
Anytime Online-to-Batch, Optimism and Acceleration

Ashok Cutkosky 1

Abstract
A standard way to obtain convergence guaran-
tees in stochastic convex optimization is to run
an online learning algorithm and then output the
average of its iterates: the actual iterates of the
online learning algorithm do not come with indi-
vidual guarantees. We close this gap by introduc-
ing a black-box modification to any online learn-
ing algorithm whose iterates converge to the op-
timum in stochastic scenarios. We then consider
the case of smooth losses, and show that combin-
ing our approach with optimistic online learning
algorithms immediately yields a fast convergence
rate of O(L/T 3/2 + σ/

√
T) on L-smooth prob-

lems with σ2 variance in the gradients. Finally,
we provide a reduction that converts any adaptive
online algorithm into one that obtains the optimal
accelerated rate of Õ(L/T 2 + σ/

√
T), while still

maintaining Õ(1/
√
T) convergence in the non-

smooth setting. Importantly, our algorithms adapt
to L and σ automatically: they do not need to
know either to obtain these rates.

1. Online-to-Batch Conversions
We consider convex stochastic optimization problems,
where our objective is to minimize some convex function
L : D → R where D is some convex domain. We do not
have true access to L, however. Instead, we have a stochas-
tic gradient oracle that given a point x ∈ D will provide a
random value g such that E[g] = ∇L(x). Our objective is
to use this noisy information to optimize L.

A simple and extremely effective method for solving
stochastic optimization problems is through online learn-
ing and online-to-batch conversion (Shalev-Shwartz, 2011;
Cesa-Bianchi et al., 2004). These techniques require re-
markably few assumptions about the nature of the expected
loss or the stochasticity in the system and yet still obtain

1Google Research, California, USA. Correspondence to: Ashok
Cutkosky <ashok@cutkosky.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

optimal or near-optimal guarantees. This has helped fuel
the widespread adoption of online learning algorithms as
the method-of-choice in training machine learning models.
Briefly, an online learning algorithm accepts a sequence of
convex loss functions `1, . . . , `T and outputs a sequence of
iterates w1, . . . , wT ∈ D where D is some convex space
and wt is output before the algorithm observes `t. Perfor-
mance is measured by the regret:

RT (x?) =

T∑
t=1

`t(wt)− `t(x?)

A standard goal in online learning is to achieve sublinear
regret, which means that limT→∞RT (x?)/T = 0. This
indicates that the algorithm is doing just as well “on average”
as the fixed benchmark point x?. In fact, most algorithms
obtain non-asymptotic guarantees of the form RT (x?) =
O(
√
T), so that RT (x?)/T = O(1/

√
T).

Online learning algorithms often adopt an adversarial model,
in which no relationship is posited between `t, but in
our stochastic optimization problem we know that the `t
are generated by some random process. This is where
the Online-to-Batch conversion technique comes in (Cesa-
Bianchi et al., 2004). The classic argument is as follows: Set
`t(x) = 〈gt, x〉 where gt is a stochastic gradient evaluated
at wt. Then observe L(wt)−L(x?) ≤ E[〈gt, wt−x?〉] and
apply Jensen’s inequality to obtain:

E

[
L

(∑T
t=1 wt
T

)
− L(x?)

]
≤ E[RT (x?)]

T

We therefore output x̂ =
∑T

t=1 wt

T as an estimate of x?,
and so long as the algorithm obtains sublinear regret,
L(x̂) − L(x?) will approach zero in expectation. In fact,
with RT (x?) = O(

√
T), one obtains a convergence rate

O(1/
√
T), which is often statistically optimal.

One drawback of the online-to-batch conversion is that the
iterates wt produced by the algorithm (where the noisy gra-
dients are actually evaluated) do not necessarily converge to
the optimal loss value. In fact, there is typically very little
known about the behavior of any individual wt. This is aes-
thetically unsatisfying and may even reduce performance.
For example, optimistic online algorithms can take advan-
tage of stability in the gradients, performing well when

Anytime Online-to-Batch, Optimism and Acceleration

gt−1 ≈ gt. We hope for this behavior because intuitively
the iterates should converge to x? and so become closer
together. Unfortunately, because actually we usually have
few guarantees about the individual iterates wt, it may not
hold that gt−1 ≈ gt. We would like to make intuition match
theory by enforcing some kind of stability in the iterates.

We address this problem by providing a black-box online-to-
batch conversion: the iterates xt produced by our algorithm
converge in the sense that L(xt) → L(x?) (Section 2).
We call this property anytime, because the last iterate is
always a good estimate of x? at any time. Our reduction
is quite simple, and bears strong similarity to the classical
one. It stabilizes the iterates xt, and we can exploit this
stability when L is smooth. For example, when applied
to an optimistic online algorithm, our reduction can lever-
age stability to improve the convergence rate on smooth
losses from O(L/T) to O(L/T 3/2) (Section 4.1). Further,
our reduction also has a surprising connection to the linear
coupling framework for accelerated algorithms (Allen-Zhu
& Orecchia, 2014). We develop this connection to pro-
vide an algorithm that obtains a near-optimal (up to log
factors) Õ(L/T 2 + σ/

√
T) convergence rate for stochastic

smooth losses with σ2 = Var(gt) without knowledge of L
or σ while still guaranteeing Õ(1/

√
T) convergence rate for

non-smooth losses (Section 4.2). In addition to these new
algorithms, we feel that our analysis itself is interesting for
its appealingly simplicity.

