robustness of neural
networks to random noise has been analyzed both theo-
retically (Fawzi et al., 2016; Franceschi et al., 2018) and
empirically (Dodge & Karam, 2017). Finally, Webb et al.
(2019) proposed a statistical technique for estimating the
noise robustness of a classifier more efficiently than naive
Monte Carlo simulation; we did not use this technique since
it appears to lack formal high-probability guarantees. While
these works hypothesized relationships between a neural net-
work’s robustness to random noise and the same network’s
robustness to adversarial perturbations, randomized smooth-
ing instead uses a classifier’s robustness to random noise to
create a new classifier robust to adversarial perturbations.

Randomized smoothing Randomized smoothing has
been studied previously for adversarial robustness. Sev-
eral works (Liu et al., 2018; Cao & Gong, 2017) proposed
similar techniques as heuristic defenses, but did not prove
any guarantees. Lecuyer et al. (2019) used inequalities
from the differential privacy literature to prove an `2 and
`1 robustness guarantee for smoothing with Gaussian and
Laplace noise, respectively. Subsequently, Li et al. (2018)
used tools from information theory to prove a stronger `2 ro-
bustness guarantee for Gaussian noise. However, all of these
robustness guarantees are loose. In contrast, we prove a tight
robustness guarantee in `2 norm for randomized smoothing
with Gaussian noise.

3. Randomized smoothing
Consider a classification problem from Rd to classes Y .
As discussed above, randomized smoothing is a method for
constructing a new, “smoothed” classifier g from an arbitrary
base classifier f . When queried at x, the smoothed classifier
g returns whichever class the base classifier f is most likely
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to return when x is perturbed by isotropic Gaussian noise:

g(x) = arg max
c∈Y

P(f(x+ ε) = c) (1)

where ε ∼ N (0, σ2I)

An equivalent definition is that g(x) returns the class c
whose pre-image {x′ ∈ Rd : f(x′) = c} has the largest
probability measure under the distribution N (x, σ2I). The
noise level σ is a hyperparameter of the smoothed classifier
g which controls a robustness/accuracy tradeoff; it does not
change with the input x. We leave undefined the behavior
of g when the argmax is not unique.

We will first present our robustness guarantee for the
smoothed classifier g. Then, since it is not possible to
exactly evaluate the prediction of g at x or to certify the ro-
bustness of g around x, we will give Monte Carlo algorithms
for both tasks that succeed with arbitrarily high probability.

3.1. Robustness guarantee

Suppose that when the base classifier f classifiesN (x, σ2I),
the most probable class cA is returned with probability pA,
and the “runner-up” class is returned with probability pB .
Our main result is that smoothed classifier g is robust around
xwithin the `2 radiusR = σ

2 (Φ−1(pA)−Φ−1(pB)), where
Φ−1 is the inverse of the standard Gaussian CDF. This result
also holds if we replace pA with a lower bound pA and we
replace pB with an upper bound pB .

Theorem 1. Let f : Rd → Y be any deterministic or
random function, and let ε ∼ N (0, σ2I). Let g be defined
as in (1). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

P(f(x+ ε) = c) (2)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (3)

We now make several observations about Theorem 1:

• Theorem 1 assumes nothing about f . This is crucial
since it is unclear which well-behavedness assump-
tions, if any, are satisfied by modern deep architectures.

• The certified radius R is large when: (1) the noise level
σ is high, (2) the probability of the top class cA is high,
and (3) the probability of each other class is low.

• The certified radius R goes to ∞ as pA → 1 and
pB → 0. This should sound reasonable: the Gaussian
distribution is supported on all of Rd, so the only way
that f(x + ε) = cA with probability 1 is if f = cA
almost everywhere.

