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Abstract

We introduce Minimal Achievable Sufficient
Statistic (MASS) Learning, a machine learning
training objective for which the minima are min-
imal sufficient statistics with respect to a class
of functions being optimized over (e.g., deep
networks). In deriving MASS Learning, we
also introduce Conserved Differential Informa-
tion (CDI), an information-theoretic quantity that
— unlike standard mutual information — can be
usefully applied to deterministically-dependent
continuous random variables like the input and
output of a deep network. In a series of experi-
ments, we show that deep networks trained with
MASS Learning achieve competitive performance
on supervised learning, regularization, and uncer-
tainty quantification benchmarks.

1. Introduction

The representation learning approach to machine learning
focuses on finding a representation Z of an input random
variable X that is useful for predicting a random variable Y’
(Goodfellow et al., 2016).

What makes a representation Z “useful” is much debated,
but a common assertion is that Z should be a minimal suffi-
cient statistic of X for Y (Adragni, Kofi P. & Cook, R. Den-
nis, 2009; Shamir et al., 2010; James et al., 2017; Achille &
Soatto, 2018b). That is:

1. Z should be a statistic of X. This means Z = f(X)
for some function f.

2. Z should be sufficient for Y. This means p(X|Z,Y) =
p(X|2).

3. Given that Z is a sufficient statistic, it should be mini-
mal with respect to X. This means for any measurable,
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non-invertible function g, g(Z) is no longer sufficient
for Y.!

In other words: a minimal sufficient statistic is a random
variable Z that tells you everything about Y you could ever
care about, but if you do any irreversible processing to Z,
you are guaranteed to lose some information about Y.

Minimal sufficient statistics have a long history in the field
of statistics (Lehmann & Scheffe, 1950; Dynkin, 1951). But
the minimality condition (3, above) is perhaps too strong to
be useful in machine learning, since it is a statement about
any measurable function g, rather than about functions in
a practical hypothesis class like the class of deep neural
networks.

Instead, in this work we consider minimal achievable suffi-
cient statistics: sufficient statistics that are minimal within
some particular set of functions.

Definition 1 (Minimal Achievable Sufficient Statistic). Let
f(X) be a sufficient statistic of X for Y. f(X) is minimal
achievable with respect to a set of functions F if f € F
and for any Lipschitz continuous, non-invertible function g,
g(f(X)) is no longer sufficient for Y.

In this work, we give a characterization of minimal achiev-
able sufficient statistics that is applicable to deep neural
networks and show that it can be used to train models with
competitive performance on classification accuracy, uncer-
tainty quantification, and out-of-distribution input detection.

Contributions:

e We introduce Conserved Differential Informa-
tion (CDI), an information-theoretic quantity that,
unlike mutual information, is meaningful for
deterministically-dependent  continuous random
variables, such as the input and output of a deep
network.

e We introduce Minimal Achievable Sufficient Statis-
tic Learning (MASS Learning), a training objective

! Although this is not the most common phrasing of statistical
minimality, we feel it is more understandable. For the equivalence
of this phrasing and the standard definition see Supplementary
Material 7.1.
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based on CDI for finding minimal achievable sufficient
statistics.

e We provide empirical evidence that models trained
by MASS Learning achieve competitive performance
on supervised learning, regularization, and uncertainty
quantification benchmarks.

2. Conserved Differential Information

Before we present MASS Learning, we need to introduce
Conserved Differential Information (CDI), on which MASS
Learning is based.

CDlI is an information-theoretic quantity that addresses an
oft-cited issue in machine learning (Bell & Sejnowski, 1995;
Amjad & Geiger, 2018; Saxe et al., 2018; Nash et al., 2018;
Goldfeld et al., 2018), which is that for a continuous random
variable X and a continuous, non-constant function f, the
mutual information I(X, f(X)) is infinite. (See Supple-
mentary Material 7.2 for details.) This makes I (X, f(X))
unsuitable for use in a learning objective when f is, for
example, a standard deep network.

The infinitude of I(X, f(X)) has been circumvented in
prior works by two strategies. One is discretize X and f(X)
(Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017),
though this is controversial (Saxe et al., 2018). Another
is to use a random variable Z with distribution p(Z|X) as
the representation of X rather than using f(X) itself as the
representation (Alemi et al., 2016; Kolchinsky et al., 2017,
Achille & Soatto, 2018b). In this latter approach, p(Z|X)
is usually implemented by adding noise to a deep network
that takes X as input.