1.1. Notation and Definitions

We frequently use the compressed-sum notation α1:t =∑t
i=1 αi for any indexed variables αt. A convex function f

is L-smooth if f(x+ δ) ≤ f(x) + 〈∇f(x), δ〉+ L
2 ‖δ‖

2 for
and x, δ, and f is µ strongly convex if f(x+ δ) ≥ f(x) +
〈∇f(x), δ〉 + µ

2 ‖δ‖
2 for all x, δ. Given a convex function

f we say that g is a subgradient of f at x, or g ∈ ∂f(x) if
f(y) ≥ f(x) + 〈g, y − x〉 for all y. ∇f(x) ∈ ∂f(x) if f is
differentiable.

2. Anytime Online-to-Batch
In this section we provide our anytime online-to-batch con-
version. Our algorithm is actually nearly identical to the
classic online to batch: we set the tth iterate xt to be the av-
erage of the first t iterates of some online learning algorithm
A. The key difference is that we evaluate the stochastic gra-
dient oracle at xt, rather than the iterates provided byA. As
a result, the outputs of A in some sense exist only for analy-
sis and are not directly visible outside the algorithm. Further,
we incorporate weights αt into our conversion. Inspired by
(Levy, 2017), these weights play a role in achieving faster
rates on smooth losses, as well as removing log factors on
strongly-convex losses. We provide specific pseudocode
and analysis in Algorithm 1 and Theorem 1 below.

Algorithm 1 Anytime Online-to-Batch
Input: Online learning algorithmsAwith convex domain
D. Non-negative weights α1, . . . , αT with α1 > 0.
Get initial point w1 ∈ D from A.
for t = 1 to T do
xt ←

∑t
i=1 αiwt

α1:t
.

Play xt, receive subgradient gt.
Send `t(x) = 〈αtgt, x〉 to A as the tth loss.
Get wt+1 from A.

end for
return xT .

Theorem 1. Suppose g1, . . . , gt satisfy E[gt|xt] ∈ ∂L(xt)
for some function L and gt is independent of all other quan-
tities given xt. Let RT (x?) be a bound on the linearized
regret of A:

RT (x?) ≥
T∑
t=1

〈αtgt, wt − x?〉

Then for all x? ∈ D, Algorithm 1 guarantees:

E[L(xT)− L(x?)] ≤ E

[
RT (x?)∑T
t=1 at

]

Further, suppose that D has diameter B = supx,y∈D ‖x−
y‖ and ‖gt‖? ≤ G with probability 1 for some G. Then
with probability at least 1− δ,

L(xT)− L(x?) ≤
RT (x?) + 2BG

√∑T
t=1 α

2
t log(2/δ)∑T

t=1 αt

Proof. First, observe that

αt(xt − wt) = α1:t−1(xt−1 − xt)

where by mild abuse of notation we define α1:0 = 0 and let
x0 be an arbitrary element of D.

Now we use the standard convexity argument to say:

E

[
T∑
t=1

αt(L(xt)− L(x?))

]
≤ E

[
T∑
t=1

αt〈gt, xt − x?〉

]

= E

[
T∑
t=1

αt〈gt, xt − wt〉+ αt〈gt, wt − x?〉

]

≤ E [RT (x?)] + E

[
T∑
t=1

α1:t−1〈gt, xt−1 − xt〉

]

Next we use convexity again to argue E[〈gt, xt−1 −
xt〉] ≤ E[L(xt−1) − L(xt)], and then we subtract

Anytime Online-to-Batch, Optimism and Acceleration

E[
∑T
t=1 αtL(xt)] from both sides:

E

[
T∑
t=1

αt(L(xt)− L(x?))

]

≤ E [RT (x?)] + E

[
T∑
t=1

α1:t−1(L(xt−1)− L(xt))

]
E [−α1:TL(x?)]

≤ E [RT (x?)] + E

[
T∑
t=1

α1:t−1L(xt−1)− α1:tL(xt)

]
Finally, telescope the above sum to conclude:

E [α1:TL(xT)− α1:TL(x?)] ≤ E [RT (x?)]

from which the in-expectation statement of the Theorem
follows.