Both Lecuyer et al. (2019) and Li et al. (2018) proved `2
robustness guarantees for the same setting as Theorem 1, but
with different, smaller expressions for the certified radius.
However, our `2 robustness guarantee is tight: if (2) is all
that is known about f , then it is impossible to certify an `2
ball with radius larger than R. In fact, it is impossible to
certify any superset of the `2 ball with radius R:

Theorem 2. Assume pA + pB ≤ 1. For any perturbation
δ with ‖δ‖2 > R, there exists a base classifier f consistent
with the class probabilities (2) for which g(x+ δ) 6= cA.

Theorem 2 shows that Gaussian smoothing naturally in-
duces `2 robustness: if we make no assumptions on the base
classifier beyond the class probabilities (2), then the set of
perturbations to which a Gaussian-smoothed classifier is
provably robust is exactly an `2 ball.

The complete proofs of Theorems 1 and 2 are in Appendix
A. We now sketch the proofs in the special case when there
are only two classes.

Theorem 1 (binary case). Suppose pA ∈ ( 1
2 , 1] satisfies

P(f(x + ε) = cA) ≥ pA. Then g(x + δ) = cA for all
‖δ‖2 < σΦ−1(pA).

Proof sketch. Fix a perturbation δ ∈ Rd. To guarantee
that g(x + δ) = cA, we need to show that f classifies the
translated Gaussian N (x + δ, σ2I) as cA with probability
> 1

2 . However, all we know about f is that f classifies
N (x, σ2I) as cA with probability ≥ pA. This raises the
question: out of all possible base classifiers f which classify
N (x, σ2I) as cA with probability ≥ pA, which one f∗

classifiesN (x+δ, σ2I) as cA with the smallest probability?
One can show using an argument similar to the Neyman-
Pearson lemma (Neyman & Pearson, 1933) that this “worst-
case” f∗ is a linear classifier whose decision boundary is
normal to the perturbation δ (Figure 3):

f∗(x′) =

{
cA if δT (x′ − x) ≤ σ‖δ‖2Φ−1(pA)

cB otherwise
(4)

This “worst-case” f∗ classifies N (x + δ, σ2I) as cA with
probability Φ

(
Φ−1(pA)− ‖δ‖2σ

)
. Therefore, to ensure that

even the “worst-case” f∗ classifiesN (x+δ, σ2I) as cA with
probability > 1

2 , we solve for those δ for which

Φ

(
Φ−1(pA)− ‖δ‖2

σ

)
>

1

2

which is equivalent to the condition ‖δ‖2 < σΦ−1(pA).

Theorem 2 is a simple consequence: for any δ with ‖δ‖2 >
R, the base classifier f∗ defined in (4) is consistent with (2);
yet if f∗ is the base classifier, then g(x+ δ) = cB .
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Figure 3. Illustration of f∗ in two dimensions. The concentric
circles are the density contours ofN (x, σ2I) andN (x+ δ, σ2I).
Out of all base classifiers f which classifyN (x, σ2I) as cA (blue)
with probability ≥ pA, such as both classifiers depicted above,
the “worst-case” f∗, which classifies N (x + δ, σ2I) as cA with
minimal probability, is the classifier depicted on the right: a linear
classifier with decision boundary normal to the perturbation δ.

Figure 5 (left) plots our `2 robustness guarantee against
the guarantees derived in prior work. Observe that our
R is much larger than that of Lecuyer et al. (2019) and
moderately larger than that of Li et al. (2018). Appendix I
derives the other two guarantees using this paper’s notation.

Linear base classifier A two-class linear classifier
f(x) = sign(wTx + b) is already certifiable: the distance
from any input x to the decision boundary is |wTx+b|/‖w‖,
and no perturbation δ with `2 norm less than this distance
can possibly change f ’s prediction. In Appendix B we show
that if f is linear, then the smoothed classifier g is identical
to the base classifier f . Moreover, we show that our bound
(3) will certify the true robust radius |wTx+ b|/‖w‖, rather
than a smaller, overconservative radius. Therefore, when f
is linear, there always exists a perturbation δ just beyond the
certified radius which changes g’s prediction.

