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Abstract

There has recently been a steady increase in the
number iterative approaches to density estimation.
However, an accompanying burst of formal con-
vergence guarantees has not followed; all results
pay the price of heavy assumptions which are of-
ten unrealistic or hard to check. The Generative
Adversarial Network (GAN) literature — seem-
ingly orthogonal to the aforementioned pursuit
— has had the side effect of a renewed interest
in variational divergence minimisation (notably
f -GAN). We show how to combine this latter
approach and the classical boosting theory in su-
pervised learning to get the first density estima-
tion algorithm that provably achieves geometric
convergence under very weak assumptions. We
do so by a trick allowing to combine classifiers
as the sufficient statistics of an exponential fam-
ily. Our analysis includes an improved variational
characterisation of f -GAN.

1. Introduction

In the emerging area of Generative Adversarial Networks
(GAN’s) (Goodfellow et al., 2014) a binary classifier, called
a discriminator, is used learn a highly efficient sampler for a
data distribution P ; combining what would traditionally be
two steps — first learning the density function from a family
of densities, then fine-tuning a sampler — into one. Interest
in this field has sparked a series of formal inquiries and
generalisations describing GAN’s in terms of (among other
things) divergence minimisation (Nowozin et al., 2016; Ar-
jovsky et al., 2017). Using a similar framework to Nowozin
et al. (2016), Grover & Ermon (2018) make a preliminary
analysis of an algorithm that takes a series of iteratively
trained discriminators to estimate a density function1. The

1The Australian National University 2Data61 3The Uni-
versity of Sydney. Correspondence to: Zac Cranko
<zac.cranko@anu.edu.au>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1Grover & Ermon (2018) call this procedure “multiplicative
discriminative boosting”.

cost here, insofar as we have been able to devise, is that one
forgoes learning an efficient sampler (as with a GAN), and
must make do with classical sampling techniques to sample
from the learned density. We leave the issue of efficient sam-
pling from these density as an open problem, and instead
focus on analysing the densities learned with formal conver-
gence guarantees. Previous formal results have established
a range of guarantees, from qualitative convergence (Grover
& Ermon, 2018), to geometric convergence rates (Tolstikhin
et al., 2017), with numerous results in between (See §1.1).

Our starting point is fundamentally different, we learn a
density from a sequence of binary classifiers. By using a
similar weak learning assumptions in boosting, is shown to
be able to fit arbitrarily closely the target density.

With the advent of deep learning, such an approach appears
to be very promising, as the formal bounds we obtain yield
geometric convergence under assumptions arguably much
weaker than other similar works in this area

The rest of the paper and our contributions are as follows: in
§2, to make explicit the connections between classification,
density estimation, and divergence minimisation we re-intro-
duce the variational f -divergence formulation, and in doing
so are able to fully explain some of the underspecified com-
ponents of f -GAN (Nowozin et al., 2016); in §3, we relax
a number of the assumptions of Grover & Ermon (2018),
and then give both more general, and much stronger bounds
for their algorithm; in §4, we apply our algorithm to several
toy datasets in order demonstrate convergence and compare
directly with Tolstikhin et al. (2017); and finally, a final
section §5 concludes.

The appendices that follow in the supplementary material
are: §A, we compare our formal results with other related
works; §B, a geometric account of the function class in the
variational form of an f -divergence; §C, a further relax-
ation of the weak learning assumptions to some that could
actually be estimated experimentally and a proof that the
boosting rates are slightly worse but of essentially the same
order; §D, proofs for the main formal results from the pa-
per; and finally, §E, technical details for the settings of our
experiments.
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Table 1: Summary of related works and results in terms of (i) the components aggregated (”updates”) in the final density
(this density can be implicit), (ii) the rate to a given KL/JS value and (iii) the assumption(s).