For the high-probability statement, let Ht−1 be the history
gt−1, xt−1, . . . , g1, x1. Let Gt = E[gt|Ht−1, xt, wt]. Note
that Gt is still a random variable, and satisfies Gt ∈ ∂L(xt).
Next, let εt = αt〈Gt, wt−x?〉−αt〈gt, wt−x?〉. Then we
have E[εt|Ht−1, xt, wt] = 0 and:

T∑
t=1

εt =

T∑
t=1

αt〈Gt, xt − x?〉 −
T∑
t=1

αt〈gt, xt − x?〉

|εt| ≤ 2αtBG with probability 1

So by the Azuma-Hoeffding bound, with probability at least
1− δ :

T∑
t=1

εt ≤ 2BG

√√√√ T∑
t=1

α2
t log(2/δ)

Therefore with probability at least 1− δ, we have

T∑
t=1

αt(L(xt)− L(x?)) ≤
T∑
t=1

αt〈Gt, xt − x?〉

≤
T∑
t=1

αt〈Gt, xt − wt〉+

T∑
t=1

αt〈gt, wt − x?〉+

T∑
t=1

εt

≤
T∑
t=1

αt〈Gt, xt − wt〉+RT (x?) + 2BG

√√√√ T∑
t=1

α2
t log

(
2

δ

)

Now an identical argument to the in-expectation part of the
Theorem (but without need for taking expectations) yields:

L(xT)− L(x?) ≤
RT (x?) + 2BG

√∑T
t=1 α

2
t log(2/δ)∑T

t=1 αt

As a corollary, we observe that the simple setting of αt = 1
for all T yields a direct analog of the classic online-to-batch
conversion guarantee:

Corollary 1. Under the assumptions of Theorem 1, set
αt = 1 for all t. Then RT (x?) =

∑T
t=1〈gt, wt − x?〉,

which is the usual un-weighted regret. We have

E[L(xT)− L(x?)] ≤ E
[
RT (x?)

T

]
Further, xT = 1

T

∑T
t=1 wt.

Corollary 1 is quite similar to the classic online-to-batch
conversion result: in both cases, the average of the online
learner’s predictions has excess loss bounded by the average
regret. Again, the critical difference is that in Algorithm
1, the actual outputs where the gradients are evaluated are
the averaged outputs of the online learner. Thus the loss of
the iterates converges to the minimum loss for Algorithm 1,
which is not the case for the standard reduction.

In addition to this anytime online-to-batch result, we show
below that Algorithm 1 also maintains low regret:

Corollary 2. Under the assumptions of Theorem 1, let
RM (x?) ≥ maxtRt(x

?). Then we have

E

[
T∑
t=1

αt(L(xt)− L(x?))

]

≤ E
[
RM (x?)

(
1 + log

(
α1:T

α1

))]
Proof. From Theorem 1 we have

E[αt(L(xt)− L(x?))] ≤ E
[
αtRt(x

?)

α1:t

]
≤ E

[
αtR

M
t (x?)

α1:t

]
Then observe that log(a) + b/(a+ b) ≤ log(a+ b) and sum
over t to conclude the Corollary.

Recall that essentially all online learning regret bounds are
non-decreasing in T , so that maxtRt(x

?) = RT (x?). Thus
the regret of Algorithm 1 is only a logarithmic factor worse
than the regret of the original online learner. Moreover, in
the typical case that Rt(x?) = O(

√
t), a trivial modifica-

tion of the above proof shows that E[L(xT) − L(x?)] ≤
O(1/

√
T), so that in many cases one should not even incur

the log factor.

In fact, the anytime result is significantly more powerful
than a standard regret bound because it provides point-wise
bounds. This allows us to achieve a variety of different
weighted regret bounds simultaneously:

Corollary 3. Under the assumptions of Theorem 1, further
suppose thatRT (x?) is non-decreasing in T and set αt = 1.

Anytime Online-to-Batch, Optimism and Acceleration

Let st = tk for some constants k > 0 (note that Algorithm
1 is not aware of st). Then

E

[∑T
t=1 st(L(xt)− L(x?))

s1:T

]
≤ O

(
RT (x?)

T

)

Proof. Observe s1:t = Θ(tk+1) so that E[st(L(xt) −
L(x?))/s1:T] ≤ O(E[RT (x?)]tk−1/T k+1), and sum over
t.

3. General Analysis
In this section we provide a more general version of our
online-to-batch reduction. The previous analysis appears
to critically rely on linearized regret E[

∑T
t=1 αt(L(xt) −

L(x?))] ≤ E[
∑T
t=1 αt〈gt, xt − x?〉]. This inequality may

be tight for general convex losses, but in many cases we
may want to take advantage of some known non-linearity
in the losses. For example, when the loss function is µ-
strongly convex, one can use the inequalityL(xt)−L(x?) ≤
`t(xt) − `t(x

?) where `t(x) = 〈∇L, x〉 + µ
2 ‖x − xt‖2,

leading to a O(log(T)/T) convergence rate rather than
O(1/

√
T) (Hazan et al., 2007). In order to incorporate

this information in our framework, we propose Algorithm
2.

Algorithm 2 modifies Algorithm 1 by considering an ora-
cle that produces losses `t rather than stochastic gradients
gt. Specifically, we will require `t that are convex and
lower-bound L in expectation. This generalizes the linear
losses of Algorithm 1, and it may often be possible to con-
struct nonlinear `t via only a gradient oracle, such as in the
strongly-convex case. Our strategy for using these losses is
essentially unchanged from that of Algorithm 1, but now our
analysis is slightly more delicate since we cannot exploit
the nice algebraic properties of linearity.

