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A. Guide to Notation

a ∧ b min{a, b}
a ∨ b max{a, b}
B(x,K) Euclidean ball centered at x of radius K
IA Indicator function of the set A
∂jF (x) j-th partial derivative of F at x, i.e. ∂F (x)/∂xj
∇F (x) Gradient of F at x
∇2F (x) Hessian of F at x
‖·‖ The `2 norm
‖·‖1 The `1 norm
‖·‖∞ The supremum norm
‖·‖op The operator norm with respect to ‖·‖ on the domain and range
Id Identity matrix
A ≺ B B −A is symmetric positive-definite
A � B B −A is symmetric nonnegative-definite
a(x) � b(x) as x→ x0 limx→x0

a(x)/b(x) = 1
a(x) = O(b(x)) as x→ x0 lim supx→x0

|a(x)/b(x)| <∞
a(x) = Θ(b(x)) as x→ x0 a(x) = O(b(x)) as x→ x0 and lim infx→x0

|a(x)/b(x)| > 0. (Note that similar notation
is used for our state space Θ , but the meaning will always be clear from context.)

x� y (Informal) x is much smaller than y
x ≈ y (Informal) x is approximately equal to y
Leb The Lebesgue measure
a.s. Almost surely
i.i.d. Independent and identically distributed

Xn
P→ X Xn converges to X in P-probability

Xn = OP(an) Xn/an is P-tight, i.e. for all ε > 0 there exists c > 0 such that P(|Xn/an| < c) > 1− ε
for all n

Xn = oP(an) Xn/an
P→ 0

E[X] Expectation of a random variable X
E[X;A] E[XIA]
Lp The space of random variables X such that E[|X|p] <∞
Lp(µ) The space of real-valued test functions f such that f(X) ∈ Lp where X ∼ µ

We also use multi-index notation to express higher-order derivatives succinctly. Specifically, for β = (β1, · · · , βd) ∈ Zd≥0
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and θ = (θ1, · · · , θd) ∈ Θ , we define

|β| :=
d∑
i=1

βi β! :=

d∏
i=1

βi! θβ :=

d∏
i=1

θβii ∂β :=
∂|β|

∂β1 · · · ∂βd .

B. Factorised Metropolis–Hastings
Note that the definition (2) of αFMH(θ, θ′) technically does not apply when π(θ)q(θ, θ′) = 0. For concreteness, like
Hastings (1970), we therefore define explicitly

αFMH(θ, θ′) :=

{∏m
i=1 1 ∧ πi(θ

′)qi(θ
′,θ)

πi(θ)qi(θ,θ′)
if each πi(θ)qi(θ, θ′) 6= 0

1 otherwise,

and take αMH(θ, θ′) to be the case when m = 1. We still take αTFMH(θ, θ′) to be defined by (6). We first establish a useful
preliminary Proposition.
Proposition B.1. For all θ, θ′ ∈ Θ , αFMH(θ, θ′) = αMH(θ, θ′)(αFMH(θ, θ′) ∨ αFMH(θ′, θ)).

Proof. The cases where πi(θ)qi(θ, θ′) = 0 or πi(θ′)qi(θ′, θ) = 0 for some i are immediate from the definition above.
Otherwise, since (1 ∧ c)−1 = 1 ∨ c−1 for all c > 0,

αMH(θ, θ′)−1 =

(
1 ∧

m∏
i=1

πi(θ
′)qi(θ

′, θ)

πi(θ)qi(θ, θ′)

)−1

= 1 ∨
m∏
i=1

πi(θ)qi(θ, θ
′)

πi(θ′)qi(θ′, θ)
,

and hence

αFMH(θ, θ′)

αMH(θ, θ′)
= αFMH(θ, θ′) ∨

(
αFMH(θ, θ′)

m∏
i=1

πi(θ)qi(θ, θ
′)

πi(θ′)qi(θ′, θ)

)

= αFMH(θ, θ′) ∨
(

m∏
i=1

(1 ∧ πi(θ
′)qi(θ

′, θ)

πi(θ)qi(θ, θ′)
)

m∏
i=1

πi(θ)qi(θ, θ
′)

πi(θ′)qi(θ′, θ)

)

= αFMH(θ, θ′) ∨
(

m∏
i=1

1 ∧ πi(θ)qi(θ, θ
′)

πi(θ′)qi(θ′, θ)

)
= αFMH(θ, θ′) ∨ αFMH(θ′, θ)

which gives the result.

Corollary B.1. For all θ, θ′ ∈ Θ , αFMH(θ, θ′) ≤ αMH(θ, θ′).

B.1. Reversibility

To show reversibility for PFMH and PTFMH, we will use the standard result (see e.g. (Geyer, 1998, Lemma 3.4)) that a
kernel of the form

P (θ,A) =

(
1−

∫
q(θ, θ′)α(θ, θ′)dθ′

)
IA(θ) +

∫
A

q(θ, θ′)α(θ, θ′)dθ′

is reversible if π(θ)q(θ, θ′)α(θ, θ′) is symmetric in θ and θ′. It is straightforward to show for instance that

π(θ)q(θ, θ′)αMH(θ, θ′) = π(θ′)q(θ′, θ)αMH(θ′, θ), (B.1)

which is immediate if either π(θ) = 0 or π(θ′) = 0, and otherwise

π(θ)q(θ, θ′)αMH(θ, θ′) = π(θ)q(θ, θ′)

(
1 ∧ π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)
= π(θ)q(θ, θ′) ∧ π(θ′)q(θ′, θ).
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We use this result to establish reversiblity of PFMH. This result is standard but we include it here for completeness.

Proposition B.2. PFMH is π-reversible.

Proof. By Proposition B.1

π(θ)q(θ, θ′)αFMH(θ, θ′) = π(θ)q(θ, θ′)αMH(θ, θ′)(αFMH(θ, θ′) ∨ αFMH(θ′, θ)),

which is symmetric in θ and θ′ by (B.1).

Proposition B.3. If λ(θ, θ′) is symmetric in θ and θ′, then PTFMH is π-reversible.

Proof. Simply write

αTFMH(θ, θ′) = I(λ(θ, θ′) < R)αFMH(θ, θ′) + I(λ(θ, θ′) ≥ R)αMH(θ, θ′).

The result then follows from the symmetry of the indicator functions, (B.1), and the proof of Proposition B.2.

B.2. Ergodic Properties

We provide a brief background to the theory of ϕ-irreducible Markov Chains. See (Meyn & Tweedie, 2009) for a
comprehensive treatment.

For a transition kernel P , we inductively define the transition kernel P k for k ≥ 1 by setting P 1 := P and

P k(θ,A) :=

∫
P (θ, dθ′)P k−1(θ′, A)dθ′

for k > 1, where θ ∈ Θ and A ⊆ Θ is measurable. Given a nontrivial measure ϕ on Θ , we say P is ϕ-irreducible
if ϕ(A) > 0 implies P k(θ,A) > 0 for some k ≥ 1. For ϕ-irreducible P , we define a k-cycle of P to be a partition
D1, · · · , Dk, N of Θ such that ϕ(N) = 0, and for all 1 ≤ i ≤ k, if θ ∈ Di then P (θ,Di+1) = 1. (Here i + 1 is meant
modulo k.) If there exists a k-cycle with k > 1, we say that P is periodic; otherwise it is aperiodic.