Approach Updates Rate Assumption

Dai et al., 2016 kernel density estimate / particles ⌦(KL(P,Q0)) smoothness, Lipschitz, measure concentration, etc.
Tolstikhin et al., 2017 density ⌦(log JS(P,Q0)) updates close to optimal

Grover & Ermon, 2018 density none none

This work binary classifiers ⌦(logKL(P,Q0)) weak learning assumption on classifiers, weak dominance

1.1. Related work

In learning a density function iteratively, it is remarkable that
most previous approaches (Guo et al., 2016; Li & Barron,
2000; Miller et al., 2017; Rosset & Segal, 2002; Tolstikhin
et al., 2017; Zhang, 2003, and references therein) have in-
vestigated a single update rule, not unlike Frank–Wolfe
optimisation:

qt = h(↵tj(dt) + (1� ↵t)j(qt�1)), (1)

wherein h, j are some transformations that are in general
(but not always) the identity, (qt)t2N is the sequence of
density functions learnt, and (↵t, dt)t2N are the step sizes
and updates. The updates and step sizes are chosen so that
for some measure of divergence I(P,Qt) ! 0 as t ! 1,
where I(P,Qt) is the divergence of the true distribution
P from Qt. Grover & Ermon (2018) is one (recent) rare
exception to (1) wherein alternative choices are explored.
Few works in this area are accompanied by convergence
proofs, and even less provide convergence rates (Guo et al.,
2016; Li & Barron, 2000; Rosset & Segal, 2002; Tolstikhin
et al., 2017; Zhang, 2003).

To establish convergence and/or bound convergence by a
rate, all approaches necessarily make structural assumptions
or approximations on the parameters involved in (1). These
assumptions can be on the (local) variation of the divergence
(Guo et al., 2016; Naito & Eguchi, 2013; Zhang, 2003), the
true distribution or the updates (Dai et al., 2016; Grover
& Ermon, 2018; Guo et al., 2016; Li & Barron, 2000),the
step size (Miller et al., 2017; Tolstikhin et al., 2017), the
previous updates, (di)it ,(Dai et al., 2016; Rosset & Segal,
2002), and so on. Often in order to produce the best geo-
metric convergence bounds, the update is usually required
required to be close to the optimal one (Tolstikhin et al.,
2017, Cor. 2, 3). Table 1 compares the best results of the
leading three to our approach. We give for each of them
the updates aggregated, the assumptions on which rely the
results and the rate to come close to a fixed value of KL di-
vergence (Jensen-Shannon, JS, for (Tolstikhin et al., 2017)),
which is just the order of the number of iterations necessary,
hiding all other dependences for simplicity.

However, it must be kept in mind that for many of these
works (viz. Tolstikhin et al., 2017) the primary objective
is to develop an efficient black box sampler for P , in par-

ticular for large dimensions. Our objective however is to
focus on furtive lack of formal results on the densities and
convergence, instead leaving the problem of sampling from
these densities as an open question.

2. Preliminaries

In the sequel X is a topological space. Unnormalised Borel
measures on X are indicated by decorated capital letters, P̃ ,
and Borel probability measures by capital letters without
decoration, P . To a function f : X ! (�1,+1] we asso-
ciate another function f⇤, called the Fenchel conjugate with
f⇤

(x⇤
)

def
= supx2X hx⇤, xi � f(x). If f is convex, proper,

and lower semi-continuous, f = (f⇤
)
⇤. If f is strictly con-

vex and differentiable on int(dom f) then (f⇤
)
0
= (f 0

)
�1.

Theorem-like formal statements are numbered to be consis-
tent with their appearance in the appendix (§D) to which we
defer all proofs.

An important tool of ours are the f -divergences of infor-
mation theory (Ali & Silvey, 1966; Csiszár, 1967). The
f -divergence of P from Q is If (P,Q)

def
=

R
f(dP/dQ) dQ,

where it is assumed that f : R ! (�1,+1] is convex
and lower semi-continuous, and Q dominates P .2 Ev-
ery f -divergence has a variational representation (Reid
& Williamson, 2011) via the Fenchel conjugate:

If (P,Q) =

Z
(f⇤

)
⇤
✓
dP

dQ

◆
dQ

=

Z
sup
t>0

✓
t · dP

dQ
� f⇤

(t)

◆
dQ

= sup

u2(dom f⇤)X

Z ✓
u · dP

dQ
� f⇤ � u

◆
dQ

= sup

u2(dom f⇤)X

⇣
EP u� EQ f⇤ �u

⌘
, (2)

where the supremum is implicitly restricted to measurable
functions.