Algorithm 2 General Anytime Online-to-Batch
Input: Online learning algorithmsAwith convex domain
D. Non-negative weights α1, . . . , αT with α1 > 0
Get initial point w1 ∈ D from A.
for t = 1 to T do
xt ←

∑t
i=1 αiwi

α1:t

Play xt, compute loss `t.
Send αt`t(x) to A as the tth loss.
Get wt+1 from A.

end for
return xT .

Theorem 2. Suppose `t is convex and satisfies L(xt) −
L(x) ≤ E[`t(xt) − `t(x)|xt] for all t and for all x. Then

with

RT (x?) =

T∑
t=1

αt`t(wt)− αt`t(x?t)

Algorithm 2 obtains

E[L(xT)− L(x?)] ≤ E

[
RT (x?)∑T
t=1 αt

]

Proof.

T∑
t=1

αt(`t(xt)− `t(x?t))

≤
T∑
t=1

αt(`t(xt)− `t(wt)) +

T∑
t=1

αt(`t(wt)− `t(x?t))

= RT (x?) +

T∑
t=1

αt(`t(xt)− `t(wt)) (1)

Now observe that xt = α1:t−1xt−1+αtwt

α1:t−1
. Therefore by

Jensen’s inequality we have

`t(xt) ≤
α1:t−1`t(xt−1) + αt`t(wt)

α1:t

αt`t(xt)− αt`t(wt) ≤ α1:t−1(`t(xt−1)− `t(xt))

Now plug this into (1):

T∑
t=1

αt(`t(xt)− `t(x?))

≤ RT (x?) +

T∑
t=1

α1:t−1`t(xt−1)− α1:t−1`t(xt)

Now observe that E[`t(xt−1) − `t(xt)] ≤ E[L(xt−1) −
L(xt)]. So taking expectations yields:

E

[
T∑
t=1

αt(L(xt)− L(x?t))

]

≤ E

[
RT (x?) +

T∑
t=1

α1:t−1(L(xt−1)− L(xt))

]
Now the rest of the proof is identical to that of Theorem
1.

3.1. Strongly Convex losses

In this section we apply the more general Algorithm 2 to
µ-strongly-convex losses. We recover standard convergence
rates using only a gradient oracle and knowledge of the
strong-convexity parameter µ. We note that similar results
also apply to exp-concave losses or other cases with lower-
bounded Hessians.

Anytime Online-to-Batch, Optimism and Acceleration

Corollary 4. Suppose D has diameter B, ‖gt‖ ≤ G
with probability 1, and A is Follow-the-Leader: wt+1 =
argmin

∑t
i=1 `i(w). SupposeL is µ-strongly convex and we

set `t(x) = 〈gt, x〉+ µ
2 ‖x−xt‖

2 where E[gt|xt] = ∇L(xt).
Let αt = 1 for all t. Then we have

RT (x?) ≤ (µB +G)2(log(T) + 1)

2µ

and

E[L(xT)− L(x?)] ≤ (µB +G)2(log(T) + 1)

2µT

Proof. The fact thatL(xt)−L(x?) ≤ E[`t(xt)−`t(x?)|xt]
follows from strong-convexity. Observe that ‖∇`t(wt)‖ =
‖gt+µ(wt−xt)‖ ≤ G+µB so that `t isG+µB-Lipschitz.
Then the bound onRT follows from standard analysis of the
follow-the-leader algorithm using the fact that

∑t
i=1 `i(w)

is tµ-strongly convex (McMahan, 2014):

RT (x?) ≤
T∑
t=1

‖∇`t(wt)‖2

2tµ

and then use
∑t
i=1 1/i ≤ log(T) + 1.

This corollary provides the anytime analog of the standard
online-to-batch result for strongly-convex losses. However,
it is well-known that in the stochastic case the logarithmic
factor is unnecessary. Prior work has removed it via diverse
mechanisms, including restarting schemes (Hazan & Kale,
2014) and tail-averaging (Rakhlin et al., 2012). Here we use
the weights αt to easily remove the log factor, similar to the
analogous scheme for the classic online-to-batch conversion
(Lacoste-Julien et al., 2012; Bubeck et al., 2015).

Corollary 5. Under the assumptions of Corollary 4, sup-
pose that αt = t for all t. Then we have

RT (x?) ≤ T (µB +G)2

µ

and

E[L(xT)− L(x?)] ≤ 2(µB +G)2

µ(T + 1)

Proof. In this case, αt`t is t(µB + G)-Lipschitz and∑t
i=1 αi`i is α1:tµ = T (T+1)µ

2 strongly convex. Thus the
regret of Follow-the-Leader is bounded by

RT (x?) ≤
T∑
t=1

‖t∇`t(wt)‖2

t(t+ 1)µ

≤ T (µB +G)2

µ

Now divide by α1:T = T (T + 1)/2 to see the claim.

4. Adaptivity and Smoothness
Many so-called “adaptive” online algorithms obtain regret

bounds of the form RT (x?) ≤ O

(
ψ(x?)