These are both reasonable strategies for avoiding the in-
finitude of (X, f(X)). But another approach would be to
derive a new information-theoretic quantity that is better
suited to this situation. To that end we present Conserved
Differential Information:

Definition 2. For a continuous random variable X taking
values in R and a Lipschitz continuous function f, the
Conserved Differential Information (CDI) is

|C(X, f(X)) = H(f(X)) — Ex [log (J;(X))]| (1)

where H denotes the differential entropy

H(Z) = - / p(2) log p(z) dz

and J is the Jacobian determinant of f

T
o= o (52 (52
9

gﬁ) the Jacobian matrix of f at z.

with

Readers familiar with normalizing flows (Rezende & Mo-
hamed, 2015) or Real NVP (Dinh et al., 2016) will note that
the Jacobian determinant used in those methods is a special
case of the Jacobian determinant in the definition of CDI.
This is because normalizing flows and Real NVP are based
on the change of variables formula for invertible mappings,
while CDI is based in part on the more general change of
variables formula for non-invertible mappings. More details
on this connection are given in Supplementary Material 7.3.
The mathematical motivation for CDI based on the recent
work of (Koliander et al., 2016) is provided in Supplemen-
tary Material 7.4. Figure 1 gives a visual example of what
CDI measures about a function.

1 -
p(X)

e S

0 1
X
f(X)‘/z/ \ix)z IX-%

2 2 +—

p(fX))  +

0 Y2 0 Ya
f(X) g(X)

C(X, f(X)) = 0 C(X, g(X)) = - log 2

Figure 1. CDI of two functions f and g of the random variable X.
Even though the random variables f(X) and g(X) have the same
distribution, C(X, f(X)) is different from C'(X, g(X)). This is
because f is an invertible function, while g is not.

The conserved differential information C(X, f(X)) be-
tween deterministically-dependent random variables be-
haves a lot like mutual information does on discrete
random variables. For example, when f is invertible,
C(X, f(X)) = H(X), just like with the mutual informa-
tion between discrete random variables. Most importantly
for our purposes, though, C' (X, f(X)) obeys the following
data processing inequality:

Theorem 1 (CDI Data Processing Inequality). For Lipschitz
continuous functions f and g with the same output space,

C(X, f(X)) = C(X,g(f(X))
with equality if and only if g is invertible almost everywhere.

The proof is in Supplementary Material 7.5.
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3. MASS Learning

With CDI and its data processing inequality in hand, we can
give the following optimization-based characterization of
minimal achievable sufficient statistics:

Theorem 2. Let X be a continuous random variable, Y be
a discrete random variable, and F be any set of Lipschitz
continuous functions with a common output space (e.g.,
different parameter settings of a deep network). If

f Earggnei?_ C(X,5(X))
st I(S(X),Y) = msa}xI(S’(X),Y)

then f(X) is a minimal achievable sufficient statistic of X
for'Y with respect to F.

Proof. First note the following lemma (Cover & Thomas,
2006):

Lemma 1. Z = f(X) is a sufficient statistic for a
discrete random variable Y if and only if 1(Z,Y) =
maxg I(S(X),Y).

Lemma 1 guarantees that any f satisfying the conditions
in Theorem 2 is sufficient. If such an f was not minimal
achievable there would exist a non-invertible, Lipschitz con-
tinuous g such that g(f(X)) was sufficient and by The-
orem | C(X,¢(f(X))) < C(X, f(X)) contradicting f
minimizing C(X, S(X)). O

We can turn Theorem 2 into a learning objective over func-
tions f by relaxing the strict constraint into a Lagrangian
formulation with Lagrange multiplier 1/8 with 5 > 0:

C(X. f(X)) - %I(f(XL Y)

The larger the value of 3, the more our objective will en-
courage minimality over sufficiency. We can then sim-
plify this formulation using the identity I(f(X),Y) =
H(Y) — H(Y|f(X)), which gives us the following op-
timization objective:

Lyrass(f) = H(Y|f(X))+ BH(f(X))

2
~ BEx[log J;(X)]. @

We refer to minimizing this objective as MASS Learning.

In practice, we are interested in using MASS Learning to
train a deep network fy with parameters 6 using a finite
dataset {(;,y;)} ¥, of N datapoints sampled from the joint
distribution p(z,y) of X and Y. To do this, we introduce
a parameterized variational approximation g, (fp(z)|y) ~

p(fo(x)|y). Using g4, we minimize the following empirical
upper bound to Ls4ss:

N
Larass(0,0) = % > —logqs(yil fo(w:))
=1

— Blog qy(fo(wi))
— Blog Jy, (x;) > Larass,

where the quantity ¢4(fe(x;)) is computed as

>y 4s(fo(zi)ly)p(y) and the quantity gy (yifo(z:i))

is computed with Bayes rule as Z% ((ﬁ((;;()glﬁyz))‘z 55231) When

Y is discrete and takes on finitely many values, as in
classification problems, and when we choose a variational
distribution g, that is differentiable with respect to ¢
(g.g., a multivariate Gaussian), then we can minimize
Larass (0, @) using stochastic gradient descent.

To perform classification using our trained network, we use

the learned variational distribution ¢4 and Bayes rule

P10 =Y 11o(0) = ST

4. Related Work

4.1. Connection to the Information Bottleneck

The well-studied Information Bottleneck learning method
(Tishby et al., 2000; Tishby & Zaslavsky, 2015; Strouse &
Schwab, 2016; Alemi et al., 2016; Saxe et al., 2018; Amjad
& Geiger, 2018; Goldfeld et al., 2018; Kolchinsky et al.,
2018; Achille & Soatto, 2018b;a) is based on minimizing
the Information Bottleneck Lagrangian

L1p(Z) == BI(X, Z) — I(Y, Z)

for § > 0, where Z is the representation whose conditional
distribution p(Z|X') we are trying to learn.