Noise level can scale with image resolution Since our
expression (3) for the certified radius does not depend ex-
plicitly on the data dimension d, one might worry that ran-
domized smoothing is less effective for images of higher
resolution — certifying a fixed `2 radius is “less impressive”
for, say, a 224× 224 image than for a 56× 56 image. How-
ever, as illustrated by Figure 4, images in higher resolution
can tolerate higher levels σ of isotropic Gaussian noise be-
fore their class-distinguishing content gets destroyed. As
a consequence, in high resolution, smoothing can be per-
formed with a larger σ, leading to larger certified radii. See
Appendix G for a more rigorous version of this argument.

3.2. Practical algorithms

We now present practical Monte Carlo algorithms for eval-
uating g(x) and certifying the robustness of g around x.

More details can be found in Appendix C.

3.2.1. PREDICTION

Evaluating the smoothed classifier’s prediction g(x) re-
quires identifying the class cA with maximal weight in the
categorical distribution f(x+ ε). The procedure described
in pseudocode as PREDICT draws n samples of f(x + ε)
by running n noise-corrupted copies of x through the base
classifier. Let ĉA be the class which appeared the largest
number of times. If ĉA appeared much more often than any
other class, then PREDICT returns ĉA. Otherwise, it abstains
from making a prediction. We use the hypothesis test from
Hung & Fithian (2019) to calibrate the abstention threshold
so as to bound by α the probability of returning an incorrect
answer. PREDICT satisfies the following guarantee:

Proposition 1. With probability at least 1 − α over the
randomness in PREDICT, PREDICT will either abstain or
return g(x). (Equivalently: the probability that PREDICT
returns a class other than g(x) is at most α.)

The function SAMPLEUNDERNOISE(f , x, num, σ) in the
pseudocode draws num samples of noise, ε1 . . . εnum ∼
N (0, σ2I), runs each x + εi through the base classifier f ,
and returns a vector of class counts. BINOMPVALUE(nA,
nA +nB , p) returns the p-value of the two-sided hypothesis
test that nA ∼ Binomial(nA + nB , p).

Even if the true smoothed classifier g is robust at radius R,
PREDICT will be vulnerable in a certain sense to adversarial
perturbations with `2 norm slightly less than R. By engi-
neering a perturbation δ for which f(x+ δ + ε) puts mass
just over 1

2 on class cA and mass just under 1
2 on class cB ,

an adversary can force PREDICT to abstain at a high rate. If
this scenario is of concern, a variant of Theorem 1 could be
proved to certify a radius in which P(f(x+ δ+ ε) = cA) is
larger by some margin than maxc6=cA P(f(x+ δ + ε) = c).

3.2.2. CERTIFICATION

Evaluating and certifying the robustness of g around an
input x requires not only identifying the class cA with maxi-
mal weight in f(x+ ε), but also estimating a lower bound
pA on the probability that f(x + ε) = cA and an upper
bound pB on the probability that f(x+ ε) equals any other
class. Doing all three of these at the same time in a sta-
tistically correct manner requires some care. One simple

Figure 4. Left to right: clean 56 x 56 image, clean 224 x 224 image,
noisy 56 x 56 image (σ = 0.5), noisy 224 x 224 image (σ = 0.5).
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Pseudocode for certification and prediction

# evaluate g at x
function PREDICT(f , σ, x, n, α)
counts← SAMPLEUNDERNOISE(f , x, n, σ)
ĉA, ĉB ← top two indices in counts
nA, nB ← counts[ĉA], counts[ĉB]
if BINOMPVALUE(nA, nA + nB , 0.5) ≤ α return ĉA
else return ABSTAIN

# certify the robustness of g around x
function CERTIFY(f , σ, x, n0, n, α)
counts0← SAMPLEUNDERNOISE(f, x, n0, σ)
ĉA ← top index in counts0
counts← SAMPLEUNDERNOISE(f, x, n, σ2)
pA ← LOWERCONFBOUND(counts[ĉA], n, 1− α)
if pA > 1

2 return prediction ĉA and radius σΦ−1(pA)
else return ABSTAIN

solution is presented in pseudocode as CERTIFY: first, use
a small number of samples from f(x + ε) to take a guess
at cA; then use a larger number of samples to estimate pA;
then simply take pB = 1− pA.