√∑T
t=1 ‖gt‖2

)
for various functions ψ. For example, Mirror-Descent
and FTRL-based algorithms often obtain ψ(x?) = B,
where B is the diameter of the space D (McMahan &
Streeter, 2010; Duchi et al., 2010; Hazan et al., 2008)
while so-called “parameter-free” algorithms can obtain
ψ(x?) = Õ(‖x?‖), providing optimal adaptivity to ‖x?‖ at
the expense of logarithmic factors (Cutkosky & Orabona,
2018). These adaptive bounds can be shown to obtain
the better regret guarantee E

[∑T
t=1 L(wt)− L(x?)

]
≤

O
(
Lψ(x?)2 + ψ(x?)σ

√
T
)

when the loss L is L-smooth
and gt has variance σ, by exploiting the self-bounding prop-
erty ‖∇L(x)‖2 ≤ L(L(x) − L(x?)) (Srebro et al., 2010;
Cutkosky & Busa-Fekete, 2018; Levy et al., 2018).

The appealing property of this argument is that the algo-
rithm knows neither L nor σ and yet automatically adapts to
both parameters, matching the performance of an optimally-
tuned SGD algorithm. Since Algorithm 1 also obtains low
regret, we can make a similar claim:

Corollary 6. Suppose RT (x?) ≤ ψ(x?)
√∑T

t=1 α
2
t ‖gt‖2.

Suppose L is L-smooth and obtains its minimum at x? ∈ D.
Suppose gt has variance at most σ2. Then with αt = 1 for
all t, Algorithm 1 obtains:

E[L(xT)− L(x?)] ≤ O
(
ψ(x?)2L log2(T)

T
+
σ log(T)√

T

)
Proof. Define ∆t = E[L(xt)− L(x?)]. Observe that

E[‖∇gt‖2] ≤ E[‖∇L(xt)‖2] + σ2 ≤ L∆t + σ2

E[RT (x?)] ≤ ψ(x?)

√√√√L

T∑
t=1

∆t + Tσ2

Then apply Corollary 2 and quadratic formula to obtain∑T
t=1 ∆t ≤ O

(
ψ(x?)2L log2(T) + σ log(T)

√
T
)

when
αt = 1 and observe ∆T ≤ E[RT (x?)]/T to prove the
Corollary.

The assumption that x? ∈ D and the log factors in this anal-
ysis are a bit troubling. In the next section we exploit opti-
mism instead of the self-bounding property, which yields
much better results with much less effort.

4.1. Optimism for Faster Rates

In this section we show how to leverage our online-to-batch
scheme in combination with optimistic online learning to

Anytime Online-to-Batch, Optimism and Acceleration

further speed up the convergence rate. We will achieve a
rate of O(L/T 3/2 + σ/

√
T) with no knowledge of either

L or σ, resulting in a kind of interpolation between the
O(L/T + σ/

√
T) rate and the optimal accelerated rate of

O(L/T 2 + σ/
√
T) (Lan, 2012).

An optimistic online learning algorithm is an online learner
that is given access to a series of “hints” ĝ1, . . . , ĝT where
ĝt is revealed to the learner after gt−1 but before it commits
to wt (Hazan & Kale, 2010; Rakhlin & Sridharan, 2013;
Chiang et al., 2012; Mohri & Yang, 2016). Optimistic al-
gorithms attempt to guarantee small regret when ĝt ≈ gt,
because in this scenario the learner has a good guess for
what the future will contain. In particular, the optimistic
algorithm of (Mohri & Yang, 2016) guarantees regret:

RT (x?) ≤ B

√√√√2

T∑
t=1

α2
t ‖ĝt − gt‖2

where B is the diameter of the D. A common choice for
ĝt is gt−1. Intuitively, this choice is “optimistic” in the
sense that we are hoping gt−1 ≈ gt, which is the case on
smooth losses if the iterates are close together. Fortunately,
it is the case that xt is necessarily close to xt−1, so we use
this regret bound for faster convergence in Algorithm 3 and
Theorem 3.

Algorithm 3 Optimistic Anytime Online-to-Batch
Input: Optimistic Online algorithm A with domain D.
Non-negative weights α1, . . . , αT with α1 > 0.
Get initial point w1 ∈ D from A.
Set g0 = 0.
for t = 1 to T do

Send αtgt−1 to A ad tth hint.
xt ←

∑t
i=1 αiwt

α1:t
.

Play xt, receive subgradient gt.
Send `t(x) = 〈αtgt, x〉 to A as the tth loss.
Get wt+1 from A.

end for
return xT .