If P is ϕ-irreducible and aperiodic and has invariant distribution π, we say P is geometrically ergodic if there exists
constants ρ < 1, C <∞, and a π-a.s. finite function V ≥ 1 such that

‖P k(θ, ·)− π‖V ≤ C V (θ)ρk

for all θ ∈ Θ and k ≥ 1. Here ‖·‖V denotes the V -norm on signed measures defined by

‖µ‖V = sup
|f |≤V

|π(f)|,

where π(f) :=
∫
f(θ)π(dθ). By (Roberts & Rosenthal, 1997, Proposition 2.1), this is equivalent to the apparently weaker

condition that there exist some constant ρ > 0 and π-a.s. finite function M such that

‖P k(θ, ·)− π‖TV ≤M(θ)ρk

for all θ ∈ Θ and k ≥ 1, where ‖·‖TV denotes the total variation distance on signed measures.

Our interest in geometric ergodicity is largely due to the implications it has for the asymptotic variance of the ergodic
averages produced by a transition kernel. Suppose (θk)k≥1 is a stationary Markov chain with transition kernel P having
invariant distribution π. For f ∈ L2(π), the asymptotic variance for the ergodic averages of f is defined

var(f, P ) := lim
k→∞

Var

(
√
k(

1

k

k∑
i=1

f(θk)− π(f))

)
= lim
k→∞

1

k
Var(

k∑
i=1

f(θk)).

We abuse notation a little and denote the variance of f(θ) where θ ∼ π by var(f, π).
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Of interest is also the (right) spectral gap, which for a π-reversible transition kernel P is defined

Gap(P ) := inf
f∈L2(π):π(f)=0

∫ ∫
1
2 (f(θ)− f(θ′))2π(dθ)P (θ, dθ′)∫

f(θ)2π(dθ)
.

Finally, it is convenient to define the MH rejection probability

rMH(θ) := 1−
∫
q(θ, θ′)αMH(θ, θ′)dθ′,

and similarly rFMH and rTFMH for FMH and TFMH.

Proposition B.4. PTFMH is ϕ-irreducible and aperiodic whenever PMH is.

Proof. We use throughout the easily verified facts αFMH(θ, θ′) ≤ αTFMH(θ, θ′) ≤ αMH(θ, θ′) and rFMH(θ) ≥
rTFMH(θ) ≥ rMH(θ) for all θ, θ′ ∈ Θ . See Proposition B.1.

For ϕ-irreducibility, first note that if αMH(θ, θ′) > 0 then αTFMH(θ, θ′) > 0. This holds since if αTFMH(θ, θ′) = 0,
then either αMH(θ, θ′) = 0 or αFMH(θ, θ′) = 0. In the latter case we must have some πi(θ′)qi(θ′, θ) = 0, so that
π(θ′)q(θ, θ′) = 0, and hence again αMH(θ, θ′) = 0.

We now show by induction on k ∈ Z≥1 that for all θ ∈ Θ , P kMH(θ,A) > 0 implies P kTFMH(θ,A) > 0. For k = 1, suppose
PMH(θ,A) > 0. Then either rMH(θ)IA(θ) > 0 or

∫
A
q(θ, θ′)αMH(θ, θ′)dθ′ > 0. In the former case we we have

rTFMH(θ)IA(θ) ≥ rMH(θ)IA(θ) > 0.

In the latter case the above considerations give

Leb({θ′ ∈ A | q(θ, θ′)αTFMH(θ, θ′) > 0}) = Leb({θ′ ∈ A | q(θ, θ′)αMH(θ, θ′) > 0})
> 0.

Either way we have PTFMH(θ,A) > 0.

Suppose now P k−1MH (θ,A) > 0 implies P k−1TFMH(θ,A) > 0. Then observe

P kMH(θ,A) = rMH(θ)P k−1MH (θ,A) +

∫
q(θ, θ′)αMH(θ, θ′)P k−1MH (θ′, A)dθ′

and likewise mutatis mutandis for P kTFMH(θ,A). Thus if P kMH(θ,A) > 0, one possibility is rMH(θ)P k−1MH (θ,A) > 0, which
implies rTFMH(θ) > 0 and, by the induction hypothesis, P k−1TFMH(θ,A) > 0. The only other possibility is

Leb({θ′ ∈ Θ | q(θ, θ′)αTFMH(θ, θ′)P k−1TFMH(θ′, A) > 0}) = Leb({θ′ ∈ Θ | q(θ, θ′)αMH(θ, θ′)P k−1MH (θ′, A) > 0})
> 0,

again by the induction hypothesis. Either way, as desired P kTFMH(θ,A) > 0. It now follows that PTFMH is ϕ-irreducible
when PMH is.

Now suppose PMH and hence PTFMH is ϕ-irreducible. If PTFMH is periodic, then there exists a k-cycle D1, · · · , Dk, N
for PTFMH with k > 1. But now if θ ∈ Di, then IDi+1(θ) = 0 and so

PMH(θ,Di+1) =

∫
Di+1

q(θ, θ′)αMH(θ, θ′)dθ′

≥
∫
Di+1

q(θ, θ′)αTFMH(θ, θ′)dθ′

= PTFMH(θ,Di+1)

= 1.

Thus the same partition is a k-cycle for PMH which is therefore periodic.
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Theorem B.1. If PMH is ϕ-irreducible, aperiodic, and geometrically ergodic, then PTFMH is too if

δ := inf
λ(θ,θ′)<R

αFMH(θ, θ′) ∨ αFMH(θ′, θ) > 0.

In this case, Gap(PFMH) ≥ δGap(PMH), and for f ∈ L2(π)

var(f, PTFMH) ≤ (δ−1 − 1)var(f, π) + δ−1var(f, PMH).

Proof. Our proof of this result is similar to (Banterle et al., 2015, Proposition 1), but differs in its use of Proposition B.1 to
express the relationship between MH and FMH exactly.

For θ ∈ Θ , let
R(θ) := {θ′ ∈ Θ | λ(θ, θ′) < R}.

Whenever θ ∈ Θ and A ⊆ Θ is measurable,

PTFMH(θ,A) = rTFMH(θ)IA(θ) +

∫
R(θ)∩A

q(θ, θ′)αMH(θ, θ′)(αFMH(θ, θ′) ∨ αFMH(θ′, θ))dθ′

+

∫
R(θ)c∩A

q(θ, θ′)αMH(θ, θ′)dθ′

≥ rMH(θ)IA(θ) + δ

∫
R(θ)∩A

q(θ, θ′)αMH(θ, θ′)dθ′ +

∫
R(θ)c∩A

q(θ, θ′)αMH(θ, θ′)dθ′

≥ δPMH(θ,A).