Proposition 2. With probability at least 1 − α over the
randomness in CERTIFY, if CERTIFY returns a class ĉA
and a radius R (i.e. does not abstain), then g predicts ĉA
within radius R around x: g(x+ δ) = ĉA ∀ ‖δ‖2 < R.

The function LOWERCONFBOUND(k, n, 1−α) in the pseu-
docode returns a one-sided (1 − α) lower confidence in-
terval for the Binomial parameter p given a sample k ∼
Binomial(n, p).

Certifying large radii requires many samples Recall
from Theorem 1 that R approaches∞ as pA approaches 1.
Unfortunately, it turns out that pA approaches 1 so slowly
with n that R also approaches∞ very slowly with n. Con-
sider the most favorable situation: f(x) = cA everywhere.
This means that g is robust at radius∞. But after observing
n samples of f(x + ε) which all equal cA, the tightest (to
our knowledge) lower bound would say that with probabil-
ity least 1 − α, pA ≥ α(1/n). Plugging pA = α(1/n) and
pB = 1− pA into (3) yields an expression for the certified
radius as a function of n: R = σΦ−1(α1/n). Figure 5
(right) plots this function for α = 0.001, σ = 1. Observe
that certifying a radius of 4σ with 99.9% confidence would
require ≈ 105 samples.

3.3. Training the base classifier

Theorem 1 holds regardless of how the base classifier f is
trained. However, in order for g to classify the labeled ex-
ample (x, c) correctly and robustly, f needs to consistently
classify N (x, σ2I) as c. In high dimension, the Gaussian
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Figure 5. Left: Certified radius R as a function of pA (with pB =
1− pA and σ = 1) under all three randomized smoothing bounds.
Right: A plot of R = σΦ−1(α1/n) for α = 0.001 and σ = 1.
The radius we can certify with high probability grows slowly with
the number of samples, even in the best case where f(x) = cA
everywhere.

distributionN (x, σ2I) places almost no mass near its mode
x. As a consequence, when σ is moderately high, the distri-
bution of natural images has virtually disjoint support from
the distribution of natural images corrupted by N (0, σ2I);
see Figure 2 for a visual demonstration. Therefore, if the
base classifier f is trained via standard supervised learning
on the data distribution, it will see no noisy images during
training, and hence will not necessarily learn to classify
N (x, σ2I) with x’s true label. Indeed, we observed empiri-
cally that when neural network base classifiers are trained
on noiseless data, they cannot recognize noisy images.

Therefore, in this paper we follow Lecuyer et al. (2019) and
train the base classifier with Gaussian data augmentation at
variance σ2. A justification for this procedure is provided in
Appendix F. However, we suspect that there may be room to
improve upon this training scheme, perhaps by training the
base classifier so as to maximize the smoothed classifier’s
certified accuracy at some tunable radius r.

4. Experiments
In adversarially robust classification, one metric of interest
is the certified test set accuracy at radius r, defined as the
fraction of the test set which g classifies correctly with a pre-
diction that is certifiably robust within an `2 ball of radius r.
However, if g is a randomized smoothing classifier, comput-
ing this quantity exactly is not possible, so we instead report
the approximate certified test set accuracy, defined as the
fraction of the test set which CERTIFY classifies correctly
(without abstaining) and certifies robust with a radiusR ≥ r.
Appendix D shows how to convert the approximate certified
accuracy into a lower bound on the true certified accuracy
that holds with high probability over the randomness in
CERTIFY. However Appendix H.2 demonstrates that when
α is small, the difference between these two quantities is
negligible. Therefore, in our experiments we omit the step
for simplicity and report approximate certified accuracies.
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Figure 6. Approximate certified accuracy attained by randomized
smoothing on CIFAR-10 (top) and ImageNet (bottom). The hyper-
parameter σ controls a robustness/accuracy tradeoff. The dashed
black line is an upper bound on the empirical robust accuracy of
an undefended classifier with the base classifier’s architecture.

