
Supplementary Material for

Boosted Density Estimation Remastered

Condition Mean NLL ±95% CI

Q0 1.5131 ±0.0459
COSINE 0.7734 ±0.0112
Q2 0.8685 ±0.0946
TRIANGULAR 0.8898 ±0.0089
EXPONENTIAL 0.9154 ±0.0088
Q1 1.0492 ±0.0437
GAUSSIAN 1.0333 ±0.0118
EPANECHNIKOV 0.9675 ±0.0105
TOPHAT 0.9983 ±0.0117
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Figure 11: KDE comparison results. The conditions are in decreasing order with respect to
the absolute difference of mean NLL and 1.

A. Epilogue

Results in the area of iterative approaches to density estimation can be analysed along
three dimensions: how the convergence is characterised, the assumptions assumptions
Unnormalised, and whether it is of direct relevance to current empirical settings for machine
learning.

Regarding convergence, there are typically three degrees of formal results that are tradi-
tionally proven. The first is convergence without rates (Grover & Ermon, 2018; Dudı́k
et al., 2004), the second are rates that are negligible with respect to recent results (including
ours) (Rosset & Segal, 2002). The third and strongest results are explicit convergence
rates. Some of the related approaches have an intractable objective and rather optimise a
tractable surrogate bound. This is the case for variational inference, where the surrogate is
the evidence lower-bound (Guo et al., 2016; Khan et al., 2016; Locatello et al., 2017; Miller
et al., 2017). Because of the explicit gap to the intractable optimum, we do not mean to
compare such approaches to ours, but most of the formal results in those papers yield sublin-
ear convergence convergence, that is, of the form I(P,QT ) 2 O(

1
T ) for some divergence

measure I . In the rest of the related approaches, it quite remarkable that all of them use the
same Frank–Wolfe-type update (1) (Li & Barron, 2000; Naito & Eguchi, 2013; Tolstikhin
et al., 2017; Zhang, 2003). Until recently (Tolstikhin et al., 2017) all these other approaches
essentially generated sublinear convergence rates (Li & Barron, 2000; Naito & Eguchi,
2013; Zhang, 2003). These can be compared to our rates from Theorem 15 and Theorem 18.
We compare favourably with them from three standpoints: Firstly, all these algorithms



integrate calls to an oracle/subroutine that needs to solve a nested optimisation exactly —
the constraint put on our oracle, the weak learner, appears much weaker. Secondly, all
these algorithms integrate parameters whose computation would require the full knowledge
of distributions (Naito & Eguchi, 2013; Zhang, 2003) or their parameterised space (Li &
Barron, 2000). It is unclear how replacing these exact procedures by an approximation
would impact convergence (Miller et al., 2017). In our case, Theorem 18 just operates
on estimated parameters, straightforward to compute. Finally, previous works make more
stringent structural assumptions restricting the form of the optimum (Li & Barron, 2000;
Naito & Eguchi, 2013; Zhang, 2003), while we just assume that c? is bounded, which puts
a constraint — easily enforceable — on the proposals of the weak learner and not on the
optimum.

On the topic of assumptions, the few previous approaches that manage to beat sublinear
convergence to reach geometric convergence require very strong assumptions, such as the
constraint that iterates are close enough to the optimum (Tolstikhin et al., 2017, Cor. 1,
2). In fact, in this latter work, the parameterisation of the weight ↵ in (1) chosen for their
experiments implicitly imposes the convergence of iterates to this optimum (Tolstikhin et al.,
2017, §4). In our case, we have shown that equivalent convergence rates can be obtained
without boosting (Corollary 6) but with an assumption which is used in (Tolstikhin et al.,
2017, Cor. 1, Eq. 10), and is thus very strong. While this is not our main result, Corollary 6 is
new and interesting in the light of Tolstikhin et al.’s results because (i) it does not make use
of their convex mixture model and (ii) we do not have the additional technical requirement
that P (dQt�1/ dP = 0) < ↵t, that is, that roughly the mass where dQt�1 = 0 is bounded
by the leveraging coefficient. We show that geometric convergence within reach with a
much weaker assumptions than (Tolstikhin et al., 2017, Cor. 1, Eq. 10), in fact as weak as
the weak learning assumption. To get our result, we need an additional assumption on the
lower-boundedness of the log-errors "t almost everywhere via WDA. However, this is still
not onerous given that we fit an exponential family, and in many interesting applications
like image processing, X is closed so unless P is allowed to peak arbitrarily, we essentially
get WDA for a reasonable �".

Now, why is the assessment of all assumptions important in the light of experimental
settings? Because it brings them to a trial by fire, as to whether results survive to experimental
machine learning, with available information which is in general a partial estimated snapshot
of the theory. It should be clear at this point that with the sole exception of a subset of
variational approaches — which, again, settle for an explicitly tractable surrogate of the
objective — all previous approaches would fail at this test, (Grover & Ermon, 2018; Guo
et al., 2016; Li & Barron, 2000; Locatello et al., 2017; Naito & Eguchi, 2013; Tolstikhin
et al., 2017; Zhang, 2003). They fail essentially because in practice we obviously would
not have access to P to test assumptions nor carry out fine-grained optimisation. To our
knowledge, our result in §C is the first attempt to provide an algorithm fully executable in
current experimental learning settings and whose convergence relies on assumptions that
would also easily be testable or enforceable empirically. Other approaches (variational
inference and GANs) yield a black box sampler, which may be hard to train but are however
fast to sample from in high dimensions (Guo et al., 2016; Khan et al., 2016; Locatello et al.,
2017; Miller et al., 2017; Tolstikhin et al., 2017). This is clearly where bottleneck of our



theory lies. A solution to the sampling problem is therefore all that is conceivably preventing
our approach from application to similar, high dimensional settings.

B. The error term

Recall the reparameterised variational problem from §2

minimise
u

J(u)
def
= EQ f⇤ � f 0 � u� EP f 0 � u subject to u 2 F . (V)

The solution to (V) easily follows when F is a large enough set of measurable functions
(Nowozin et al., 2016; Nguyen et al., 2010; Grover & Ermon, 2018). However when F
is a more constrained class, a stronger result is necessary. Assume F is a subset of the
normed space, (F, | · |). Let F⇤ be its continuous dual. The Fréchet normal cone (also
called prenormal cone) of F ✓ F at u 2 F is

NF (u)
def
=

(
u⇤ 2 F⇤

: lim sup

F◆(v)!u

hu⇤, v � ui
|v � u|  0

)
.

When F is convex, NF (u) is the ordinary normal cone.

Theorem 1. Assume f : R+ ! R+ is strictly convex and twice differentiable, and F is a
normed space of functions X ! int(dom f). Let F ✓ F and ū 2 argminu2F J(u). If J
is finite on a neighbourhood of ū, then

ū 2 dP

dQ
�NF (ū).

If, in addition, F is convex with dP/dQ 2 intF , then ū = dP/dQ.

Proof. Because f is twice differentiable on int(dom f), and J is finite on a neighbourhood
of ū, J is Fréchet differentiable at ū with

J 0
(ū) = ((f⇤

)
0 � f 0 � ū) · (f 00 � ū) · dQ� (f 00 � ū) · dP.