Theorem 3. Suppose D has diameter B and A obtains the

regret bound RT (x?) ≤ B
√

2
∑T
t=1 α

2
t ‖ĝt − gt‖2 when

given hints ĝt ahead of the gradient gt. Set αt = t for
all t. Suppose each gt has variance at most σ2, and L is
L-smooth. Then Algorithm 3 yields:

E[L(xT)− L(x?)] ≤ O
(
LB2

T 3/2
+
σB√
T

)
Proof. Since we set ĝt = gt−1, the assumption on A im-
plies:

RT (x?) ≤ B

√√√√2

T∑
t=1

α2
t ‖gt−1 − gt‖2

We can write gt = ∇L(xt)+ζt where ζt is some mean-zero
random variable with E[‖ζt‖2] ≤ σ2. Then by smoothness,
for t > 1 we have

‖gt − gt−1‖ ≤ ‖∇L(xt)−∇L(xt−1)‖+ ‖ζt − ζt−1‖
≤ L‖xt − xt−1‖+ ‖ζt − ζt−1‖

≤ LαtB

α1:t
+ ‖ζt‖+ ‖ζt−1‖

E[‖ĝt − gt‖2] ≤ 5
L2α2

tB
2

(α1:t)2
+ 10σ2

where in the last step we used (a+b+c)2 ≤ 5(a2+b2+c2).
Further, for t = 1, we have

E[‖g1‖2] ≤ E[(‖∇L(x1)−∇L(x?)‖+ ‖ζt‖)2]

E[‖g1 − ĝ1‖2] ≤ 2L2B2 + 2σ2 ≤ 5
L2B2α2

1

(α1:1)2
+ 10σ2

Next, observe that α1:t > t2/2 so that

E[‖ĝt − gt‖2] ≤ 20
L2B2

t2
+ 10σ2

Now observe
∑T
t=1 t

2 < 3(T + 1)3/2 and apply Jensen:

E[RT (x?)] ≤ E

B
√√√√2

T∑
t=1

α2
t ‖ĝt − gt‖2


≤ B

√
30(T + 1)3σ2 + 40L2B2T

And by Theorem 1 we have the desired result:

E[L(xT)− L(x?)] ≤ 4
√

10LB2

T 3/2
+

4
√

10σB√
T

Note that the ordinary online-to-batch conversion may not
be able to obtain this rate: here we are critically relying on
the stability of the iterates xt to guarantee that gt and gt−1
are not too far apart, while in the standard online-to-batch
conversion one would require stability in the wt, which may
not occur.

4.2. Acceleration

In the deterministic setting, (Levy et al., 2018) showed
how to use adaptive step-sizes in conjuction with the linear-
coupling framework (Allen-Zhu & Orecchia, 2014) to derive
an accelerated algorithm that adapts to the smoothness pa-
rameter L. In this section we show that our Algorithm 1
and analysis is actually very similar in spirit to the linear-
coupling scheme and so we can also derive an accelerated
algorithm that adapts to both smoothness and variance op-
timally. To our knowledge this is the first accelerated algo-
rithm to adapt to variance. Our analysis is arguably simpler

Anytime Online-to-Batch, Optimism and Acceleration

than prior work: our proof is much shorter, we rely on only
relatively simple properties of αt and we do not use the
internals of the online algorithm.

Unlike previously in this paper, but similar to (Levy et al.,
2018), here we will require L to be defined on an entire
vector space rather than potentially bounded domain D. We
will also assume knowledge of some parameter B such that
‖x?‖ ≤ B/2. Lifting these restrictions are both valuable
future directions.

Algorithm 4 Adaptive Stochastic Acceleration
Input: Bound B ≥ 2‖x?‖, value c, Online learning
algorithms A with domain D = {‖w‖ ≤ B/2}.
Get initial point w1 ∈ D from A.
y0 ← w1.
for t = 1 to T do
αt ← t.
τt ← αt∑t

i=1 αi
.

xt ← (1− τt)yt−1 + τtwt.
Play xt, receive subgradient gt.
ηt ← cB√

1+
∑t

i=1 α1:i‖gi‖2
yt ← xt − ηtgt.
Send `t(x) = 〈αtgt, x〉 to A as the tth loss.
Get wt+1 from A.

end for
return xT .

Theorem 4. Suppose E[gt] = ∇L(xt) for some L-smooth
function L with domain an entire Hilbert space H . Suppose
‖gt‖ ≤ G with probability 1 and gt has variance at most σ2

for all t. Suppose ‖x?‖ ≤ B/2. Let D be the ball of radius
B/2 in H and suppose A guarantees regret

RT (x?) ≤ kB

√√√√ T∑
t=1

αt‖gt‖2

For some k. Then with c =
√

2k, Algorithm 4 guarantees:

E [L(yT)− L(x?)] ≤ 2
√

2kB + 2kLB2 log(1 +G2T 3)

T 2

+
2kBσ

√
2 log(1 +G2T 3)√

T

Proof. The opening of our proof is again very similar to
that of Theorem 1: observe that

E

[
T∑
t=1

αt(L(xt)− L(x?))