The last line follows since certainly δ ≤ 1.

Suppose δ > 0. If PMH is geometrically ergodic, then (Jones et al., 2014, Theorem 1) entails that PTFMH is geometrically
ergodic also. The remaining claims follow directly from (Andrieu et al., 2018, Lemma 32).

C. Fast Simulation of Bernoulli Random Variables
For sake of completeness, we provide here the proof of validity of Algorithm 1. It combines the Fukui-Todo procedure
(Fukui & Todo, 2009) with a thinning argument.

Proposition C.1. If

N ∼ Poisson
(
λ(θ, θ′)

)
X1, · · · , XN

iid∼ Categorical((λi(θ, θ
′)/λ(θ, θ′))1≤i≤m)

Bj ∼ Bernoulli(λXj (θ, θ
′)/λXj (θ, θ

′)) independently for 1 ≤ j ≤ N

then P(B = 0) = αFMH(θ, θ′) where B =
∑N
j=1Bj (and B = 0 if N = 0).

Proof. Letting

λ(θ, θ′) :=

m∑
i=1

λi(θ, θ
′),

our goal is to show that P(B = 0) = exp(−λ(θ, θ′)). For brevity we omit all dependences on θ and θ′ in the following.

Observe the random variables Bj’s are i.i.d. with

P(Bj = 0) =

m∑
i=1

P(Xj = i)︸ ︷︷ ︸
=λi/λ

P(Bj = 0|Xj = i)︸ ︷︷ ︸
=1−λi/λi

=
λ− λ
λ

.
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Thus

P(B = 0) =

∞∑
`=0

P(N = `)︸ ︷︷ ︸
=exp(−λ)λ`/`!

P(B1 = 0)`

= exp(−λ)

∞∑
`=0

(λ− λ)`

`!

= exp(−λ)

as desired.

D. Upper Bounds
We refer the reader to Section A for an explanation of multi-index notation β.

Proposition D.1. If each Ui is (k + 1)-times continuously differentiable with

Uk+1,i ≥ sup
θ∈Θ
|β|=k+1

|∂βUi(θ)|,

then

− log

(
1 ∧ πi(θ

′)π̂k,i(θ)

πi(θ)π̂k,i(θ′)

)
≤ (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1 )

Uk+1,i

(k + 1)!
.

Proof. We have

− log

(
1 ∧ πi(θ

′)π̂k,i(θ)

πi(θ)π̂k,i(θ′)

)
= 0 ∨ (Ui(θ

′)− Ûk,i(θ′)− Ui(θ) + Ûk,i(θ))

≤ |Ui(θ′)− Ûk,i(θ′)|+ |Ui(θ)− Ûk,i(θ)|.

Notice that Ui(θ)− Ûk,i(θ) is just the remainder of a Taylor expansion. As such, for each θ, Taylor’s remainder theorem
gives for some θ̃ ∈ Θ

|Ui(θ)− Ûk,i(θ)| =

∣∣∣∣∣∣ 1

(k + 1)!

∑
|β|=k+1

∂βUi(θ̃)(θ − θ̂)β
∣∣∣∣∣∣

≤ Uk+1,i

(k + 1)!

∑
|β|=k+1

|(θ − θ̂)β |
β!

≤ Uk+1,i

(k + 1)!
‖θ − θ̂‖k+1

1 .

The result now follows.

E. Reversible Proposals
E.1. General Conditions for Reversibility

We can handle both the first and second-order cases with the following Proposition.

Proposition E.1. Suppose
q(θ, θ′) = Normal(θ′ | Aθ + b, C)

and
− log π̂(θ) =

1

2
θ>Dθ + e>θ + const
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where A,C,D ∈ Rd×d with C � 0, and b, e ∈ Rd. Then q is π̂-reversible if and only if the following conditions hold:

A>C−1 = C−1A (E.1)
A2 = Id − CD (E.2)

(A> + Id)b = −Ce, (E.3)

where Id ∈ Rd×d is the identity matrix.

Proof. Let
F (θ, θ′) := − log π̂(θ)− log q(θ, θ′).

Note that q is π̂-reversible precisely when F is symmetric in its arguments. Since F is a polynomial of the form

F (θ, θ′) =
1

2
θ>Jθ +

1

2
θ′>Kθ′ + θ>Lθ′ +m>θ + n>θ′ + const, (E.4)

where J,K,L ∈ Rd×d and m,n ∈ Θ , then by equating coefficients it follows that F (θ, θ′) = F (θ′, θ) precisely when

J = K (E.5)
L = L> (E.6)
m = n. (E.7)

Now, we can expand

− log q(θ, θ′) =
1

2
(θ′ −Aθ − b)>C−1(θ′ −Aθ − b) + const

=
1

2
θ′>C−1θ′ − (Aθ + b)>C−1θ′ +

1

2
(Aθ + b)>C−1(Aθ + b) + const

=
1

2
θ>A>C−1Aθ +

1

2
θ′>C−1θ′ − θ>A>C−1θ′ + b>C−1Aθ − b>C−1θ′ + 1

2
b>C−1b

+const

Since − log q(θ, θ′) must be the only source of terms in (E.4) containing both θ and θ′, we see immediately that

L = −A>C−1,

and thus from (E.6) we have −A>C−1 = −(C−1)>A. Since C � 0, C−1 is symmetric and this condition becomes (E.1).
Next we see that

J = A>C−1A+D

K = C−1,

and from (E.5) and (E.1) we require C−1A2 +D = C−1, or equivalently (E.2). Finally, since

m = A>C−1b+ e

n = −C−1b,

we require from (E.7) that A>C−1b+ e = −C−1b, which combined with (E.1) gives (E.3).

Since (E.5), (E.6), and (E.7) are necessary and sufficient for symmetry of F , we see that (E.1), (E.2), and (E.3) are necessary
and sufficient for reversibility also.

We now specialise this to the first and second-order cases.
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E.2. First-Order Case

When k = 1 we have
− log π̂(θ) = Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂),

so that

D = 0

e = ∇U(θ̂),

and conditions (E.1), (E.2), and (E.3) become

A>C−1 = C−1A

A2 = Id

(A> + Id)b = −C∇U(θ̂).

E.3. Second-Order Case

When k = 2,

− log π̂(θ) = Û2(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂).

In this case

D = ∇2U(θ̂)

e = ∇U(θ̂)−∇2U(θ̂)>θ̂,

so conditions (E.1), (E.2), and (E.3) become

A>C−1 = C−1A

A2 = Id − C∇2U(θ̂)

(A> + Id)b = C(∇2U(θ̂)>θ̂ −∇U(θ̂)).

A common setting has∇2U(θ̂) � 0, A = A>, and A+ Id invertible. In this case the latter two conditions become

C = (Id −A2)[∇2U(θ̂)]−1

b = (Id −A)(θ̂ − [∇2U(θ̂)]−1∇U(θ̂)).