= ū · (f 00 � ū) · dQ� (f 00 � ū) · dP,

where (f⇤
)
0
= (f 0

)
�1 since f is strictly convex. By hypothesis J attains its minimum on F

at ū, thus Fermat’s rule (Penot, 2012, Thm. 2.97, p. 170) yields

0 2 J 0
(ū) + NF (ū) () 0 2 ū · (f 00 � ū) · dQ� (f 00 � ū) · dP +NF (ū)

() 0 2 ū� dP

dQ
+

1

(f 00 � ū) · dQ ·NF (ū)

() ū 2 dP

dQ
�NF (ū),

where the final biconditional follows since NF (ū) is a cone.
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Figure 12: Illustration of Theorem 1 wherein there exists v 2 NF (ū) which pulls the
unconstrained minimiser, dP/dQ, onto the constrained minimiser, ū.

Now, suppose dP/dQ 2 intF with F convex. Then the Fréchet cone becomes usual
normal cone (Penot, 2012, Ex. 6, p. 174),

NF (ū)
def
= {u⇤ 2 F⇤

: 8v 2 F : hu⇤, v � ūi  0}.

It’s immediate from the definition that NF always contains 0. We use a contradiction to
show that NF (ū) ✓ {0}. Take z⇤ 6= 0 2 NF (ū). Let Fū

def
= F � ū. First note that

ū 2 intF implies 0 2 intFū. Thus there is a closed symmetric neighbourhood U with
0 2 U ✓ intFū. The Hahn–Banach strong separation theorem (Penot, 2012, Thm. 1.79,
p. 55) guarantees the existence of a vector u 2 U such that

hz⇤, ui > 0 () 9v 2 F : hz⇤, v � ūi > 0,

contradicting the assumption z⇤ 2 NF . Thus NF (dP/dQ) = {0}. ⌅

The set NF (ū) can be thought of as containing a direction v that pulls dP/dQ to the
constrained minimiser ū. This is illustrated in Figure 12.

Theorem 1 also gives us give a more explicit characterisation of the error term in §3 since

9vt 2 NF (dt) : dt =
dP

dQt
· "t =

dP

dQt
� vt, () "t = 1� dQt�1

dP
· vt.

C. Boosting with estimates

In practice, we do not have access to P and we rather sample from Q. We thus assume the
possibility to sample8 P and Q. to compute all needed estimates of µP and ⌫Q. . So let us
assume that the weak learner has access to a sampler of P and a sampler of Q., “SAMPL”.
SAMPL takes as input a distribution and a natural m; it samples from the distribution and
returns an i.i.d. sample of size m. It does so separately for P and Q, with separate sizes mP

and mQ for the respective samples. The full Figure 2 is very similar to Figure 1 if we except

8We could also assume the availability of training samples, in particular for P as is usually carried
out.



the fact that the weak learner also returns an estimate for ⌫Qt�1 . To analyze Figure 2 requires
however more than just the boosting material developed so far, since nothing guarantees
that estimates of µP and ⌫Q. meeting WLA would imply µP and ⌫Q. meeting WLA as
well. We therefore replace WLA by one which relies on estimates computed over large
enough samples. We call it the Empirical Weak Learner Assumption (EWLA). It involves
two additional parameters, ?

= ⌫c?(1� ⌫c?)/2 (> 0), where ⌫c? , which depends only on
c?, is defined in (43), and some 0 < �  1.
Assumption 3 (Empirical Weak Learner Assumption). There exists �P , �Q 2 (0, 1] such
that the following holds: at each iteration t = 1, 2, ..., T , WEAKLEARN estimates µ̂P and
⌫̂Qt�1 respectively from

SAMPL(P,mP ) and SAMPL(Qt�1,mQ)

with mP ,mQ satisfying

mP �
1

(?�P )2
log

4T

�
and mQ �

1

(?�Q)2
log

4T

�
, (EWLA�,T )

and returns, along with ⌫̂Qt�1 , ct satisfying µ̂P � �P and ⌫̂Qt�1 � �Q.

The weak learner thus also take as input � and T , as displayed in Figure 2. We emphasize the
fact that EWLA�,T is just assuming the ability for WEAKLEARN to have i.i.d. samples from
P and Q and get a classifier ct that empirically satisfies WLA. Since we still focus on the
decrease of KL(P,Q.), one might expect this to weaken our results, which is indeed the case,
but we can show that only constants are slightly affected, thereby not changing significantly
convergence rates. We provide in one theorem the reframing of both Theorem 15 and
Theorem 17. In the same way as we did for Theorem 17, whenever we are in the clamped
regime for ↵t, we let �̂t�1 � 0 be defined from ⌫̂Qt�1 = (1 + �̂t�1)⌫c? .
Theorem 23. Suppose EWLA�,T holds. Then with probability of at least 1� �,

8t = 1, 2, ..., T : KL(P,Qt)  KL(P,Qt�1)��t,

where

�t
def
=

8
<

:

µ̂P

16 log

⇣
1+⌫̂Qt�1

1�⌫̂Qt�1

⌘
in the non-clamped regime,

µ̂P c?

2 + ⌫2c? ·
⇣

1
4 +

�̂t�1

1�⌫2
c?

⌘
otherwise.

D. Proofs of formal results

Proposition 2. The normalisation factors can be written recursively with Zt = Zt�1 ·
EQt�1 d

↵t
t .

Proof. We just need to write

Zt

Zt�1
=

1

Zt�1

Z
dQ̃t =

1

Zt�1

Z
d↵t
t dQ̃t�1 =

Z
d↵t
t dQt�1 = EQt�1 d

↵t
t (10)

thus Zt = Zt�1 · EQt�1 d
↵t
t . ⌅



Algorithm 1 AdaBoDE
Input: distributions P,Q0, natural T ;
for t = 1 to T do

ct  WEAKLEARN(P,Qt�1);
Pick ⌫Qt�1 as in (8) and ↵t as
↵t  
min

n
1, 1

2c? log

⇣
1+⌫Qt�1

1�⌫Qt�1

⌘o
;

Pick Qt as in (4) with dt
def
= exp �ct;

end for

Return: QT

Algorithm 2 ADABODE.EST
Input: distributions P,Q0, T 2 N⇤, 0 < � 
1;
for t = 1 to T do

(ct, ⌫̂Qt�1)  
WEAKLEARN(P,Qt�1, �, T );
↵t  min

n
1, 1

2c? log

⇣
1+⌫̂Qt�1

1�⌫̂Qt�1

⌘o
;

Pick Qt as in (4) with dt
def
= exp(ct);

end for

Return: QT

Proposition 3. Let Qt be defined via (4) with a sequence of binary classifiers c1, . . . , ct 2
C(X ). Then Qt is an exponential family distribution with natural parameter ↵

def
=

(↵1, . . . ,↵t) and sufficient statistic c(x)
def
= (c1(x), . . . , ct(x)).

Proof. We can convert the binary classifiers c1, . . . , ct 2 C(X ) to a sequence of density
ratios (di) using the connections in §2, which yields

d↵i
i

def
= (' � � � ci)↵i = exp � (↵ici).