In contrast to the abstract family (dom f⇤
)
X , binary clas-

sification models tend to be specified in terms of density
2Common divergence measures such as Kullback–Liebler (KL)

and total variation can easily be shown to be members of this family
by picking f accordingly (Reid & Williamson, 2011). Several
examples of these are listed in Table 2.
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Table 2: Some common f -divergences and their variational components.

If f(t) f⇤(t⇤) f 0(t) (f⇤ � f 0)(t)

Kullback–Liebler KL t log t exp(t⇤ � 1) log t+ 1 t
Reverse KL rKL |t� 1| � log(�t⇤)� 1 �1/t log t� 1
Hellinger - (

p
t� 1)2 3(t⇤ � 1)�1 � 1 1� 1/t

p
t� 1

Pearson �2 (t� 1)2 t⇤(4 + t⇤)/4 2(t� 1) t2 � 1
GAN GAN t log t� (t+ 1) log(t+ 1) � log (1� exp(t⇤)) � log(t)� log(t+ 1) log(1 + t)

Table 3: Classification decision rules.

Collection R(X ) D(X ) C(X )
Decision rule d � 1 D � 1 � D c � 0

int(dom f⇤)XR(X )C(X )
f 0�

exp �

D(X )�� '�

Figure 4: Bijections for reparameterising (V).

ratios, binary conditional distributions, and binary classi-
fiers, these are respectively3

R(X )
def
= {d : X ! (0,1)}, D(X )

def
= {D : X ! (0, 1)},

C(X )
def
= {c : X ! R}.

It is easy to see that these sets equivalent, with the commonly
used connections

'(D)
def
=

D

1�D
, �(c)

def
=

1

1 + exp(�c)
,

(' � �) = exp,

which are illustrated in Figure 4.

It is a common result (Nguyen et al., 2010; Grover & Ermon,
2018; Nowozin et al., 2016) that the supremum in (2) is
achieved for f 0 � dP/dQ. It’s convenient to define the
reparameterised variational problem:

maximise
d2F

J(d)
def
= EP f 0 � d� EQ f⇤ � f 0 � d, (V)

where F ✓ R(X ), so that the unconstrained maximum is
achieved for dP/dQ. See §B for more details.

Example 1 (Neural classifier). A neural network with soft-
max layer corresponds to an element D 2 C(X ). To convert
this to an element d 2 R(X ) simply substitute the softmax

3While it might seem like there are certain inclusions here
(for example D(X ) ✓ R(X ) ✓ C(X )), these categories of func-
tions really are distinct objects when thought of with respect to
their corresponding binary classification decision rules (listed in
Table 3).

with an exponential activation function. This is just the
arrow C(X ) ! R(X ) in Figure 4.
Example 2 (f -GAN). The GAN objective (Goodfellow
et al., 2014) is implicitly solving the reparameterised varia-
tional problem (V):

sup

D2D(X )
(EP log(D) + EQ log(1�D))

= sup

D2D(X )
(EP (f

0 � ') �D � EQ(f
⇤ � f 0 � ') �D)

= GAN(P,Q),

where the function f is defined in Table 2, corresponding to
the GAN f -divergence. In our derivation it’s clear that (V)
together with the isomorphisms in Figure 4 give a simple,
principled choice for the “output activation function”, gf ,
of Nowozin et al. (2016).