E.4. Decreasing Norm Property

Under usual circumstances for both first and second-order approximations, when ‖θ‖ is large, a π̂-reversible q will propose
θ′ ∼ q(θ, ·) with smaller norm than θ. This is made precise in the following Proposition:

Proposition E.2. Suppose
q(θ, θ′) = Normal(θ′ | Aθ + b, C)

and
− log π̂(θ) =

1

2
θ>Dθ + e>θ + const,

where A = A> is symmetric, C � 0, and D � 0. If q is π̂-reversible, then ‖A‖op ≤ 1. If D � 0 is strict, then ‖A‖op < 1
is strict too. In this case, if θ′ ∼ q(θ, ·), then ‖θ‖ − ‖θ′‖ → ∞ in probability as ‖θ‖ → ∞.

Proof. By (E.2), we must have CD = Id − A2. Since A = A>, this entails CD = (CD)> = DC and hence CD � 0
since D,C � 0. Thus −CD � 0 and

A2 = Id − CD � Id.
Therefore each eigenvalue σ of A must have |σ| ≤ 1, since σ2 is an eigenvalue of A2. But A is diagonalisable since it is
symmetric, and hence ‖A‖op ≤ 1.
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If D � 0 is strict, then the above matrix inequalities become strict also, and it follows that each |σ| < 1 and hence
‖A‖op < 1. In this case, suppose θ′ ∼ q(θ, ·), and fix K > 0 arbitrarily. Let ε > 0, and choose L > 0 large enough that

P(θ′ ∈ B(Aθ + b, L)) > 1− ε.

As ‖θ‖ → ∞,
‖θ‖ − ‖Aθ + b‖ ≥ ‖θ‖(1− ‖A‖op) + ‖b‖ → ∞

since 1− ‖A‖op > 0, so if θ′ ∈ B(Aθ + b, L), then ‖θ‖ − ‖θ′‖ → ∞ also. Thus

P(‖θ‖ − ‖θ′‖ > K) > 1− ε

for all ‖θ‖ large enough. Taking ε→ 0 gives the result.

In practice the assumption D � 0 makes sense, since θ̂ is chosen near a minimum of U and since D is the Hessian of
Ûk ≈ U for k = 1, 2. Likewise, all sensible proposals (certainly including pCN) that we have found are such that A is
symmetric, though we acknowledge the possibility that it may be desirable to violate this in some cases.

F. Performance Gains
Lemma F.1. Suppose that 0 ≤ Xn ∈ Lp and Fn is some σ-algebra for every n ∈ Z≥1. If E[Xp

n|Fn] = OP(an), then
E[X`

n|Fn] = OP(a
`/p
n ) for all 1 ≤ ` ≤ p. If moreover 0 ≤ Yn ∈ Lp gives E[Y pn |Fn] = OP(an), then E[(Xn+Yn)p|Fn] =

OP(an).

Proof. The first part is just Jensen’s inequality:

E[X`
n|Fn] ≤ E[Xp

n|Fn]`/p = OP0
(an)`/p = OP0

(a`/pn ).

The second part follows from the Cp-inequality, which gives

E[(Xn + Yn)p|Fn] ≤ 2p−1 (E[Xp
n|Fn] + E[Y pn |Fn]) = 2p−1(OP(an) +OP(an)) = OP(an).

Theorem F.1. Suppose each Ui is (k + 1)-times continuously differentiable, each Uk+1,i ∈ Lk+2, and

E[
∑m(n)

i=1 Uk+1,i|Y1:n] = OP0(n). Likewise, assume each of ‖θ(n) − θ
(n)
MAP‖, ‖θ(n) − θ′(n)‖, and ‖θ̂(n) − θ

(n)
MAP‖ is

in Lk+2, and each of E[‖θ(n) − θ(n)MAP‖k+1|Y1:n], E[‖θ(n) − θ′(n)‖k+1|Y1:n], and ‖θ̂(n) − θ(n)MAP‖k+1 is OP0
(n−(k+1)/2)

as n→∞. Then λ defined by (13) satisfies

E[λ(θ(n), θ′(n))|Y1:n] = OP0
(n(1−k)/2).

Proof. Write

λ(θ(n), θ′(n)) = ϕ(θ(n), θ′(n))

m(n)∑
i=1

ψi.

with ϕ and ψ defined by (13) also. Observe that

ϕ(θ(n), θ′(n)) = ‖θ(n) − θ̂(n)‖k+1
1 + ‖θ′(n) − θ̂(n)‖k+1

1

≤ (‖θ(n) − θ̂(n)‖1 + ‖θ′(n) − θ̂(n)‖1)k+1

≤ (‖θ(n) − θ(n)MAP‖1 + ‖θ(n)MAP − θ̂(n)‖1 + ‖θ′(n) − θ(n)‖1 + ‖θ(n) − θ(n)MAP‖1 + ‖θ(n)MAP − θ̂(n)‖1)k+1

≤ c(‖θ′(n) − θ(n)‖+ ‖θ(n) − θ(n)MAP‖+ ‖θ(n)MAP − θ̂(n)‖︸ ︷︷ ︸
∈Lk+2

)k+1

for some c > 0, by the triangle inequality and norm equivalence. We thus have ϕ(θ(n), θ′(n)) ∈ L(k+2)/(k+1) and

E[ϕ(θ(n), θ′(n))|Y1:n] = OP0(n−(k+1)/2).
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Likewise,
m(n)∑
i=1

ψi =
1

(k + 1)!

m(n)∑
i=1

Uk+1,i ∈ Lk+2.

Together this gives λ(θ(n), θ′(n)) ∈ L1 by Hölder’s inequality. Since in our setup (θ(n), θ′(n)) is conditionally independent
of all other randomness given Y1:n, we thus have

E[λ(θ(n), θ′(n))|Y1:n] = E[ϕ(θ(n), θ′(n))|Y1:n]E[

m(n)∑
i=1

ψi|Y1:n] = OP0
(n(1−k)/2). (F.1)

Note that in the preceding result we could use weaker integrability assumptions on ‖θ(n) − θ(n)MAP‖, ‖θ(n) − θ′(n)‖, and
‖θ̂(n)− θ(n)MAP‖ by using a stronger integrability assumption on Uk+1,i. Most generally, for any ε ≥ 0 we could require each

Uk+1,i ∈ L(k+1+ε)/ε

‖θ(n) − θ(n)MAP‖, ‖θ(n) − θ′(n)‖, ‖θ̂(n) − θ
(n)
MAP‖ ∈ Lk+1+ε.

The case ε = 0 would mean Uk+1,i ∈ L∞.

Lemma F.2. Suppose each Ui is twice continuously differentiable, each U2,i ∈ L3, and
∑m(n)

i=1 U2,i = OP0
(n). If

‖θ̂(n) − θ(n)MAP‖ = OP0
(1/
√
n), then ‖∇U (n)(θ̂(n))‖ is in L3/2 and OP0

(
√
n).