In this setting, the multiplicative density at round t is

dQt(x)
(4)
=

1
R Qt

i=1 d
↵i
i dQ0

tY

i=1

d↵i
i dQi(x)

= exp

 
tX

i=1

↵ici(x)� C(↵)

!
dQ0(x),

with ↵
def
= (↵1, . . . ,↵t) and C(↵) = log

R
exp (

Pt
i=1 ↵ici) dQ0, which is an exponential

family distribution with natural parameter ↵, sufficient statistic c(x)
def
= (c1(x), . . . , ct(x)),

cumulant function C(↵), reference measure Q0. We note that in the general case, it
may be the case that for some non-all-zero constants z0, z1, . . . , zt 2 R, we have z0 =Pt

i=1 zici(x), that is, the representation is not minimal. ⌅
Lemma 4. For any ↵t 2 [0, 1] and "t 2 [0,+1)

X we have:

exp

⇣
↵t

�
EQt�1 log "t � rKL(P,Qt�1)

�⌘
 Zt

Zt�1
 (EP "t)

↵t .

Proof. Since ↵t 2 [0, 1], by Jensen’s inequality it follows that

EQt�1 d
↵t
t 

�
EQt�1 dt

�↵t
=

✓Z
dP

dQt�1
· "t dQt�1

◆↵t

= (EP "t)
↵t . (11)



The upper bound on Zt/Zt�1 follows:

Zt

Zt�1

(10)
= EQt�1 d

↵t
t

(11)
 (EP "t)

↵t .

For the lower bound on Zt/Zt�1, note that

log

✓
Zt

Zt�1

◆
(10)
= log EQt�1 d

↵
t

� ↵t EQt�1 log dt

= ↵t EQt�1


log "t + log

✓
dP

dQt�1

◆�
,

which implies the lemma. ⌅

The error term allows us to bound the KL divergence of P from Qt as follows.

Lemma 5. For any ↵t 2 [0, 1], letting Qt, Qt�1 as in (3), we have:

8dt 2 R(X ) : KL(P,Qt|↵t)  (1� ↵t)KL(P,Qt�1) + ↵t(log EP "t � EP log "t).
(12)

where dt = dP/dQt�1 · "t.

Proof. First note that

dQt =
1

Zt
dQ̃t =

1

Zt
d↵t
t dQ̃t�1 =

Zt�1

Zt
d↵t
t dQt�1. (13)

Now consider the following two identities:

�↵t log EP "t  log

✓
Zt�1

Zt

◆
, (14)

which follows from Lemma 4, and
Z ✓

log

✓
dP

dQt�1

◆
� ↵t log dt

◆
dP (15)

=

Z ✓
log

✓
dP

dQt�1

◆
� ↵t log

✓
dP

dQt�1

◆
� ↵t log "t

◆
dP

= (1� ↵t)

Z
log

✓
dP

dQt�1

◆
dP � ↵t

Z
log "t dP

= (1� ↵t)KL(P,Qt�1)� ↵t EP log "t.



Then

KL(P,Qt) =

Z
log

✓
dP

dQt

◆
dP

(13)
=

Z ✓
log

✓
dP

dQt�1

◆
� log

✓
Zt�1

Zt
d↵t
t

◆◆
dP

=

Z ✓
log

✓
dP

dQt�1

◆
� ↵t log dt

◆
dP

| {z }
(15)

� log

✓
Zt�1

Zt

◆

| {z }
(14)

 (1� ↵t)KL(P,Qt�1) + ↵t(log EP "t � EP log "t),

as claimed. ⌅

Corollary 6. For any ↵t 2 [0, 1] and "t 2 [0,+1)
X , letting Qt as in (4) and Rt from (6).

If Rt satisfies

KL(P,Rt)  �KL(P,Qt�1)

for � 2 [0, 1], then

KL(P,Qt|↵t)  (1� ↵t(1� �))KL(P,Qt�1). (16)

Proof. We first show

KL(P,Qt|↵t)  (1� ↵t)KL(P,Qt�1) + ↵t KL(P,Rt). (17)

By definition "t = dRt/dP . The rightmost term in (12) reduces as follows

log EP "t � EP log "t = log

Z
dR̃t

dP
dP �

Z
log

 
dR̃t

dP

!
dP

= log

Z
dR̃t +

Z
log

✓
dP

dR̃t

◆
dP

=

Z ✓
log

✓
dP

dR̃t

◆
+ log

Z
dR̃t

◆
dP

=

Z
log

✓
dP

dR̃t

·
Z

dR̃t

◆
dP

=

Z
log

0

@ dP
1R
dR̃t

dR̃t

1

A dP,

which completes the proof of (17). The proof of (16) is then immediate. ⌅

Define WEAKLEARN the weak learner which, taking P and Qt�1 as input, delivers ct
satisfying the conditions of WLA. In the boosting theory, which involves a supervised



learning problem, there is one condition instead of two as in WLA: given a distribution D
over X ⇥ {�1,+1}, we rather require from the weak learner, WEAKLEARN⇤, that

9� 2 (0, 1] :
1

c?
ED y · ct � �,

where y denotes the class, mapping X ! {�1,+1}. While is seems rather intuitive that
we can craft WEAKLEARN⇤ from WEAKLEARN, it is perhaps less intuitive as to whether
the same can be done for the reverse direction. We now show that it is indeed the case and
WLA and WLA⇤ are in fact equivalent.

Lemma 7. Suppose �P = �Q = � in WLA and WLA⇤, without loss of generality. Then
there exists WEAKLEARN satisfying WLA iff there exists WEAKLEARN⇤ satisfying WLA⇤.

Proof. To simplify notations, we suppose without loss of generality that C(X ) ✓ [�1, 1]X .

()) Let D be a distribution on X ⇥{�1,+1}. It can be factored as a triple (⇡, P,N) where
P is a distribution over the positive examples, N is a distribution over negative examples
and ⇡ is the mixing probability, ⇡ def

= PrD[y = +1]. Now, feed P and N in lieu of P and Qt,
repectively. We get ct which, from WLA, satisfies EN [�ct] � � and EP [ct] � �, which
implies

ED[yct] = ⇡EP [ct] + (1� ⇡) EN [�ct] � ⇡� + (1� ⇡)� = �

and we get our weak learner WEAKLEARN⇤ satisfying WLA⇤.

(() We create a two-class classification problem in which observations from P have positive
class y = +1, observations from Qt have negative class y = �1 and there is a special
observation x⇤ 2 X which is equally present with probability 1�2⇡ in both the positive and
negative class. Hence, we are artificially increasing the difficulty of the problem by making
its Bayes optimum worse. Obviously, WLA⇤ having to hold under any distribution, it will
have to hold under the distribution D that we create. To explicit D, consider ⇡ 2 [0, 1/2]
and the following sampler for D:

• sample z 2 [0, 1] uniformly;

– if z  (1� 2⇡)/2 return (x⇤,+1);
– else if z  1� 2⇡ return (x⇤,�1);
– else if z  1� ⇡, return (x ⇠ P,+1);
– else return (x ⇠ Qt,�1);

Let D denote the distribution induced on X ⇥ {�1,+1}. Remark that the error of Bayes
optimum is at least 1/2 � ⇡. Let ct returned by WEAKLEARN⇤. We have because of
WLA⇤,

ED[yct] = ⇡(µP + ⌫Qt�1) +

✓
1� 2⇡

2
� 1� 2⇡

2

◆
ct(x

⇤
) = ⇡(µP + ⌫Qt�1) � �



Consider

⇡ =
�

1 + �

Which makes

µP + ⌫Qt�1 � 1 + �.