3. Boosted density estimation

We fit distributions Qt over the space X incrementally using
the following update

Q̃t(dx) = d↵t
t (x) · Q̃i�1(dx),

Qt =
1

Zt
Q̃t, where Zt

def
=

Z
dQ̃t,

(3)

where ↵t ✓ [0, 1] is the step size (for reasons that will be
clear shortly), dt : X ! R+ is a density ratio, and we
fix the initial distribution Q0. After t updates we have the
distribution

Qt(dx)
def
=

1
R Qt

i=1 d
↵t
t dQ0

tY

i=1

d↵i
t (x)Q0(dx). (4)

Proposition 2. The normalisation factors can be written
recursively with Zt = Zt�1 · EQt�1 d

↵t
t .

Proposition 3. Let Qt be defined via (4) with a sequence of
binary classifiers c1, . . . , ct 2 C(X ), where ci = log di for
i 2 [t]. Then Qt is an exponential family distribution with
natural parameter ↵ def

= (↵1, . . . ,↵t) and sufficient statistic
c(x)

def
= (c1(x), . . . , ct(x)).

The sufficient statistic of our distributions are classifiers
that would hence be learned, along with the appropriate
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fitting of natural parameters. As explained in the proof,
the representation may not be minimal; however, without
further constraints on ↵, the exponential family is regular
(Barndorff-Nielsen, 1978). A similar interpretation of a
neural network in terms of parameterising the sufficient
statistics of a deformed exponential family is given by Nock
et al. (2017).

In the remainder of this section, we show how to learn the
density ratios di and choose the step sizes ↵i from observed
data to ensure convergence Qt !t P .

3.1. Helper results for the convergence of Qt to P

The updates dt learnt by solving (V) with Q replaced
by Qt�1. To make explicit the dependence of Qt on
↵t we will sometimes write dQ̃t|↵t

def
= d↵t

t dQ̃t�1 and
dQt|↵t

def
=

1
Zt

dQ̃t|↵t . Since Qt is an exponential family
(Proposition 3), we measure the divergence between P and
Qt using the KL divergence (Table 2), which is the canoni-
cal divergence of exponential families (Amari & Nagaoka,
2000).

Notice that we can write any solution to (V) as dt =

dP/dQt�1 · "t, where we call "t : X ! R+ the error
term due to the fact that it is determined by the difference
between the constrained and global solutions to (V). A more
detailed analysis of the quantity "t is presented in §B.
Lemma 5. For any ↵t 2 [0, 1], letting Qt, Qt�1 as in (3),
we have:

KL(P,Qt|↵t)  (1� ↵t)KL(P,Qt�1)

+ ↵t(log EP "t � EP log "t)
(5)

for all dt 2 R(X ), where "t
def
= (dP/dQt�1)

�1dt.
Remark 3. Grover & Ermon (2018) assume a uniform
error term, "t ⌘ 1. In this case Lemma 5 yields geometric
convergence

8↵t 2 [0, 1] : KL(P,Qt|↵t)  (1� ↵t)KL(P,Qt�1).

This result is significantly stronger than Grover & Ermon
(2018, Thm. 2), who just show the non-increase of the KL
divergence. If, in addition to achieving uniform error, we let
↵t = 1, then (5) guarantees Qt|↵t=1 = P .

We can express the update (4) and (5) in a way that more
closely resembles Frank–Wolfe update (1). Since "t takes
on positive values, we can identify it with a density ratio
involving a (not necessarily normalised) measure R̃t, as
follows

R̃t(dx)
def
= "t(x) · P (dx) and Rt

def
=

1R
dR̃t

· R̃t. (6)

Introducing R̃t allows us to lend some interpretation to
Lemma 5 in terms of the probability measure Rt. If we

assume X is a measure space and that all measures have
positive density functions (denoted by lowercase letters)
with respect to the ambient measure then

qt / d↵t
t qt�1 =

✓
p

qt�1
"t

◆↵t

qt�1 = r̃↵t
t q1�↵t

t�1 ,

or equivalently
9C > 0 : log qt = ↵t log rt + (1� ↵t)qt�1 � C.

This shows the manner in which (3) is a special case of (1).