Proof. By norm equivalence the Hessian satisfies

‖∇2U (n)(θ)‖op ≤ c‖∇2U (n)(θ)‖1 ≤ c
m(n)∑
i=1

U2,i

for some c > 0 (where ‖·‖1 is understood to be applied as if ∇2U (n)(θ) were a vector), which means ∇U (n) is

(c
∑m(n)

i=1 U2,i)-Lipschitz. Thus

‖∇U (n)(θ̂(n))‖ = ‖∇U (n)(θ̂(n))−∇U (n)(θ
(n)
MAP)‖

≤ c (

m(n)∑
i=1

U2,i)︸ ︷︷ ︸
∈L3

‖θ̂(n) − θ(n)MAP‖︸ ︷︷ ︸
∈Lk+2⊆L3

since k ≥ 1. By Cauchy-Schwarz we have therefore ‖∇U (n)(θ̂(n))‖ ∈ L3/2.

Similarly, since θ̂(n) and θ(n)MAP are functions of Y1:n,

‖∇U (n)(θ̂(n))‖ = E[‖∇U (n)(θ̂(n))−∇U (n)(θ
(n)
MAP)‖|Y1:n]

≤ E[c(

m(n)∑
i=1

U2,i)‖θ̂(n) − θ(n)MAP‖|Y1:n]

= cE[

m(n)∑
i=1

U2,i|Y1:n]︸ ︷︷ ︸
=OP0

(n)

‖θ̂(n) − θ(n)MAP‖︸ ︷︷ ︸
=OP0

(1/
√
n)

= OP0
(
√
n).
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Theorem F.2. Suppose the assumptions of Theorem 3.1 hold, and additionally that for 2 ≤ ` ≤ k, each U `,i ∈ L`+1, and

E[
∑m(n)

i=1 U `,i|Y1:n] = OP0(n). Then

− log(1 ∧ π̂
(n)
k (θ′(n))

π̂
(n)
k (θ(n))

) = OP0(1)

for all k ≥ 1.

Proof. It is useful to denote

U (n)(θ) :=

m(n)∑
i=1

Ui(θ)

Û
(n)
k (θ) :=

m(n)∑
i=1

Ûk,i(θ) = − log(π̂(n)(θ)).

Observe that

0 ≤ − log(1 ∧ π̂
(n)(θ′(n))

π̂(n)(θ(n))
) ≤ |Û (n)

k (θ′(n))− Û (n)
k (θ(n))|. (F.2)

Now,

Û
(n)
k (θ′(n))− Û (n)

k (θ(n)) = 〈∇U (n)(θ̂(n)), θ′(n)−θ(n)〉+
∑

2≤|β|≤k

∂βU (n)(θ̂(n))

β!
((θ′(n)− θ̂(n))β−(θ(n)− θ̂(n))β). (F.3)

For the first term here, Cauchy-Schwarz gives

E[|〈∇U (n)(θ̂(n)), θ′(n) − θ(n)〉||Y1:n] ≤ E[‖∇U (n)(θ̂(n))‖︸ ︷︷ ︸
∈L3/2

‖θ′(n) − θ(n)‖︸ ︷︷ ︸
∈Lk+2⊆L3

|Y1:n]

= ‖∇U (n)(θ̂(n))‖︸ ︷︷ ︸
=OP0

(
√
n)

E[‖θ′(n) − θ(n)‖|Y1:n]︸ ︷︷ ︸
=OP0

(1/
√
n)

= OP0
(1).

Integrability follows from Lemma F.2 and Hölder’s inequality, and the asymptotic statements from conditional independence,
Lemma F.2, and Lemma F.1. For the summation in (F.3), note that

|∂βU (n)(θ̂(n))| ≤
m(n)∑
i=1

|∂βUi(θ̂(n))| ≤
m(n)∑
i=1

U |β|,i,

and that for some c > 0,

|(θ′(n) − θ̂(n))β − (θ(n) − θ̂(n))β | ≤ ‖θ′(n) − θ̂(n)‖|β|∞ + ‖θ(n) − θ̂(n)‖|β|∞
≤ c‖θ′(n) − θ̂(n)‖|β| + c‖θ(n) − θ̂(n)‖|β|

by norm equivalence. Thus, conditional on Y1:n, the absolute value of the summation in (F.3) is bounded above by

∑
2≤|β|≤k

1

β!
E[(

m(n)∑
i=1

U |β|,i)︸ ︷︷ ︸
∈L|β|+1

(c ‖θ′(n) − θ̂(n)‖|β|︸ ︷︷ ︸
∈L(|β|+1)/|β|

+c ‖θ(n) − θ̂(n)‖|β|︸ ︷︷ ︸
∈L(|β|+1)/|β|

|Y1:n]

=
∑

2≤|β|≤k

c

β!
E[

m(n)∑
i=1

U |β|,i|Y1:n]︸ ︷︷ ︸
=OP0

(n)

(E[‖θ′(n) − θ̂(n)‖|β||Y1:n]︸ ︷︷ ︸
=OP0

(n−|β|/2)

+E[‖θ(n) − θ̂(n)‖|β||Y1:n]︸ ︷︷ ︸
=OP0

(n−|β|/2)

)

= OP0(1).
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Again, integrability follows from Hölder’s inequality. The second line holds since θ̂(n) ≡ θ̂(n)(Y1:n) and since (θ(n), θ′(n))
is conditionally independent of all other randomness given Y1:n. Finally, the asymptotics follow from the law of large
numbers and Lemma F.1 (noting that each |β| ≥ 2).

Inspection of (F.3) now shows that (F.3) is OP0
(1) as required.

F.1. Sufficient Conditions

We are interested in sufficient conditions that guarantee the convergence rate assumptions in Theorem 3.1 will hold. For
simplicity we assume throughout that the likelihood of a data point p(y|θ) admits a density w.r.t. Lebesgue measure and that
P0 also admits a Lebesgue density denoted p0(y).

F.1.1. CONCENTRATION AROUND THE MODE

We first consider the assumption

E[‖θ(n) − θ(n)MAP‖k+1|Y1:n] = OP0
(n−(k+1)/2).

Intuitively, this says that the distance of θ(n) from the mode is O(1/
√
n), and hence connects directly with standard

concentration results on Bayesian posteriors. To establish this rigorously, it is enough to show that for some θ∗ ∈ Θ both

E[‖θ(n) − θ∗‖k+1|Y1:n] = OP0
(n−(k+1)/2) (F.4)

E[‖θ(n)MAP − θ∗‖k+1|Y1:n] = OP0
(n−(k+1)/2), (F.5)

which entails the result by Lemma F.1 and the triangle inequality. Note that θ(n)MAP ≡ θ
(n)
MAP(Y1:n) is deterministic function

of the data, so that (F.5) may be written more simply as
√
n(θ

(n)
MAP − θ∗) = OP0

(1). (F.6)

We give sufficient conditions for (F.4) and (F.6) now.