It easily comes that if µP < �, then we must have ⌫Qt�1 > 1, which is not possible, and
similarly if ⌫Qt�1 < �, then we must have µP > 1, which is also impossible. Therefore
we have both µP � � and ⌫Qt�1 � �, and we get our weak learner WEAKLEARN meeting
WLA, as claimed. ⌅

D.0.1. PROOF OF THEOREM 15

The proof of Theorem 15 is achieved in two steps: (i) any ct meeting WLA can be trans-
formed through scaling into a classifier that we call Properly Scaled without changing it
satisfying WLA (for the same parameters �P , �Q), (ii) Theorem 15 holds for such Properly
Scaled classifiers.
Definition 4. The classifier ct is said to be Properly Scaled (PS) if it meets:

exp(2c?)  2 + µP c
? (PS.1)

EQt�1 exp(ct)  exp

✓
µP c?

4

◆
. (PS.2)

Hence, we first show how any classifier meeting WLA can be made PS without changing
µP nor ⌫Qt�1 (hence, still meeting WLA), modulo a simple positive scaling. The proof
involves a reverse of Jensen’s inequality which is much simpler than previous bounds (Simić,
2009a;b) and of independent interest.

Our proof will equivalently give upper bounds on c? that make ct PS. We note that our proof
is constructive, that is, we give eligible upper bounds for c?. The proof of Theorem 12 is
split in several lemmata, the first of which is straightforward since µP � 0 under WLA.
Lemma 8. Suppose ct meets WLA. Then, (PS.1) holds for any c?  log(2)/2.

To prove how to satisfy (PS.2), we use the notions of Bregman divergences and Bregman
information. For ' : R! R convex differentiable with derivative '0, we define the Bregman
divergence with generator ' as D'(zkz0) = '(z) � '(z0) � (z � z0)'0

(z0). Following
(Banerjee et al., 2005), we define the minimal Bregman information of (ct, Qt�1) (or just
Bregman information for short) relative to ' as

I'(ct;Qt�1)
def
= EQt�1 [D'(ctkEQt�1 ct)].

The Bregman information is a generalization of the variance for which '(z) = z2. Jensen’s
inequality would give us a lowerbound, but we need an upperbound. We devise for this
objective a reverse of Jensen’s inequality. We suppose that ct takes values in [a, b], where
we would thus have |a| or b which would be c?.
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EQt�1 '(ct)

'(EQt�1 ct)

b
R

H
S
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H

S
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S
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⇣
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⌘a EQt�1 ct

Figure 13: Proof of Lemma 9. The tangent represented is parallel to the chord linking
(a,'(a)) and (b,'(b)). The LHS of (19) can be represented by the vertical difference
labelled (always in the blue area). The RHS of (19), as a Bregman divergence, is the
difference between the ' and its tangent at ('⇤

)
0
(
'(a)�'(b)

a�b ), measured at either a, or b
(pictured).

Lemma 9. (Reverse of Jensen’s inequality) Suppose ' strictly convex differentiable and
ct(x) 2 [a, b] for all x 2 X . Then,

I'(ct;Qt�1)  D'

✓
u

����('
⇤
)
0
✓
'(a)� '(b)

a� b

◆◆
, (19)

where u can be chosen to be a or b.

Proof. The proof is in fact straightforward, as illustrated in Figure 13. ⌅

We now show how to satisfy (PS.2).
Lemma 10. Suppose ct meets WLA and

c? 
✓
�P
4

+
1� exp(�2�Q)

2

◆
.

Then

EQt�1 exp(ct)  exp

✓
µP c?

4

◆
,

that is, (PS.2) holds.



Proof. Consider '(z) = exp(z) and so '⇤
(z) = z log z � z in Lemma 9. Suppose without

loss of generality that a = �c?, b = c?. We get

Iexp(ct;Qt�1) = EQt�1 exp(ct)� expEQt�1 ct

 D'

✓
c?
����('

⇤
)
0
✓
'(c?)� '(�c?)

2c?

◆◆
.

Now, we just need to ensure that

D'

✓
c?
����('

⇤
)
0
✓
'(c?)� '(�c?)

2c?

◆◆
 exp

✓
µP c?

4

◆
� exp(�⌫Qt�1c

?
), (20)

as indeed we shall then have, because of WLA,

EQt�1 exp(ct)  exp

✓
�P c?

4

◆
� exp(��Qc?) + expEQt�1 ct

 exp

✓
µP c?

4

◆
� exp(�⌫Qt�1c

?
) + exp(�⌫Qt�1c

?
)

= exp

✓
µP c?

4

◆
,

which is the statement of the lemma.

Proposition 11. Pick '
def
= exp. If |z|  2, then

D'

✓
z

����('
⇤
)
0
✓
'(z)� '(�z)

2z

◆◆
 z2.

Proof. Equivalently, we need to show

z2 � exp(z)

✓
1

2
� 1

2z

◆
+ exp(�z)

✓
1

2
+

1

2z

◆

+

✓
exp(z)� exp(�z)

2z

◆
log

✓
exp(z)� exp(�z)

2z

◆
.

We split the proof in two. First, let us fix

g1(z)
def
=

2
�
exp(z)

�
1
2 �

1
2z

�
+ exp(�z)

�
1
2 +

1
2z

��

z2
.

We remark that

g01(z) =
exp(�z)(�z2 � 3z � 3 + exp(2z)(z2 � 3z + 3))

2z4
.



We then remark that, letting g2(z)
def
= �z2 � 3z � 3 + exp(2z)(z2 � 3z + 3),

g2(z) = �z2 � 3z � 3 +

X

k�0

2
kzk+2

k!
�
X

k�0

3 · 2kzk+1

k!
+

X

k�0

3 · 2kzk

k!

= �z2 � 3z � 3 +

X

k�2

2
k�2zk

(k � 2)!
�
X

k�1

3 · 2k�1zk

(k � 1)!
+

X

k�0

3 · 2kzk

k!

=

X

k�2

✓
2
k�2

(k � 2)!
� 3 · 2k�1

(k � 1)!
+

3 · 2k

k!

◆
zk

=

X

k�5

✓
2
k�2

(k � 2)!
� 3 · 2k�1

(k � 1)!
+

3 · 2k

k!

◆
zk

=

X

k�5

�
k2 � 7k + 12

�2k�2zk

k!
.