Corollary 6. For any ↵t 2 [0, 1] and "t 2 [0,+1)
X ,

letting Qt as in (4) and Rt from (6). If Rt satisfies

KL(P,Rt)  �KL(P,Qt�1) (7)

for � 2 [0, 1], then

KL(P,Qt|↵t)  (1� ↵t(1� �))KL(P,Qt�1).

We obtain the same geometric convergence as Tolstikhin
et al. (2017, Cor. 2) for a boosted distribution Qt which is
not a convex mixture, which, to our knowledge, is a new
result. Corollary 6 is restricted to the KL divergence but we
do not need the technical domination assumption that Tol-
stikhin et al. (2017, Cor. 2) require. From the standpoint of
weak versus strong learning, Tolstikhin et al. (2017, Cor. 2)
require a condition similar to (7), that is, the iterate Rt has
to be close enough to P . It is the objective of the following
sections to relax this requirement to something akin to the
weak updates common in a boosting scheme.

3.2. Convergence under weak assumptions

In the previous section we have established two preliminary
convergence results (Remark 3, Corollary 6) that equal the
state of the art and/or rely on similarly, strong assumptions.
We now show how to relax these in favour of placing some
weak conditions on the binary classifiers learnt in Equation 2.
Define the two expected edges of ct (cf. Nock & Nielsen,
2008):

⌫Qt�1

def
=

1

c?
EQt�1 [�ct] and µP

def
=

1

c?
EP [ct], (8)

where c?
def
= maxt esssup |ct| and the maximum is implic-

itly over all previous iterations. Classical boosting results
rely on assumption on such edges for different kinds of
ct (Freund & Schapire, 1997; Schapire, 1990; Schapire &
Singer, 1999) and the implicit and weak assumption, that
we also make, that 0 < c? < 1, that is, the classifiers have
bounded and nonzero confidence. By construction then,
⌫Qt�1 , µP 2 [�1, 1]. The difference of sign of ct is due to
the decision rule for a binary classifier (Table 3), whereby
ct(x) � 0 reflects that ct classifies x 2 X as originating
from P rather than Qt�1, and vice versa for �ct(x).
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p

qt�1

� 1
c? · ct1

c? · ct

µP ⌫Qt�1

(a) WLA is satisfied since µP and ⌫Qt�1 are positive.

p

qt�1

� 1
c? · ct

1
c? · ct

µP ⌫Qt�1

(b) WLA is violated since ⌫Qt�1 is negative.

Figure 5: Illustration of WLA in one dimension with a classifier ct and its decision rule (indicated by the dashed grey line).
The red (resp. blue) area is the area under the ct/c? · p (resp. �ct/c? · qt�1) line (where p, qt�1 are corresponding density
functions), that is, µP (resp. ⌫Qt�1 ).

Assumption 1 (Weak learning assumption).

9�P , �Q 2 (0, 1] : µP � �P , ⌫Qt�1 � �Q. (WLA)

The weak learning assumption is in effect a separation con-
dition of P and Qt�1. That is, the decision boundary as-
sociated with ct correctly divides most of the mass of P
and most of the mass of Qt�1. This is illustrated in Fig-
ure 5. Note that if Qt�1 has converged to P , the weak
learning assumption cannot hold. This is reasonable since
as Qt�1 ! P it becomes harder to build a classifier to tell
them apart. We note that classical boosting would rely on a
single inequality for the weak learning assumption (involv-
ing the two edges) (Schapire & Singer, 1999) instead of two
as in WLA. The difference is, however, superficial as we
can show that both assumptions are equivalent (Lemma 7
in §D). A boosting algorithm would ensure, for any given
error % > 0, that there exists a number of iterations T for
which we do have KL(P,QT )  %, where T is required
to be polynomial in all relevant parameters, in particular
1/�P , 1/�Q, c?,KL(P,Q0). Notice that we have to put
KL(P,Q0) in the complexity requirement since it can be
arbitrarily large compared to the other parameters.