By Proposition F.1 below, (F.4) holds as soon as we show that

E[‖√n(θ(n) − θ∗)‖k+1I(‖√n(θ(n) − θ∗)‖ > Mn)|Y1:n]
P0→ 0, for all Mn →∞. (F.7)

This condition is a consequence of standard assumptions used to prove the Bernstein-von Mises theorem (BvM): in particular,
it is (van der Vaart, 1998, (10.9)) when the model is well-specified (i.e. p0 = p(y|θ0) for some θ0 ∈ θ), and (Kleijn &
van der Vaart, 2012, (2.16)) in the misspecified case. In both cases

θ∗ = arg min
θ∈Θ

DKL(p0(y) ‖ p(y|θ)),

where DKL(· ‖ ·) denotes the Kullback-Leibler divergence. The key assumption required for (F.7) is then the existence of
certain test sequences φn ≡ φn(Y1:n) with 0 ≤ φn ≤ 1 such that, whenever ε > 0, both∫

φn(y1:n)

n∏
i=1

p0(yi)dy1:n → 0 and sup
‖θ−θ∗‖≥ε

∫
(1− φn(y1:n))

n∏
i=1

p(yi|θ)
p(yi|θ∗)

p0(yi)dy1:n → 0, (F.8)

Note that in the well-specified case these conditions say that φn is uniformly consistent for testing the hypothesisH0 : θ = θ0
versus H1 : ‖θ − θ0‖ ≥ ε. Since φn may have arbitrary form, this requirement does not seem arduous. Sufficient conditions
are given by (van der Vaart, 1998, Lemma 10.4, Lemma 10.6) for the well-specified case, and (Kleijn & van der Vaart, 2012,
Theorem 3.2) for the misspecified case.

In addition to (F.8), we require in both the well-specified and misspecified cases that the prior p(θ) be continuous and
positive at θ∗ and satisfy ∫

‖θ‖k+1p(θ)dθ <∞.

There are additionally some mild smoothness and regularity conditions imposed on the likelihood, which are naturally
stronger in the misspecified case than in the well-specified one. In the well-specified case we require p(y|θ) is differentiable
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in quadratic mean at θ∗ (van der Vaart, 1998, (7.1)). In the misspecified case the conditions are more complicated. We omit
repeating these for brevity and instead refer the reader to the statements of Lemma 2.1 and Theorem 3.1 in (Kleijn & van der
Vaart, 2012).

Lemma F.3. Suppose a sequence of random variables Xn is OP(Mn) for every sequence Mn →∞. Then Xn = OP(1).

Proof. Suppose Xn 6= OP(1). Then, for some ε > 0, for every c > 0 we have P(|Xn| > c) ≥ ε for infinitely many Xn.
This allows us to choose a subsequence Xnk such that P(|Xnk | > k) ≥ ε for each k ∈ Z≥1. Let

Mn :=

{
k if n = nk for some (necessarily unique) k
n otherwise.

Then Mn →∞ but P(|Xn| > Mn) ≥ ε occurs for infinitely many n and hence Xn 6= OP(Mn).

Proposition F.1. Suppose that for some θ∗ ∈ Θ and ` ≥ 0,

E[‖√n(θ(n) − θ∗)‖`I(‖√n(θ(n) − θ∗)‖ > Mn)|Y1:n]
P0→ 0

whenever Mn →∞. Then
E[‖θ(n) − θ∗‖`|Y1:n] = OP0

(n−`/2).

Proof. For Mn →∞, our assumption lets us write

n`/2E[‖θ(n) − θ∗‖`|Y1:n] = E[‖√n(θ(n) − θ∗)‖`I(‖√n(θ(n) − θ∗)‖ ≤Mn)|Y1:n] + oP0
(1)

≤ M `
n + oP0

(1)

= OP0
(M `

n).

Since Mn was arbitrary, Lemma F.3 entails the left-hand side is OP0
(1), so that

E[‖θ(n) − θ∗‖`|Y1:n] = OP0(n−`/2).

It remains to give conditions for (F.6). Our discussion here is fairly standard. Recall that for θ(n)MLE the maximum likelihood
estimator, √

n(θ
(n)
MLE − θ∗) = OP0(1)

often holds under under mild smoothness assumptions. We show here that effectively those same assumptions are also
sufficient to guarantee a similar result for θ(n)MAP.

In the following we define

Ln(θ) :=
1

n

n∑
i=1

log p(Yi|θ).

Note that by definition
θ
(n)
MLE = sup

θ∈Θ
Ln(θ).

Our first result here shows that if both the MAP and the MLE are consistent and the prior is well-behaved, then the MAP is a
near maximiser of Ln in the sense that (F.9). Combined with mild smoothness assumptions on the likelihood, (F.9) is a
standard condition used to show results such as (F.6). See for instance (van der Vaart, 1998, Theorem 5.23) for a detailed
statement.

Proposition F.2. Suppose for some θ∗ ∈ Θ that θ(n)MAP, θ
(n)
MLE

P0→ θ∗ and that the prior p(θ) is continuous and positive at
θ∗, then

Ln(θ
(n)
MAP) ≥ Ln(θ

(n)
MLE)− oP0(1/n). (F.9)



Scalable Metropolis–Hastings for Exact Bayesian Inference with Large Datasets

Proof. Observe that by definition of the MAP,

Ln(θ
(n)
MLE) +

1

n
log p(θ

(n)
MLE) ≤ Ln(θ

(n)
MAP) +

1

n
log p(θ

(n)
MAP).

We can rewrite this inequality as

Ln(θ
(n)
MAP) ≥ Ln(θ

(n)
MLE) +

1

n
log

p(θ
(n)
MLE)

p(θ
(n)
MAP)

.

The second term on the right-hand side is oP0
(1/n), since our assumption on the prior gives

p(θ
(n)
MLE)

p(θ
(n)
MAP)

P0→ 1.

We next consider how to show that the MAP is indeed consistent, as the vast majority of such results in this area only
consider the MLE. However, assuming the prior is not pathological, arguments for the consistency of the MLE ought to
apply also for the MAP, since the MAP optimises the objective function

Ln(θ) +
1

n
log p(θ),

which is asymptotically equivalent to Ln(θ) as n → ∞ whenever p(θ) > 0. By way of example, we show that (van der
Vaart, 1998, Theorem 5.7), which can be used to show the consistency of the MLE, also applies to the MAP. For this, we
assume that ∫

| log p(y|θ∗)|p0(y)dy <∞, (F.10)

and define
L(θ) :=

∫
log p(y|θ)p0(y)dy.

Proposition F.3. Suppose that (F.10) holds, that

sup
θ∈Θ
|Ln(θ)− L(θ)| P0→ 0,

and that for some ε > 0 and θ∗ ∈ Θ
sup

‖θ−θ∗‖≥ε
L(θ) < L(θ∗). (F.11)

Further, suppose the prior p(θ) is continuous and positive at θ∗, and that supθ∈Θ p(θ) <∞. Then both θ(n)MLE, θ
(n)
MAP

P0→ θ∗.