We then check that z 7! z2 � 7z + 12 < 0 only for z 2 (3, 4). That is, it is never negative
over naturals so g2(z) � 0, 8z � 0. We also check that lim0 g01(z) = 0 and so g1(z) is
increasing for z � 0. Finally,

g1(2) =
1

2
·
✓
exp(2)

4
+

3

4 exp(2)

◆
<

7.81

8
< 1,

which shows that

8|z|  2 : exp(z)

✓
1

2
� 1

2z

◆
+ exp(�z)

✓
1

2
+

1

2z

◆
 z2

2
. (21)

(The analysis for z < 0 uses the fact that the function is even.) We now show that we
have

8z 2 [�2, 2] : exp(z)� exp(�z)
2z

 1 +
z2

4
. (22)

Hence, we want to show that exp(z)  exp(�z)+2z+ z3/2 for z 2 [�2, 2]. We now have
exp(�z) � 1 � z + z2/2 � z3/6 + z4/24 � z5/120 for z � 0, so we just need to show
exp(z)  1� z + z2/2� z3/6 + z4/24� z5/120 + 2z + z3/2 = 1+ z + z2/2 + z3/3 +
z4/24� z5/120 + 2z + z3/2 for z 2 [0, 2] (we will then use the fact that both functions in
(22) are even), which simplifies, using Taylor series for exp, in showing

8z 2 [0, 2] :
X

k�6

zk

k!
 z3

6
� z5

60
,

or after dividing both sides by z3 > 0 (the inequality is obviously true for z = 0),

8z 2 (0, 2] :
X

k�6

1

k(k � 1)(k � 2)
· zk�3

(k � 3)!
 1

6
� z2

60
,



Since k(k� 1)(k� 2) � 120 for k � 6, it is enough to show that
P

k�6
zk�3

(k�3)!  20� 2z2.

But
P

k�6
zk�3

(k�3)! =
P

k�3
zk

k! = exp(z) � 1 � z � z2/2, so we just need to show that
exp(z)  21 + z � 3z2/2 for z 2 (0, 2], which is easy to show as the rhs is concave,
decreasing for z � 1/3 and intersecting exp for z � 5/2. So (22) holds. Since log(z) 
z � 1, we get

✓
exp(z)� exp(�z)

2z

◆
log

✓
exp(z)� exp(�z)

2z

◆
 z exp(z)� z exp(�z)

8

Now, we have exp(z) � exp(�z) � 4z  0 for z 2 [0, 2], since the function is strictly
convex for z � 0 with two roots at z = 0 and z > 2. Reorganising, this shows that
(z exp(z)� z exp(�z))/8  z2/2 for z 2 [0, 2], and so

8z 2 [0, 2] :

✓
exp(z)� exp(�z)

2z

◆
log

✓
exp(z)� exp(�z)

2z

◆
 z2

2
.

Putting it together with (21), we now have

D'

✓
z

����('
⇤
)
0
✓
'(z)� '(�z)

2z

◆◆

= exp(z)

✓
1

2
� 1

2z

◆
+ exp(�z)

✓
1

2
+

1

2z

◆

+

✓
exp(z)� exp(�z)

2z

◆
log

✓
exp(z)� exp(�z)

2z

◆

=
z2

2
+

z2

2

= z2

for z 2 [0, 2], and therefore, since both functions are even, the same holds for z 2 [�2, 0]
and completes the proof. ⌅

To show (20), we therefore just need to ensure c? small enough so that

c?2  exp

✓
µP c?

4

◆
� exp(�⌫Qt�1c

?
). (23)

Because exp(�⌫Qt�1c
?
) is convex, it is upper-bounded over the interval [0, 2] by its chord

between its two points in abscissae 0 and 2,

8c? 2 [0, 2] : exp(�⌫Qt�1c
?
)  1�

1� exp(�2⌫Qt�1)

2
c?,

and we also have, since exp(z) � 1 + z,

exp

✓
µP c?

4

◆
� 1 +

µP c?

4
.



To ensure (23), it is therefore sufficient, as long as c? 2 (0, 2], that

c?2 
✓
µP

4
+

1� exp(�2⌫Qt�1)

2

◆
c?,

which, after simplification and considering WLA, is achieved provided

c? 
✓
�P
4

+
1� exp(�2�Q)

2

◆
. (24)

There remains to check that the condition of Proposition 11 applies, that is, c?  2. The
maximal value of the rhs in (24), taking into account that �P , �Q  1, is 1/4 + (1 �
exp(�2))/2 ⇡ 0.57 < 2, which shows that the condition of Proposition 11 indeed applies
and proves Lemma 10. ⌅
Theorem 12. Suppose ct satisfies WLA. Then there exists a constant ⌘ > 0 such that ⌘ · ct
satisfies WLA and is PS.

Proof. Even when better bounds are possible, the combination of Lemma 8 and Lemma 10
show that any ct satisfying the WLA, positively scaled so that c?  log(2)/2, still satisfies
WLA and is PS, as claimed. ⌅

We shall now prove Theorem 15. The proof mainly consists of two lemmata, one show-
ing that EQt�1 exp(↵tct) is small, the second one showing, under conditions on ct, that
EQt�1 exp(ct) is conveniently upper-bounded by EQt�1 exp(↵tct), leading to the theorem.

Lemma 13. Let ↵t
def
=

1
2c? log

⇣
1+⌫Qt�1

1�⌫Qt�1

⌘
. Then

EQt�1 exp(↵tct) 
q

1� ⌫2Qt�1
.

Proof. We know (Nock & Nielsen, 2007) that

8a, b 2 [�1, 1] : 1� ab �
p
1� a2 exp

✓
� b

2
log

✓
1 + a

1� a

◆◆
. (25)

Let a def
= ⌫Qt�1 and b

def
= �ct/c?, for short. Then we obtain

exp(↵tct) = exp

✓
�
✓
�ct ·

1

2c?
log

✓
1 + ⌫Qt�1

1� ⌫Qt�1

◆◆◆

(25)


1 + ⌫Qt�1
ct
c?q

1� ⌫2Qt�1

=
1� ⌫Qt�1 ·

�
� ct

c?

�
q

1� ⌫2Qt�1

, (26)

which implies the lemma. ⌅



Lemma 14. Fix any J � 0. Suppose that the two conditions hold:

EQt�1 exp(ct)  exp

✓
J

2

◆
, (27)

⌫Qt�1 
J

1 + J
. (28)

Then,

EQt�1 exp(ct) 
1q

1� ⌫2Qt�1

· EQt�1 exp(↵tct + J).

Proof. Jensen’s inequality yields

EQt�1 exp(↵tct) � exp
�
EQt�1 ↵tct

�
= exp

�
�↵tc

?⌫Qt�1

�
,

hence we rather show the stronger statement

EQt�1 exp(ct) 
1q

1� ⌫2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�
.

We use two inequalities:

8z 2 [0, 1] :
2z2

1� z
� 4 log

1p
1� z2

� z log

✓
1 + z

1� z

◆
. (29)

Let us summarize these as A � B � C. To first check these inequalities, we remark:

• to check A � B, we simplify it: it yields equivalently g1(z)
def
= z2(1 + z) � �(1 �

z2) log(1 � z2)
def
= g2(z). We then check that g02(z) = 2z(1 + log(1 � z2)) while

g01(z) = 2z(1 + 3z/2). Both derivatives are continuous with the same limit in 0 and it
is easy to check that for z � 0, g02(z)  g01(z). Since g1(0) = g2(0), we get A � B;

• to check B � C, we simplify it, which yields equivalently g3(z)
def
= (z � 2) log(1�

z) � (z + 2) log(1 + z) � 0. We have g003 (z) = 4z2/(z2 � 1)
2 � 0, which shows

the strict convexity of the function. We also have g03(0) = g3(0) = 0, which gives
g3(z) � 0 for all z and shows B � C.