Let

↵t
def
= min

⇢
1,

1

2c?
log

✓
1 + ⌫Qt�1

1� ⌫Qt�1

◆�
. (9)

Theorem 18. Suppose WLA holds at each iteration. Then
using Qt as in (4) and ↵t as in (9), we are guaranteed
that KL(P,QT )  % after a number of iterations T satisfy-
ing:

T � 2 · KL(P,Q0)� %

�P �Q
.

There is more to boosting: the question naturally arises
as to whether faster convergence is possible. A simple
observation allows to conclude that it should require more

than just WLA. Define

µ"t
def
=

1

c?
· EP log "t,

the normalised expected log-density estimation error. Then
we have µP = (1/c?) ·KL(P,Qt�1) + µ"t , so controlling
µP does not give substantial leverage on KL(P,Qt) because
of the unknown µ"t . We show that an additional weak
assumption on µ"t is all that is needed with WLA, to obtain
convergence rates that compete with Tolstikhin et al. (2017,
Lem. 2) but using much weaker assumptions. We call this
assumption the Weak Dominance Assumption (WDA).
Assumption 2 (Weak Dominance Assumption).

9�" > 0, 8t � 1 : µ"t � ��" (WDA)

The assumption WDA takes its name from the observation
that we have

ct = log dt = log

✓
dP

dQt�1
· "t

◆
and |ct|  c?,

so by ensuring that "t is going to be non-zero P -almost
everywhere, WDA states that nowhere in the support do
we have Qt�1 with respect to P . This also looks like a
weak finite form of absolute continuity of P with respect to
Qt�1, which is not unlike the boundedness condition on the
log-density ratio of Li & Barron (2000, Thm. 1).

Provided WLA and WDA hold at each iteration, Theorem 19
yields geometric boosting convergence rates.
Theorem 19. Suppose WLA and WDA hold at each boost-
ing iteration. Then after T boosting iterations:

KL(P,QT ) 
✓
1� �P min{2, �Q/c?}

2(1 + �")

◆T

·KL(P,Q0).

Note that the bound obtained in Theorem 19 is, in fact,
logarithmic in KL(P,Q0). That is have KL(P,QT )  %
when

T � 2(1 + �")

�P min{2, �Q/c?}
log

✓
KL(P,Q0)

%

◆
.
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4. Experiments

Let t 2 {0, . . . , T}. Our experiments mostly take place in
X def

= R2, where we use a simple neural network classifier
ct 2 C(X ), which we train using cross entropy error by
post composing it with the logistic sigmoid: � � ct. After
training ct we transform it into to a density ratio using an
exponential function: dt

def
= exp � ct (cf. §2) which we use

to update Qt�1.

In most experiments we train for T > 1 rounds therefore
we need to sample from Qt�1.4 Our setting here is sim-
ple and so this is easily accomplished using random walk
Metropolis–Hastings. As noted in the introduction, in more
sophisticated domains it remains an open question how to
sample effectively from a density of the form (4), in particu-
lar for a support having large dimensionality.

Since our classifiers ct are the outputs of a neural network
they are unbounded, this violates the assumptions of §3,
therefore in most cases we use the naive choice ↵t

def
= 1/2.

Metrics At each t 2 {0, . . . , T} we estimate compute
KL(P,Qt), (normalised) Negative Log-Likelihood (NLL)

1
EP log p EP log qt, and accuracy EP Jct > 1

2K. Note that we
normalise NLL by its true value to make this quantity more
interperable. The KL divergence is computed using numeri-
cal integration, and as such it can be quite tricky to ensure
stability when running stochastically varying experiments,
and becomes very hard to compute in dimensions higher
than n = 2. In these computationally difficult cases we use
NLL, which is much more stable by comparison. We plot
the mean and 95% confidence intervals for these quantities.

4.1. Results

Complete details about the experimental procedures includ-
ing target data and network architectures are deferred to the
supplementary material (§E).

4.1.1. ERROR AND CONVERGENCE
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Figure 6: As KL(P,Qt) ! 0 it becomes harder and harder
to train a good classifier ct.

4It is easy to pick Q0 to be convenient to sample from.