Proof. For each θ ∈ Θ we have Ln(θ)
P0→ L(θ) as n→∞ by the law of large numbers, and thus θ(n)MLE

P0→ θ∗ by (van der
Vaart, 1998, Theorem 5.7). Since p(θ) is continuous and positive at θ∗, this yields that

P0(p(θ
(n)
MLE) > c)→ 1 (F.12)

for some c > 0, as well as
1

n
log p(θ

(n)
MLE) = OP0

(1/n).

Now, by maximality

Ln(θ
(n)
MLE) +

1

n
log p(θ

(n)
MLE) ≤ Ln(θ

(n)
MAP) +

1

n
log p(θ

(n)
MAP) ≤ Ln(θ

(n)
MLE) +

1

n
log p(θ

(n)
MAP).

Observe that it implies that p(θ(n)MLE) ≤ p(θ(n)MAP). Together with (F.12) and our boundedness assumption on the prior, this
gives

1

n
log p(θ

(n)
MAP) = OP0

(1/n).
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We can thus write
Ln(θ

(n)
MAP) ≥ Ln(θ

(n)
MLE) +OP0(1/n).

The result now follows from (van der Vaart, 1998, Theorem 5.7).

Observe that by negating (F.11) and adding the constant
∫
p0(y) log p0(y)dy to both sides, we see it is equivalent to the

perhaps more intuitive condition

inf
‖θ−θ∗‖≥ε

DKL(p0(y) ‖ p(y|θ)) > DKL(p0(y) ‖ p(y|θ∗)).

F.1.2. SCALING OF THE PROPOSAL

We now consider the assumption

E[‖θ(n) − θ′(n)‖k+1|Y1:n] = OP0
(n−(k+1)/2). (F.13)

Intuitively this holds if we scale our proposal like 1/
√
n. We consider here proposals based on a noise distribution

ξ(n)
iid∼ Normal(0, Id), but generalisations are possible. We immediately obtain (F.13) for instance with the scaled random

walk proposal (15), for which
θ′(n) = θ(n) +

σ√
n
ξ(n).

Similarly, the π̂1-reversible proposal defined by (17) has

θ′(n) = θ(n) − 1

2n
∇U (n)(θ̂(n)) +

σ√
n
ξ(n),

with ξ(n) iid∼ Normal(0, Id). If the conditions of Lemma F.2 hold, then the second term is OP0
(1/
√
n) and (F.13) follows.

More generally we can consider trying to match the covariance of our noise to the covariance of our target. Intuitively, under
usual circumstances, [∇2U (n)(θ̂(n))]−1 is approximately proportional to the inverse observed Fisher information at θ∗, and
hence preconditioning ξ(n) by S(n) such that

S(n)S(n)> = [∇2U (n)(θ̂(n))]−1

matches our proposal to the characteristics of the target. Such an S(n) can be computed for instance via a Cholesky
decomposition.

Under usual circumstances this achieves a correctly scaled proposal. In particular, if

θ̂(n)
P0→ θ∗ (F.14)

1

n
∂j∂kU

(n)(θ∗)
P0→ Ij,k (F.15)

for some constants Ij,k, then Proposition F.4 below entails ‖S(n)‖op = OP0
(1/
√
n). Thus (F.13) holds for the precondi-

tioned random walk proposal (16) for which

θ′(n) = θ(n) + S(n)ξ(n),

since
‖S(n)ξ(n)‖ ≤ ‖S(n)‖op‖ξ(n)‖ = OP0

(1/
√
n). (F.16)

The same is also true a pCN proposal. In this case

θ′(n) − θ(n) = (
√
ρ− 1)(θ(n) − θ̂(n)) + (

√
ρ− 1)([∇2U (n)(θ̂(n))]−1∇U (n)(θ̂(n))) +

√
1− ρS(n)ξ(n).

Note that here the first term satisfies

E[‖θ(n) − θ̂(n)‖3|Y1:n] = OP0(n−3/2),
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while the remaining two terms are OP0
(1/
√
n) by Lemma F.2 and (F.16). This gives F.13 by Lemma F.1.

Condition (F.14) holds for instance under the assumptions of Theorem 3.1 and provided concentration around θ∗ of the kind
described in Section F.1.1 occurs. Condition (F.15) will also often hold in practice. For instance, if

U (n)(θ) = − log p(θ)−
n∑
i=1

log p(Yi|θ),

and if the prior is positive at θ∗, then for all 1 ≤ j, k ≤ d the law of large numbers gives

1

n
∂j∂kU

(n)(θ∗) = − 1

n
∂j∂k log p(θ∗)− 1

n

n∑
i=1

∂j∂k log p(Yi|θ∗)

P0→ −
∫
∂j∂k log p(y|θ∗)p0(y)dy

when the derivatives and the integral exists. More generally our model may be specified conditional on i.i.d. covariates Xi

so that

U (n)(θ) = − log p(θ)−
n∑
i=1

log p(Yi|θ,Xi) + log p(Xi),

in which case the same argument still applies. (Note that here abuse notation by considering our data Yi ≡ (Xi, Yi), where
the right-hand Yi are response variables.)

Proposition F.4. Suppose for some θ∗ ∈ Θ we have θ̂(n) P0→ θ∗ and

1

n
∂j∂kU

(n)(θ∗)
P0→ Ijk

for all 1 ≤ j, k ≤ d. Suppose moreover that each U3,i ∈ L1 and each ∇2U (n)(θ̂(n)) � 0. If [∇2U (n)(θ̂(n))]−1 =

S(n)S(n)> for some S(n) ∈ Rd×d, then
‖S(n)‖op = OP0(1/

√
n).

Proof. Suppose |β| = 2. Note that since for each i and θ

‖∇∂βUi(θ)‖ ≤ c‖∇∂βUi(θ)‖1 = c

d∑
j=1

|∂j∂βUi(θ)| ≤ cdU3,i,

for some c > 0 by norm equivalence, it follows that ∂βUi is cdU3,i-Lipschitz. Consequently for each θ

∣∣∣∣ 1n∂βU (n)(θ)− 1

n
∂βU (n)(θ∗)

∣∣∣∣ ≤ 1

n

m(n)∑
i=1

|∂βUi(θ)− ∂βUi(θ∗)| ≤
1

n
(

m(n)∑
i=1

U3,i)cd‖θ − θ∗‖.

Thus given K, η > 0

P

(
sup

‖θ−θ∗‖<K

∣∣∣∣ 1n∂βU (n)(θ)− 1

n
∂βU (n)(θ∗)

∣∣∣∣ > η

)
≤ P

 1

n

m(n)∑
i=1

U3,i > ηc−1d−1K−1

 ,

≤ E[U3,i]

ηc−1d−1K−1
,

by Markov’s inequality. It is clear that given any η > 0 the right-hand side can be made arbitrarily small by taking K → 0,
which yields n−1∂βU (n)(θ) is stochastic equicontinuous at θ∗, and consequently that

1

n
∂βU (n)(θ̂(n))− 1

n
∂βU (n)(θ∗)

P0→ 0,
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see (Pollard, 2012, page 139).