In all experiments, unless otherwise stated, we ran CERTIFY
with α = 0.001, so there was at most a 0.1% chance that
CERTIFY returned a radius in which g was not truly robust.
Unless otherwise stated, when running CERTIFY we used
n0 = 100 Monte Carlo samples for selection and n =
100,000 samples for estimation.

In the figures above that plot certified accuracy as a function
of radius r, the certified accuracy always decreases gradually
with r until reaching some point where it plummets to zero.
This drop occurs because for each noise level σ and number
of samples n, there is a hard upper limit to the radius we can
certify with high probability, achieved when all n samples
are classified by f as the same class.

ImageNet and CIFAR-10 results We applied random-
ized smoothing to CIFAR-10 (Krizhevsky, 2009) and Im-
ageNet (Deng et al., 2009). On each dataset we trained
several smoothed classifiers, each with a different σ. On
CIFAR-10 our base classifier was a 110-layer residual
network; certifying each example took 15 seconds on an
NVIDIA RTX 2080 Ti. On ImageNet our base classifier
was a ResNet-50; certifying each example took 110 seconds.
We also trained a neural network with the base classifier’s
architecture on clean data, and subjected it to a DeepFool `2
adversarial attack (Moosavi-Dezfooli et al., 2016), in order
to obtain an empirical upper bound on its robust accuracy.
We certified the full CIFAR-10 test set and a subsample of
500 examples from the ImageNet test set.
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Figure 7. Comparison betwen randomized smoothing and Wong
et al. (2018). Each green line is a small resnet classifier trained and
certified using the method of Wong et al. (2018) with a different
setting of its hyperparameter ε. The purple line is our method
using the same small resnet architecture as the base classifier; the
blue line is our method with a larger neural network as the base
classifier. Wong et al. (2018) gives deterministic robustness guar-
antees, whereas smoothing gives high-probabaility guaranatees;
therefore, we plot here the certified accuracy of Wong et al. (2018)
against the “approximate” certified accuracy of smoothing.

Figure 6 plots the certified accuracy attained by smoothing
with each σ. The dashed black line is the empirical upper
bound on the robust accuracy of the base classifier architec-
ture; observe that smoothing improves substantially upon
the robustness of the undefended base classifier architecture.
We see that σ controls a robustness/accuracy tradeoff. When
σ is low, small radii can be certified with high accuracy, but
large radii cannot be certified. When σ is high, larger radii
can be certified, but smaller radii are certified at a lower ac-
curacy. This observation echoes the finding in Tsipras et al.
(2019) that adversarially trained networks with higher ro-
bust accuracy tend to have lower standard accuracy. Tables
of these results are in Appendix E.

Figure 8 (left) plots the certified accuracy obtained using our
Theorem 1 guarantee alongside the certified accuracy ob-
tained using the analogous bounds of Lecuyer et al. (2019)
and Li et al. (2018). Since our expression for the certified
radius R is greater (and, in fact, tight), our bound delivers
higher certified accuracies. Figure 8 (middle) projects how
the certified accuracy would have changed had CERTIFY
used more or fewer samples n (under the assumption that the
relative class proportions in counts would have remained
constant). Finally, Figure 8 (right) plots the certified accu-
racy as the confidence parameter α is varied. Observe that
the certified accuracy is not very sensitive to α.