In order to minimise the divergence of Qt from P we need to
train a sufficiently good classifier ct such that we can build
a good approximation to dP/dQt�1. Naturally as Qt ! P
it should become harder and harder to tell the difference
between a sample from P and Qt with high probability.

This is exactly what we observe. In Figure 6 we train a clas-
sifier with the same neural network topology as in §4.1.2.
The test accuracy over the course of training before each
t is plotted. As KL(P,Qt) ! 0 samples from P and Qt

become harder and harder to tell apart and the best accu-
racy we can achieve over the course of training decreases,
approaching 1/2. Dually, the higher the training accuracy
achieved by ct, the greater the reduction from KL(P,Qt�1)

to KL(P,Qt), thus the decreasing saw-tooth shape in Fig-
ure 6 is characteristic of convergence.

4.1.2. ACTIVATION FUNCTIONS

To look at the effect of the choice of activation function we
train the same network topology, for a set of activation func-
tions: Numerical results trained to fit a ring of Gaussians are
plotted in Figure 8a, contour plots of some of the resulting
densities are presented Figure 7. All activation functions
except for Softplus performed about the same by the end of
the sixth round, with ReLU and SELU being the marginal
winners. It is also interesting to note the narrow error rib-
bons on tanh compared to the other functions, indicating
more consistent training.

(a) P (b) ReLU

(c) tanh (d) Softplus

Figure 7: The effect of different activation functions, mod-
elling a ring of Gaussians. The “petals” in the ReLU condi-
tion are likely due to the linear hyperplane sections the final
network layer being shaped by the final exponential layer.
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4.1.3. NETWORK TOPOLOGY

To compare the effect of the choice of network architecture
we fix activation function and try a variety of combinations
of network architecture, varying both the depth and the
number nodes per layer. For this experiment the target
distribution P is a mixture of 8 Gaussians that are randomly
positioned at the beginning of each run of training. Let
m⇥ n denote a fully connected neural network ct with m
hidden layers and n nodes per layer. After each hidden layer
we apply the SELU activation function.

Numerical results are plotted in Figure 8b. Interestingly
doubling the nodes per layer has little benefit, showing
only moderate advantage. By comparison, increasing the
network depth allows us to achieve over a 70% reduction in
the minimal divergence we are able to achieve.
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Figure 8: KL divergence for a variety of activation functions
and architectures over six iterations of boosting.

4.1.4. CONVERGENCE ACROSS DIMENSIONS

For this experiment we vary the dimension n 2 {2, 4, 6} of
the space X = Rn using a neural classifier ct that is trained
without regard for overfitting and look at the convergence
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Figure 9: Convergence in more dimensions.

of NLL (Figure 9). After we achieve the optimal NLL
of 1, we observe that NLL becomes quite variable as we
begin to overfit. Secondly overfitting the likelihood becomes
harder as we increase the dimensionality, taking roughly
two times the number of iterations to pass NLL = 1 in the
n = 4 condition as the n = 2 condition. We conjecture that
not overfitting is a matter of early stopping boosting, in a
similar way as it was proven for the consistency of boosting
algorithms (Bartlett & Traskin, 2006).

4.1.5. COMPARISON WITH TOLSTIKHIN ET AL. (2017)

To compare the performance of our model (here called DIS-
CRIM) with ADAGAN we replicate their Gaussian mixture
toy experiment,5 fitting a randomly located eight component
isotropic Gaussian mixture where each component has con-
stant variance. These are sampled using the code provided
by Tolstikhin et al. (2017).

We compute the coverage metric6 of Tolstikhin et al. (2017):
C(P,Q)

def
= P (lev>� q), where Q(lev>� q) = , and  2

[0, 1]. That is, we first find � to determine a set where most
of the mass of Q lies, lev>� q, then look at how much of
the mass of P resides there.

Results from the experiment are plotted in Figure 10. Both
DISCRIM and ADAGAN converge closely to the true NLL,
and then we observe the same characteristic overfitting in
previous experiments after iteration 4 (Figure 10a). It is also
interesting that this also reveals itself in a degradation of the
coverage metric Figure 10b.