]

≤ E

[
RT (x?) +

T∑
t=1

a1:t−1〈gt, yt−1 − xt〉

]

Next we use convexity again to argue E[〈gt, yt−1 − xt〉] ≤
E[L(yt−1)−L(xt)], and then we subtract E[

∑T
t=1 αtL(xt)]

from both sides:

E[−α1:TL(x?)] (2)

≤ E

[
RT (x?) +

T∑
t=1

α1:t−1L(yt−1)− α1:tL(xt)

]
(3)

Now we use smoothness to relate L(yt) to L(xt). Defining
ζt = gt −∇L(xt) and βt = α1:t, we have:

E[L(yt)] ≤ E[L(xt) +∇L(xt)(yt − xt) +
L

2
‖xt − yt‖2]

≤ E
[
L(xt)− ηt‖gt‖2 + ηt〈ζt, gt〉+

Lη2t ‖gt‖2

2

]
Then multiply by βt:

E[βt(L(yt)− L(xt))]

≤ E

− cBβt‖gt‖2√
1 +

∑t
i=1 βi‖gi‖2

+
Lβtη

2
t ‖gt‖2

2
+ βt〈ζt, gt〉


Next, we borrow Lemma A.2 from (Levy et al., 2018): for
positive numbers x1, . . . , xn√√√√ n∑

i=1

xi ≤
n∑
i=1

xi√∑i
i′=1 xi′

≤ 2

√√√√ n∑
i=1

xi

Also, observe from concavity of log that:

n∑
i=1

xi

1 +
∑i
i′=1 xi′

≤ log

(
1 +

n∑
i=1

xi

)
Using this we obtain

E

[
T∑
t=1

βt(L(yt)− L(xt))

]

≤ E

−cB
√√√√1 +

T∑
t=1

βt‖gt‖2 +
c2B2L log(1 +G2β1:T)

2

+cB +

T∑
t=1

〈ζt, βtgt〉ηt

]
Next, use Cauchy-Schwarz:

E

[
T∑
t=1

〈ζt, βtgt〉ηt

]
≤ E


√√√√ T∑

t=1

βt‖ζt‖2

√√√√ T∑
t=1

βt‖gt‖2η2t


≤ E

cB
√√√√ T∑

t=1

βt‖ζt‖2

√√√√log

(
1 +

t∑
t=1

βt‖gt‖2
)

Anytime Online-to-Batch, Optimism and Acceleration

And then use Jensen’s inequality:

E

[
T∑
t=1

〈ζt, βtgt〉ηt

]

≤ E

cB
√√√√ T∑

t=1

βt‖ζt‖2
√

log(1 +G2β1:T)


≤ cBσ

√
β1:T log(1 +G2β1:T)

Where in the last line we observed E[‖ζt‖2] ≤ σ2. Combin-
ing everything, we have

E

[
T∑
t=1

−αtL(x?)

]

≤ E

[
RT (x?) +

T∑
t=1

α1:t−1L(yt−1)− α1:tL(yt)

]

+ E

c2LB2 log(1 +G2β1:T)

2
− cB

√√√√1 +

T∑
t=1

α1:t‖gt‖2

−cB + cBσ
√
β1:t log(1 +G2β1:t)

]
Now observe that α1:t > α2

t /2 and recall RT (x?) ≤
kB
√∑T

t=1 α
2
t ‖gt‖2. Therefore since c =

√
2k we cancel

the RT (x?), observe β1:T ≤
∑T
t=1 t

2 ≤ T 3, and telescope
to obtain:

E[α1:T (L(yT)− L(x?))] ≤ cB +
c2B2L log(1 +G2T 3)

2

+ cBT 3/2σ
√

log(1 +G2T 3)

and dividing by α1:T = T (T+1)
2 completes the proof.

We remark also that, similar to the algorithm of (Levy et al.,
2018), our Algorithm 4 is universal in the sense that for
non-smooth losses we recover the O(1/

√
T) rate with no

modifications. In fact, our analysis improves somewhat
over (Levy et al., 2018) in that we maintain an adaptive
convergence rate in the non-smooth setting.1

Theorem 5. Suppose E[gt] = L(xt) for some convex func-
tion L. Then Algorithm 4 guarantees:

E[[L(yT)− L(x?)]

≤ E
[
2RT (x?)+B

√
2
∑T

t=1 t
2‖∇L(yt)‖2

√
log(1+G3T 3)

T 2

]
Note that in the setting with ‖gt‖ ≤ G and RT (x?) =

O

(√∑T
t=1 α

2
t ‖gt‖2

)
, Theorem 5 implies a convergence

rate of O(
√

log(T)/T).

1We suspect this same adaptive non-smooth rate can be
achieved by (Levy et al., 2018) via similar improved analysis.

Proof. We start from (3), and again proceed to relate L(yt)
to L(xt), this time without the aid of smoothness:

E[L(yt)− L(xt)] ≤ E[〈∇L(yt), yt − xt〉]
≤ E[‖∇L(yt)‖‖gt‖ηt]

So by Cauchy-Schwarz, again defining βt = α1:t we have

E

[
T∑
t=1

βt(L(yt)− L(xt))

]
≤ E

[
T∑
t=1

βt‖∇L(yt)‖‖gt‖ηt

]

≤ E


√√√√ T∑

t=1

βt‖∇L(yt)‖2]

√√√√ T∑
t=1

βt‖gt‖2η2t


≤ E

B
√√√√ T∑

t=1

βt‖∇L(yt)‖2
√

log(1 +G3T 3)


And combining everything yields

E[−α1:TL(x?)]