With the latter ineq. (29) and the expression of ↵t for the regular boosting regime, we get

1q
1� ⌫2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�

= exp

0

@J + log

 
1q

1� ⌫2Qt�1

!
�

⌫Qt�1

2
log

 
1 + ⌫Qt�1

1� ⌫Qt�1

!1

A (30)

� exp

✓
J �

⌫Qt�1

4
log

✓
1 + ⌫Qt�1

1� ⌫Qt�1

◆◆

� exp

 
J � 1

4
·

2⌫2Qt�1

1� ⌫Qt�1

!
. (31)

The last inequality follows from the former ineq. (29). Suppose now that we can ensure

2⌫2Qt�1

1� ⌫Qt�1

 2J. (32)

It would follow from (31) that

1q
1� ⌫2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�
� exp

✓
J � 1

4
· 2J

◆
= exp

✓
J

2

◆
,

and so to prove the lemma, we would just need

EQt�1 exp(ct)  exp

✓
J

2

◆
,

which is precisely (27). To get (32), we equivalently need ⌫2Qt�1
+ J⌫Qt�1 � J  0, that

is,

⌫Qt�1 
1

2
· (�J +

p
J2 + 4J) (33)

To prove a simpler equivalent condition, we let g4(z)
def
= (1 + z)

p
z2 + 4z/(z(3 + z)).

We easily get lim#0 g4(z) = +1, lim+1 g4(z) = 1 and g04(z) = �6(z + 4)/N with
N

def
= (z2 + 4z)3/2(3 + z)2 � 0, so g4(z) � 1 for all z � 0, and reordering this inequality

yields equivalently z/(1 + z)  (1/2) · (�z +
p
z2 + 4z) for z � 0, so to get (33), we just

require ⌫Qt�1  J/(1 + J), which is (28), and ends the proof of Lemma 14. ⌅

Let ↵t
def
= min

n
1, 1

2c? log

⇣
1+⌫Qt�1

1�⌫Qt�1

⌘o
. Because there are two regimes for ↵t, we define

two boosting regimes, a high boosting regime, ↵t = 1 (“clamped”), and a regular boosting
regime, ↵t < 1 (“not clamped”). We show two rates of decrease for the KL divergence, one
for each regime.



Convergence in the regular boosting regime The WLA alone is sufficient to guarantee
a significant decrease of the KL divergence of P from Qt�1 at each boosting iteration.
The proof of the theorem uses a simple reverse of Jensen’s inequality which may be of
independent interest. Note that even when we require that ct meet WLA, the decrease of the
KL divergence uses its actual values for µP , ⌫Qt�1 , which can yield a substantially larger
KL decrease.
Theorem 15. In the regular boosting regime and under WLA,

KL(P,Qt|↵t)  KL(P,Qt�1)�
µP

4
log

✓
1 + ⌫Qt�1

1� ⌫Qt�1

◆
.

Proof. We have

EP "t = EQt�1


dP

dQt�1
· "t
�
= EQt�1 exp(ct). (34)

Hence, combining successively the statements of Lemma 14 (we check below that the
conditions of the lemma are indeed satisfied) and Lemma 13, we get:

log EP "t = log EQt�1 exp(ct)

 log

0

@ 1q
1� ⌫2Qt�1

· EQt�1 exp(↵tct + J)

1

A (35)

= log

0

@EQt�1 exp(↵tct)q
1� ⌫2Qt�1

· exp(J)

1

A

 log exp(J)

= J. (36)

On the other hand, WLA yields

µP c
?
= EP ct = EP log

✓
dP

dQt�1
· "t
◆

= KL(P,Qt�1) + EP log "t. (37)

Since ↵t � 0, it follows from Lemma 5 and (37), (36) in this order that

KL(P,Qt)  KL(P,Qt�1)� ↵t(KL(P,Qt�1) + EP log "t) + ↵t log EP "t (38)
= KL(P,Qt�1)� ↵tµP c

?
+ ↵t log EP "t

 KL(P,Qt�1)� ↵tµP c
?
+ ↵tJ

= KL(P,Qt�1)� ↵t(µP c
? � J). (39)

It remains to fix J
def
= µP c?/2, and we get

KL(P,Qt)  KL(P,Qt�1)�
↵tµP c?

2
(40)

= KL(P,Qt�1)�
µP

4
log

✓
1 + ⌫Qt�1

1� ⌫Qt�1

◆
,



which is the statement of the theorem. We end up the proof of Theorem 15 by showing
that the PS property for ct implies that the conditions of Lemma 14 are satisfied — hence,
Theorem 15 is shown for ct being PS, which we recall is always possible from Theorem 12
when ct satisfies the WLA. While it is clear that (27) is one of the PS properties for ct, we
still need to show that the PS ensures (28) with J = µP c?/2, that is, we need to show that

⌫Qt�1 
µP c?

2 + µP c?
. (41)

Recall that we are in the regular boosting regime where we do not clamp ↵t, and therefore,
if we let

⌫c?
def
=

exp(2c?)� 1

exp(2c?) + 1
2 (0, 1), (42)

then we know that ⌫Qt�1  ⌫c? , so to have (41), it suffices to ensure ⌫c?  µP c?/(2+µP c?),
which equivalently yields

exp(2c?)  2 + µP c
?,

which is the first PS property. This ends the proof of Theorem 15. ⌅

D.0.2. PROOF OF THEOREM 17

Convergence in the high boosting regime This is where things get interesting; when ↵t

is clamped to 1, the decrease in the KL divergence at each iteration is guaranteed to be of
order c?, and can even be significantly larger depending on the actual values of ⌫Qt�1 and
⌫c? , defined as

⌫c?
def
=

exp(2c?)� 1

exp(2c?) + 1
2 (0, 1). (43)

Because ↵t = 1, we have ⌫Qt�1 � ⌫c? , so let us write ⌫Qt�1 = (1 + �t�1)⌫c? for some
�t�1 � 0. Note that Theorem 17 doese not assume WLA. It is worthwhile remarking that
Theorem 18 is a direct consequence of Theorem 15 above.

We follow some of the same steps as for Theorem 15.

Lemma 16. Let ↵t
def
= 1. Then

EQt�1 exp(ct) 
1� ⌫Qt�1⌫c?p

1� ⌫2c?
,

where ⌫c? is defined in (42).

Proof. We have this time EQt�1 exp(ct) = EQt�1 exp(↵tct). We use again (25) with
a = ⌫c? and get, instead of (26):

exp(↵tct) 
1� ⌫c? ·

�
� ct

c?