Define the matrix I ∈ Rd×d by the constants Ijk. We thus have

1

n
∇2U (n)(θ̂(n))

P0→ I

since it converges element-wise. Thus by the continuous mapping theorem

n‖∇2U (n)(θ̂(n))−1‖op P0→ ‖I−1‖op,

from which it follows that
‖[∇2U (n)(θ̂(n))]−1‖op = OP0(1/n).

It is a standard result from linear algebra that

‖[∇2U (n)(θ̂(n))]−1‖op = ‖S(n)‖2op,

which gives the result.

G. Applications
We give here the results of applying our method to a logistic regression and a robust linear regression example. In both cases
we write our covariates as xi and responses as yi, and our target is the posterior

π(θ) = p(θ|x1:n, y1:n) ∝ p(θ)
n∏
i=1

p(yi|θ, xi).

G.1. Logistic Regression

In this case we have xi ∈ Rd, yi ∈ {0, 1}, and

p(yi|θ, xi) = Bernoulli(yi|
1

1 + exp(−θ>xi)
).

For simplicity we assume a flat prior p(θ) ≡ 1, which allows factorising π like (8) with m = n and π̃i(θ) = p(yi|θ, xi). It
is then easy to show that

Ui(θ) = − log π̃i(θ) = log(1 + exp(θTxi))− yiθ>xi.
We require upper bounds Uk+1,i of the form (12) for these terms. For this we let σ(z) = 1/(1 + exp(−z)) and note the
identity σ′(z) = σ(z)(1− σ(z)), which entails

∂jσ(θ>xi) = −xij(σ(θ>xi)− σ(θ>xi)
2).

We then have

∂jUi(θ) = xij(σ(θ>xi)− yi)
∂k∂jUi(θ) = xijxik(σ(θ>xi)− σ(θ>xi)

2)

∂`∂k∂jUi(θ) = xijxik(xi`(σ(θ>xi)− σ(θ>xi)
2)− 2σ(θ>xi)xi`(σ(θ>xi)− σ(θ>xi)

2))

= xijxikxi`(σ(θ>xi)− σ(θ>xi)
2)(1− 2σ(θ>xi)).

It is possible to show that (whether yi = 0 or y1 = 1)

sup
t∈R
|σ(t)− yi| = 1

sup
t∈R
|σ(t)− σ(t)2| =

1

4

sup
t∈R
|(σ(t)− σ(t)2)(1− 2σ(t))| =

1

6
√

3
.
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Thus setting

U1,i := max
1≤j≤d

|xij |

U2,i :=
1

4
max
1≤j≤d

|xij |2

U3,i :=
1

6
√

3
max
1≤j≤d

|xij |3

satisfies (12).

In Figure 1 we compare the histogram of the samples of the first coordinate θ1 to the marginal of the Gaussian approximation.
This is done for n = 2048, the smallest data size for which we saw a significant ESS improvement of SMH-2 over MH, and
for larger n showing the convergence of the Gaussian approximation and the posterior.

In Figure 2 we demonstrate the performance of the algorithm where θ is of dimension 20. The results are qualitatively
similar to the 10-dimensional case in that SMH-2 eventually performs better than MH as the number of data increases.
However for the 20-dimensional model SMH-2 yields superior performance to MH around the point at which n exceeds
32768, whereas in the 10-dimensional model this happens for n exceeding 2048.

G.2. Robust Linear Regression

Here xi ∈ Rd and yi ∈ R. We use a flat prior p(θ) ≡ 1, and the likelihood is given by

p(yi|θ, xi) = Student(yi − θ>xi | ν).

Here Student(ν) denotes the Student-t distribution with ν degrees of freedom that the user will specify. This gives

Ui(θ) =
ν + 1

2
log

(
1 +

(yi − θ>xi)2
ν

)
.

To derive bounds necessary for (12), let φi(θ) := yi − θTxi and note that ∂jφi(θ) = −xij . Then we have

Ui(θ) =
ν + 1

2
log

(
1 +

φi(θ)
2

ν

)
∂jUi(θ) = −(ν + 1)xij

φi(θ)

ν + φi(θ)2

∂k∂jUi(θ) = −(ν + 1)xij
−xik(ν + φi(θ)

2) + 2xikφi(θ)
2

ν + φi(θ)

= (ν + 1)xijxik
ν − φi(θ)2

(ν + φi(θ)2)2

∂`∂k∂jUi(θ) = (ν + 1)xijxik
2xi`φi(θ)(ν + φi(θ)

2)2 + 4xi`(ν − φi(θ)2)(ν + φi(θ)
2)φi(θ)

(ν + φi(θ)2)4

= −2(ν + 1)xijxikxi`
φi(θ)(φi(θ)

2 − 3ν)

(ν + φi(θ)2)3

In general,

sup
t∈R

∣∣∣∣ t

ν + t2

∣∣∣∣ =
1

2
√
ν

sup
t∈R

∣∣∣∣ ν − t2
(ν + t2)2

∣∣∣∣ =
1

ν

sup
t∈R

∣∣∣∣ t(t2 − 3ν)

(ν + t2)3

∣∣∣∣ =
3 + 2

√
2

8ν3/2
,
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so setting

U1,i :=
ν + 1

2
√
ν

max
1≤j≤d

|xij |

U2,i :=
ν + 1

ν
max
1≤j≤d

|xij |2

U3,i :=
(ν + 1)(3 + 2

√
2)

4ν3/2
max
1≤j≤d

|xij |3

satisfies (12).

In Figure 3 we show effective sample size (ESS) per second for the robust linear regression model; this experiment mimics
the conditions of Figure 2 in the main text, where we used a logistic regression model. The performance for this model is
qualitatively similar to that for logistic regression. Figures 4 and 5 show the ESS and acceptance rate for pCN proposals as ρ
is varied. These mimic Figures 3 and 4 in the main text. For these experiments we use synthetic data, taking an n × 10
matrix X with elements drawn independently from a standard normal distribution, and simulate yi =

∑
j Xij + ε where ε

itself is drawn from a standard normal distribution. We choose as the model parameter ν = 4.0.
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Figure 1. Histogram of samples of first regression coefficient (θ1) versus marginal of Gaussian approximation (green lines).
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Figure 2. ESS of first regression coefficient for a logistic regression model of dimension 20.
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Figure 3. ESS for first regression coefficient of a robust linear regression posterior, scaled by execution time (higher is better).
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Figure 4. Effect of ρ on ESS for first regression coefficient of the robust linear regression model, scaled by execution time (higher is
better).
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Figure 5. Acceptance rates for pCN proposals for the robust linear regression model.