Comparison to baselines We compared randomized
smoothing to three baseline approaches for certified `2 ro-
bustness: the duality approach from Wong et al. (2018),
the Lipschitz approach from Tsuzuku et al. (2018), and the
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Figure 8. Experiments with randomized smoothing on ImageNet with σ = 0.25. Left: certified accuracies obtained using our Theorem 1
versus those obtained using the robustness guarantees derived in prior work. Middle: projections for the certified accuracy if the number
of samples n used by CERTIFY had been larger or smaller. Right: certified accuracy as the failure probability α of CERTIFY is varied.

approach from Weng et al. (2018a); Zhang et al. (2018).
The strongest baseline was Wong et al. (2018); we defer the
comparison to the other two baselines to Appendix H.

In Figure 7, we compare the largest publicly released model
from Wong et al. (2018), a small resnet, to two randomized
smoothing classifiers: one which used the same small resnet
architecture for its base classifier, and one which used a
larger 110-layer resnet for its base classifier. First, observe
that smoothing with the large 110-layer resnet substantially
outperforms the baseline (across all hyperparameter set-
tings) at all radii. Second, observe that smoothing with the
small resnet also outperformed the method of Wong et al.
(2018) at all but the smallest radii. We attribute this latter re-
sult to the fact that neural networks trained using the method
of Wong et al. (2018) are “typically overregularized to the
point that many filters/weights become identically zero,” per
that paper. In contrast, the base classifier in randomized
smoothing is a fully expressive neural network.

Prediction It is computationally expensive to certify the
robustness of g around a point x, since the value of n in
CERTIFY must be very large. However, it is far cheaper
to evaluate g at x using PREDICT, since n can be small.
For example, when we ran PREDICT on ImageNet (σ =
0.25) using n = 100, making each prediction only took
0.15 seconds, and we attained a top-1 test accuracy of 65%
(Appendix E).

As discussed earlier, an adversary can potentially force PRE-
DICT to abstain with high probability. However, it is rela-
tively rare for PREDICT to abstain on the actual data dis-
tribution. On ImageNet (σ = 0.25), PREDICT with failure
probability α = 0.001 abstained 12% of the time when n =
100, 4% when n = 1000, and 1% when n = 10,000.

Empirical tightness of bound When f is linear, the
bound in Theorem 1 is tight, in that there always exists a
class-changing perturbation just beyond the certified radius.

Since deep neural networks are not linear, we empirically as-
sessed the tightness of our bound by subjecting an ImageNet
randomized smoothing classifier (σ = 0.25) to a projected
gradient descent-style adversarial attack. For each example,
we ran CERTIFY with α = 0.01, and, if the example was
correctly classified and certified robust at radius R, we tried
finding an adversarial example for g within radius 1.5R and
within radius 2R. We succeeded 17% of the time at radius
1.5R and 53% of the time at radius 2R. See Appendix J.3
for more details on the attack.

5. Conclusion
Theorem 2 establishes that smoothing with Gaussian noise
naturally confers adversarial robustness in `2 norm: if we
have no knowledge about the base classifier beyond the dis-
tribution of f(x+ ε), then the set of perturbations to which
the smoothed classifier is provably robust is precisely an `2
ball. We suspect that smoothing with other noise distribu-
tions may lead to similarly natural robustness guarantees for
other perturbation sets such as general `p norm balls.

Our strong empirical results suggest that randomized
smoothing is a promising direction for future research
into adversarially robust classification. Most empirical ap-
proaches (except PGD adversarial training) have been “bro-
ken,” and provable approaches based on certifying neural
network classifiers have not been shown to scale to networks
of modern size. It seems to be computationally infeasible to
reason in any sophisticated way about the decision bound-
aries of a large, expressive neural network. Randomized
smoothing circumvents this problem: the smoothed classi-
fier is not itself a neural network, though it leverages the
discriminative ability of a neural network base classifier. To
make the smoothed classifier robust, one need simply make
the base classifier classify well under noise. In this way,
randomized smoothing reduces the unsolved problem of
adversarially robust classification to the comparably solved
domain of supervised learning.
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