�
p

1� ⌫2c?
,

which implies the lemma after taking the expectation and remarking that for the choice
a = ⌫c? ,↵t = 1. ⌅



Theorem 17. In the high boosting regime,

KL(P,Qt|↵t)  KL(P,Qt�1)� µP c
? � ⌫2c? ·

 
1

2
+

�t�1

1� ⌫2c?

!
.

Proof. Since we get a direct bound on EQt�1 exp(ct), we can achieve the proof of Theo-
rem 17 via (34) and (38) as

KL(P,Qt)  KL(P,Qt�1)� ↵t(KL(P,Qt�1) + EP log "t) + ↵t log EP "t

 KL(P,Qt�1)� µP c
?
+ log EP "t

 KL(P,Qt�1)� µP c
?
+ log

1� ⌫Qt�1⌫c?p
1� ⌫2c?

= KL(P,Qt�1)� µP c
?

+ log

 
1� ⌫2c?p
1� ⌫2c?

� (⌫Qt�1 � ⌫c?) ·
⌫c?p
1� ⌫2c?

!

= KL(P,Qt�1)� µP c
?

+ log

 q
1� ⌫2c? � (⌫Qt�1 � ⌫c?) ·

⌫c?p
1� ⌫2c?

!

= KL(P,Qt�1)� µP c
?
+

1

2
· log(1� ⌫2c?)

+ log

✓
1� (⌫Qt�1 � ⌫c?) ·

⌫c?

1� ⌫2c?

◆

 KL(P,Qt�1)� µP c
? � ⌫2c?

2
� (⌫Qt�1 � ⌫c?) ·

⌫c?

1� ⌫2c?
(44)

 KL(P,Qt�1)� µP c
? � ⌫2c? ·

✓
1

2
+

�t�1

1� ⌫2c?

◆
,

where we have let ⌫Qt�1 = (1 + �t�1)⌫c? . In (44), we have used log(1� x)  �x. ⌅

I

Theorem 18. Suppose WLA holds at each iteration. Then using Qt as in (4) and ↵t as in
(9), we are guaranteed that KL(P,QT )  % after a number of iterations T satisfying:

T � 2 · KL(P,Q0)� %

�P �Q
.

Proof. The proof stems from the regular boosting regime, using log((1 + z)/(1� z)) � 2z
for z � 0. Better rates are possible using the high boosting regime, and in any case, Qt as
in (4) and ↵t as in (9) define a simple boosting algorithm to come up with an analytical
expression for QT that provably converges to P . ⌅



D.1. Proof of Theorem 19

We reformulate the theorem involving a new notation for readability purpose in the proof.
Theorem 19. Suppose WLA and WDA hold at each boosting iteration. Then after T
boosting iterations:

KL(P,QT ) 
✓
1� �P min{2, �Q/c?}

2(1 + �")

◆T

·KL(P,Q0).

Proof. We proceed in two steps, first showing how WDA bounds KL(P,Qt�1). We have
by definition log(dP/ dQt�1) + log "t = ct  c?, and so, taking expectations, we get
KL(P,Qt�1) + c?µ"t 

R
dPc? = c?. Hence,

KL(P,Qt�1)  c? � c?µ"t  (1 + �")c
?.

We now show the statement of the theorem. Suppose we are in the low-boosting regime
where ↵t is not clamped. In this case, since log((1 + z)/(1� z)) � 2z, we have

↵t �
⌫Qt�1

c?
� �r,

and it comes from (40)

KL(P,Qt)  KL(P,Qt�1)�
�r�P c?

2
.

In the high-boosting regime, we have immediately KL(P,Qt)  KL(P,Qt�1) � �P c?.
So, letting ⇢

def
= min{1, �r/2}, we get under the assumptions of the theorem KL(P,Qt) 

KL(P,Qt�1)� ⇢�P c?, and WDA yields in addition through D.1,

KL(P,Qt)  KL(P,Qt�1)�
⇢�P

1 + �"
·KL(P,Qt�1)

=

✓
1� min{1, �r/2}�P

1 + �"

◆
·KL(P,Qt�1)

=

✓
1� min{2, �r}�P

2(1 + �")

◆
·KL(P,Qt�1),

and we get the statement of the theorem by replacing �r by its expression, completing the
proof ⌅

D.1.1. PROOF OF THEOREM 23

The proof of Theorem 23 is essentially a rewriting of the proof of Theorem 15 and The-
orem 17, taking into account that we have just samples from distributions to compute
the estimates of edges and WLA. We split the proof in three steps, one that provides an
additional Lemma we shall need for the next steps, one for the non-clamped regime for ↵t,
one for the clamped regime for ↵t.

Step.1, We need the additional simple lemma, which is an exploitation of basic concentration
inequalities (McDiarmid, 1998, §3.1).



Lemma 20. For any 0 < �  1 and 0 <   1, suppose the weak learner samples at each
iteration t = 1, 2, ..., T , mP times P and mQ times Qt, such that the following constraints
hold:

mP �
1

2�P 2
log

4T

�
and mQ �

1

2�Q2
log

4T

�
.

Then there is probability � 1� � that for any t = 1, 2, ..., T , the current estimators µ̂P of
µP and ⌫̂Qt�1 of ⌫Qt�1 satisfy:

|µ̂P � µP |  �P , (45)
|⌫̂Qt�1 � ⌫Qt�1 |  �Q. (46)

From now on, we denote as E the proposition that both (45) and (46) hold for all T iterations,
for some 0 <   1 that will be computed later.

We have a slightly weaker version of Lemma 13, straightforward to prove from Lemma 13.

Lemma 21. Let ↵t
def
=

1
2c? log

⇣
1+⌫̂Qt�1

1�⌫̂Qt�1

⌘
. Then we have under E,

EQt�1 exp(↵tct) 
q

1� ⌫̂2Qt�1
+

�Q⌫̂Qt�1q
1� ⌫̂2Qt�1

.

Lemma 22. Fix any J � 0. Suppose that the two conditions hold:

EQt�1 exp(ct)  exp

✓
J

2

◆
, (47)

⌫̂Qt�1 
J

1 + J
. (48)

Then we have under E,

EQt�1 exp(ct) 
1q

1� ⌫̂2Qt�1

· EQt�1 exp(↵tct + J) · exp
 
�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!!
.

Proof. Because the proof mixes the use of ⌫̂Qt�1 and ⌫Qt�1 , we re-sketch the major lines
of the proof from Lemma 14. First, Jensen’s inequality still yields EQt�1 exp(↵tct) �
exp
�
�↵tc?⌫Qt�1

�
, so we in fact prove

1q
1� ⌫̂2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�
� EQt�1 exp(ct).



The chain of (in)equalities in (30)–(31) now becomes withe the use of E:

1q
1� ⌫̂2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�

= exp

0

@J + log

 
1q

1� ⌫̂2Qt�1

!
�

⌫Qt�1

2
log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!1

A

� exp

 
J + log

 
1q

1� ⌫̂2Qt�1

!
�

⌫̂Qt�1

2
log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!

� �Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!!

� exp

 
J � 1

4
·

2⌫̂2Qt�1

1� ⌫̂Qt�1

� �Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!!
.