Notably ADAGAN converges tightly, with NLL centred
around its mean, while DISCRIM begins to vary wildly.
However the AdaGAN procedure includes a step size that
decreases with 1/t — thereby preventing overfitting —
whereas DISCRIM uses a constant step size of 1/2. Sug-
gesting that a similarly decreasing procedure for ↵t may
have desirable properties.

4.1.6. COMPARISON WITH KDE

In this experiment we compare our boosted densities with
Kernel Density Estimation (KDE). For this experiment we
train a deep neural network with three hidden layers. The
step size ↵ is selected to minimise NLL by evaluating the
training set at 10 equally spaced points over [0, 1]. We
compare the resultant density after T = 2 rounds with a

5This is the experiment gaussian gmm.py at
github.com/tolstikhin/adagan

6The coverage metric C can be a bit misleading since any
density Q that covers P will yield high C(P,Q), no matter how
spread out it is. This is the case at t = 0 when we initially fit
Q0. A high coverage metric, however, is sufficient to claim that
a model Q has not ignored any of the mass of P when combined
with another metric such as NLL. That is, a high C is a necessary
condition for mode-capture.
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Figure 10: Comparing the performance of DISCRIM and
ADAGAN.

variety of kernel density estimators, with bandwidth selected
via the Scott/Silverman rule.7

Results from this experiment are displayed in Figure 11 (in
the supplementary material). On average Q1 fits the target
distribution P better than all but the most efficient kernels,
and at Q2 we begin overfitting, which aligns with the ob-
servations made in §4.1.4. We note that his performance is
with a model with around 200 parameters, while the kernel
estimators each have 2000 — i.e. we achieve KDE’s perfor-
mances with models whose size is the tenth of KDE’s. Also,
in this experiment ↵t is selected to minimise NLL, however
it is not hard to imagine that a different selection criteria for
↵t would yield better properties with respect to overfitting.

4.2. Summary

We summarise here some key experimental observations:

• Both the activation functions and network topology
have a large effect on the ease of training and the qual-
ity of the learned density QT with deeper networks
with fewer nodes per layer yielding the best results
(§4.1.2, §4.1.3).

• When the networks ct are trained long enough we ob-
7The Scott and Silverman rules yield identical bandwidth se-

lection criteria in the two-dimensional case.

serve overfitting in the resulting densities QT and in-
stability in the training procedure after the point of
overfitting (§4.1.4 §4.1.6, §4.1.5), indicating that a pro-
cedure to take ↵t ! 0 should be optimal.

• We were able to match the performance of kernel den-
sity estimation with a naive procedure to select ↵t

(§4.1.6).

• We were able to at least match the performance of
ADAGAN with respect to density estimation (§4.1.5).

Finally, while we have used KDE as a point of comparison
of algorithm, there is no reason why the two techniques
could not be combined. Since KDE is a closed form mixture
distribution that’s quite easy sampled, there is no reason why
one couldn’t build some kind of kernel density distribution
and use this for Q0 which one could refine with a neural
network.

5. Conclusion

The prospect of learning a density iteratively with a boosting-
like procedure has recently been met with significant atten-
tion. However, the success these approaches hinge on the
existence of oracles satisfying very strong assumptions.

By contrast, we have shown that a weak learner in the orig-
inal sense of Kearns (1988) is sufficient to yield compara-
ble or better convergence bounds than previous approaches
when reinterpreted in terms of learning a density ratio. To
derive this result we leverage a series of related contributions
including 1) a finer characterisation of f -GAN (Nowozin
et al., 2016), and 2) a full characterisation we learn, in terms
of an exponential family.

Experimentally, our approach shows promising results for
with respect to the capture of modes, and significantly out-
performs AdaGAN during the early boosting iterations using
a comparatively very small architecture. Our experiments
leave open the challenge to obtain a black box sampler for
domains with moderate to large dimension. We conjecture
that the exponential family characterisation should be of
significant help in tackling this challenge.
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