≤ E

RT (x?) +B

√√√√ T∑
t=1

βt‖∇L(yt)‖2
√

log(1 +G3T 3)

+

T∑
t=1

α1:t−1L(yt−1)− α1:tL(yt)

]

Telescope the sum and rearrange to prove the theorem.

5. Conclusion
We have provided a variant on the standard online-to-batch
conversion technique that enables us to compute gradients
at the iterates produced by the conversion algorithm rather
than those produced by the online learning algorithm. This
stabilizes the sequence of iterates and enables low regret
even with respect to arbitrary polynomial weights. We show
how to apply our approach to easily remove the log factors
in stochastic strongly-convex optimization. Further, for
smooth losses, we gain stability in the gradients which can
be used by optimistic online algorithms. Finally, a small
modification allows us to achieve the optimal stochastic
accelerated rates. Not only is this the first method to adapt
to both variance and smoothness optimally, it also is more
general than prior analyses by virtue of being a black-box
reduction from any sufficiently adaptive online learning
algorithm. Finally, a recent connection between optimism
and acceleration by (Wang & Abernethy, 2018) suggests
that it may be possible to improve our optimistic analysis to
match the accelerated rate in an even simpler manner.

Anytime Online-to-Batch, Optimism and Acceleration

References
Allen-Zhu, Z. and Orecchia, L. Linear coupling: An ulti-

mate unification of gradient and mirror descent. arXiv
preprint arXiv:1407.1537, 2014.

Bubeck, S. et al. Convex optimization: Algorithms and com-
plexity. Foundations and Trends R© in Machine Learning,
8(3-4):231–357, 2015.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the gen-
eralization ability of on-line learning algorithms. Infor-
mation Theory, IEEE Transactions on, 50(9):2050–2057,
2004.

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J.,
Jin, R., and Zhu, S. Online optimization with gradual
variations. In Conference on Learning Theory, pp. 6–1,
2012.

Cutkosky, A. and Busa-Fekete, R. Distributed stochastic
optimization via adaptive sgd. In Advances in Neural
Information Processing Systems, pp. 1914–1923, 2018.

Cutkosky, A. and Orabona, F. Black-box reductions for
parameter-free online learning in banach spaces. arXiv
preprint arXiv:1802.06293, 2018.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In Conference on Learning Theory (COLT), 2010.

Hazan, E. and Kale, S. Extracting certainty from uncertainty:
Regret bounded by variation in costs. Machine learning,
80(2-3):165–188, 2010.

Hazan, E. and Kale, S. Beyond the regret minimization
barrier: optimal algorithms for stochastic strongly-convex
optimization. The Journal of Machine Learning Research,
15(1):2489–2512, 2014.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2-3):169–192, 2007.

Hazan, E., Rakhlin, A., and Bartlett, P. L. Adaptive online
gradient descent. In Advances in Neural Information
Processing Systems, pp. 65–72, 2008.

Lacoste-Julien, S., Schmidt, M., and Bach, F. A simpler
approach to obtaining an o (1/t) convergence rate for the
projected stochastic subgradient method. arXiv preprint
arXiv:1212.2002, 2012.

Lan, G. An optimal method for stochastic composite op-
timization. Mathematical Programming, 133(1-2):365–
397, 2012.

Levy, K. Online to offline conversions, universality and
adaptive minibatch sizes. In Advances in Neural Informa-
tion Processing Systems, pp. 1613–1622, 2017.

Levy, Y. K., Yurtsever, A., and Cevher, V. Online adaptive
methods, universality and acceleration. In Advances in
Neural Information Processing Systems, pp. 6501–6510,
2018.

McMahan, H. B. A survey of algorithms and analysis for
adaptive online learning. arXiv preprint arXiv:1403.3465,
2014.

McMahan, H. B. and Streeter, M. Adaptive bound optimiza-
tion for online convex optimization. In Proceedings of
the 23rd Annual Conference on Learning Theory (COLT),
2010.

Mohri, M. and Yang, S. Accelerating online convex opti-
mization via adaptive prediction. In Artificial Intelligence
and Statistics, pp. 848–856, 2016.

Rakhlin, A. and Sridharan, K. Online learning with
predictable sequences. In COLT 2013 - The 26th
Annual Conference on Learning Theory, June 12-14,
2013, Princeton University, NJ, USA, pp. 993–1019,
2013. URL http://jmlr.org/proceedings/
papers/v30/Rakhlin13.html.

Rakhlin, A., Shamir, O., Sridharan, K., et al. Making gradi-
ent descent optimal for strongly convex stochastic opti-
mization. In ICML, volume 12, pp. 1571–1578. Citeseer,
2012.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107–194, 2011.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low
noise and fast rates. In Advances in neural information
processing systems, pp. 2199–2207, 2010.

Wang, J.-K. and Abernethy, J. D. Acceleration through
optimistic no-regret dynamics. In Advances in Neural
Information Processing Systems, pp. 3828–3838, 2018.

http://jmlr.org/proceedings/papers/v30/Rakhlin13.html
http://jmlr.org/proceedings/papers/v30/Rakhlin13.html