Provided we have ⌫̂Qt�1  J/(1 + J), which is (48), we have similarly to Lemma 14,

2⌫̂2Qt�1

1� ⌫̂Qt�1

 2J.

Hence, it follows that

exp

 
�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!!
· 1q

1� ⌫2Qt�1

· exp
�
�↵tc

?⌫Qt�1 + J
�

� exp

✓
J � 1

4
· 2J

◆

= exp

✓
J

2

◆
,

and so to prove the lemma, we would just need

EQt�1 exp(ct)  exp

✓
J

2

◆
,

which is (47). ⌅



Now, instead of (35)–(36), we get

log EP "t  log

0

@ 1q
1� ⌫2Qt�1

· EQt�1 exp(↵tct + J)

1

A+
�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!

= log

0

@EQt�1 exp(↵tct)q
1� ⌫2Qt�1

· exp(J)

1

A+
�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!

 log

  
1 +

�Q⌫̂Qt�1

1� ⌫̂2Qt�1

!
exp(J)

!
+

�Q
4

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!

= J + log

 
1 +

�Q⌫̂Qt�1

1� ⌫̂2Qt�1

!
+

�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!
.

We get from (39)

KL(P,Qt)  KL(P,Qt�1)� ↵t(µP c
? � J � J 0

) (49)

with, because log(1 + x)  x,

J 0 def
= log

 
1 +

�Q⌫̂Qt�1

1� ⌫̂2Qt�1

!
+

�Q
2

log

 
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

!

= log

 
1 +

�Q⌫̂Qt�1

1� ⌫̂2Qt�1

!
+

�Q
2

log

 
1 +

2⌫̂Qt�1

1� ⌫̂Qt�1

!


�Q⌫̂Qt�1

1� ⌫̂2Qt�1

+
�Q⌫̂Qt�1

1� ⌫̂Qt�1

  ·
2�Q⌫̂Qt�1

1� ⌫̂Qt�1

Now, we would like from the PS property and (41) that we have:

⌫̂Qt�1 
µP c?

2 + µP c?
, (50)

so

J 0  �QµP c
?,

and we get from (49),

KL(P,Qt)  KL(P,Qt�1)� ↵t((1� �Q)µP c
? � J),

and if we fix again J = µP c?/2, we get this time

KL(P,Qt)  KL(P,Qt�1)� ↵t ·
✓
1

2
� �Q

◆
· µP c

?.



If we pick  satisfying

  min

⇢
1,

1

4�Q

�
, (51)

then we are guaranteed 1/2� �Q � 1/4 and so

KL(P,Qt)  KL(P,Qt�1)�
µP

8
log

✓
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

◆
, (52)

In the same way as for Theorem 15, we ensure (50) by noting that, since we are in the case
where we do not clamp ↵t, letting

µ̂c?
def
=

exp(2c?)� 1

exp(2c?) + 1
2 (0, 1),

then we again need to ensure ⌫c?  µP c?/(2 + µP c?), which again yields to the first PS
property.

We are not yet done as we now have to replace µP by its estimate, µ̂P , in (52). Under E,
we obtain

KL(P,Qt)  KL(P,Qt�1)�
µ̂P � �P

8
log

✓
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

◆
,

and under the (EWLA), we know that µ̂P � �P , so if we also put the constraint   1/2,
then �P  �P /2  µ̂P /2 and so:

KL(P,Qt)  KL(P,Qt�1)�
µ̂P

16
log

✓
1 + ⌫̂Qt�1

1� ⌫̂Qt�1

◆
,

as claimed. This ends the proof of Step.2 by remarking two additional facts: (i) we have not
changed the PS properties, and (ii) we have two constraints over  (also considering (51)),
which can be both satisfied by choosing (since �Q  1)  satisfying

  1

4
. (53)

Theorem 23. Suppose EWLA�,T holds. Then with probability of at least 1� �,

8t = 1, 2, ..., T : KL(P,Qt)  KL(P,Qt�1)��t,

where

�t
def
=

8
<

:

µ̂P

16 log

⇣
1+⌫̂Qt�1

1�⌫̂Qt�1

⌘
in the non-clamped regime,

µ̂P c?

2 + ⌫2c? ·
⇣

1
4 +

�̂t�1

1�⌫2
c?

⌘
otherwise.



Proof. We proceed in exactly the same way as we did for Theorem 17. We first remark that
Lemma 21 is still valid in this case, so that we still have

EQt�1 exp(ct) 
1� ⌫Qt�1⌫c?p

1� ⌫2c?
.

It is not hard to check that we then keep the exact same derivations as for Theorem 17,
yielding

KL(P,Qt)  KL(P,Qt�1)� µP c
? � ⌫2c? ·

✓
1

2
+

�t�1

1� ⌫2c?

◆
,

where we have let ⌫Qt�1 = (1 + �t�1)⌫c? . Remark that this time, �t�1 is not necessarily
positive since we do not have access to ⌫Qt�1 — this may happen when ⌫Qt�1 < ⌫̂Qt�1 .
What we do, to finish up Step.3, is replace �t�1 by the �̂t�1 for which we have ⌫̂Qt�1 =

(1+ �̂t�1)⌫c? , which we are then sure is going to satisfy �̂t�1 � 0 under the clamped regime
for ↵t. Under E, we have

�t�1 =
⌫Qt�1

⌫c?
� 1

�
⌫̂Qt�1

⌫c?
� 1�  · �Q

⌫c?

= �̂t�1 �  · �Q
⌫c?

yielding

KL(P,Qt)  KL(P,Qt�1)� µP c
? � ⌫2c? ·

 
1

2
�  · �Q

⌫c?(1� ⌫2c?)
+

�̂t�1

1� ⌫2c?

!
,

Suppose we pick  such that

  ⌫c?(1� ⌫c?)

2
. (54)

Since ⌫c? 2 [0, 1], we also have

  ⌫c?(1� ⌫2c?)

2
.

In this case, we obtain, since �Q  1,

KL(P,Qt)  KL(P,Qt�1)� µP c
? � ⌫2c? ·

 
1

4
+

�̂t�1

1� ⌫2c?

!
.

Finally, we also know under E that µP c? � µ̂P c? � �P c?. Under the (EWLA), we
know that µ̂P � �P , so if we again put the constraint   1/2 (satisfied from (53)), then
�P c?  �P c?/2  µ̂P c?/2 and so:

KL(P,Qt)  KL(P,Qt�1)�
µ̂P c?

2
� ⌫2c? ·

 
1

4
+

�̂t�1

1� ⌫2c?

!
,



which ends the proof of Step.3 once we remark that (53) and (54) are both satisfied if

 = min

⇢
1

4
,
⌫c?(1� ⌫c?)

2

�
=

⌫c?(1� ⌫c?)

2
= ?.

⌅

E. Experimental procedure

All models were trained using the ADAM optimiser with the default settings from FLUX.JL
(Innes, 2018): ⌘ = 0.001, �1 = 0.9, �2 = 0.999, " = 1e � 08. In all experiments we
divide the data into training (75%) and test (25%) sets, which we use to early stop on certain
experiments. The reset of the experimental conditions are presented in Table 14. Each
experiment was run 20 times.
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