The L;p learning objective can be motivated based on
pure information-theoretic elegance. But some works like
(Shamir et al., 2010) also point out the connection between
the L p objective and minimal sufficient statistics, which is
based on the following theorem:

Theorem 3. Let X be a discrete random variable drawn
according to a distribution p(X|Y') determined by the dis-
crete random variable Y. Let F be the set of deterministic
Sunctions of X to any target space. Then f(X) is a minimal
sufficient statistic of X for'Y if and only if

f €argmin I(X,S(X))

st I(S(X),Y) = max I(S'(X),Y).

The L5 objective can then be thought of as a Lagrangian
relaxation of the optimization problem in this theorem.
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Theorem 3 only holds for discrete random variables. For
continuous X it holds only in the reverse direction, so mini-
mizing L;p for continuous X has no formal connection to
finding minimal sufficient statistics, not to mention minimal
achievable sufficient statistics. See Supplementary Material
7.6 for details.

Nevertheless, the optimization problems in Theorem 2 and
Theorem 3 are extremely similar, relying as they both do
on Lemma 1 for their proofs. And the idea of relaxing the
optimization problem in Theorem 2 into a Lagrangian for-
mulation to get L7455 is directly inspired by the Informa-
tion Bottleneck. So while MASS Learning and Information
Bottleneck learning entail different network architectures
and loss functions, there is an Information Bottleneck flavor
to MASS Learning.

4.2. Jacobian Regularization

The presence of the Jy, term in L MASs 1S reminiscent of
the contrastive autoencoder (Rifai et al., 2011) and Jaco-
bian Regularization literature (Sokolic et al., 2017; Ross &
Doshi-Velez, 2017; Varga et al., 2017; Novak et al., 2018;
Jakubovitz & Giryes, 2018). Both these literatures suggest
that minimizing Ex[|| Dy (X)| r] where Ds(x) = %(fﬁ) is
the Jacobian matrix seems to improve generalization and/or
adversarial robustness.

This may seem paradoxical at first, since by applying the

AM-GM inequality to the eigenvalues of Dy(z)Dy(x)T
where Dy = %(Tz) € R™*4, we have

Ex (| Dy(X)|[7] = Ex[Te(Ds(X)Dy(X)")"]
> Ex[r" det(Dy(X)Dy(X)T)]
=Ex[r"Jp(X)’]
> log Ex [ 5 (X)?
> 2Ex[log J¢(X)] + rlogr

and Ex[log J;(X)] is being maximized by Larass. So
L mAss would seem to be optimizing for worse generaliza-
tion according to the Jacobian regularization literature. How-
ever, the conditional entropy term in Ljs 455 strongly en-
courages minimizing Ex[||Dy(X)| r]. So overall Lasass
seems to be seeking the right balance of sensitivity (depen-
dent on the value of () in the network to its inputs, which is
precisely in alignment with what the Jacobian regularization
literature suggests.

5. Experiments

Code to reproduce all experiments is available online.> Full
details on all experiments is in Supplementary Material 7.7.

https://github.com/mwcvitkovic/
MASS-Learning

In this section we compare MASS Learning to other ap-
proaches for training deep networks. We use the abbre-
viation “SoftmaxCE” to refer to the standard approach of
training deep networks for classification problems by mini-
mizing the softmax cross entropy loss

ljgoftmaICE(G) = log softmax(fg(mi))yi)

o

i=1
where softmax(fo(z;))y, is the y;th element of the soft-
max function applied to the outputs fy(z;) of the network’s
last linear layer. As usual, softmax(fs(z;))y, is taken to
be the network’s estimate of p(y;|z;).

We also compare against the Variational Information Bottle-
neck (Alemi et al., 2016) method for representation learning,
which we abbreviate as “VIB”.

We use two networks in our experiments. “SmallMLP”
is a feedforward network with two fully-connected layers
of 400 and 200 hidden units, respectively, both with elu
nonlinearities (Clevert et al., 2015). “ResNet20” is the 20-
layer residual net of He et al. (2015).

In all our experiments, the variational distribution g (z|y)
for each possible output class y is a mixture of multivati-
ate Gaussian distributions for which we learn the mixture
weights, means, and covariance matrices.

Computing the Jy, term in /:'MASS(Q, ¢) for every sam-
ple in a minibatch is too expensive to be practical. Doing
so would require on the order of |Y| times more opera-
tions than computing ESO rimazcE(0), since computing the
Jy, term in L mAss (0, @) requires (in our implementation)
computing the full Jacobian matrix of the network. Thus
to make training tractable, we use a subsampling strategy:
we estimate the J, term using only a 1/|Y| fraction of the
datapoints in a minibatch. In practice, we do not notice
any performance detriment when using the subsampling
strategy, and the numerical value of the Jy, during training
with subsampling is indistinguishable from training with no
subsampling.

Subsampling for the J, term results in a significant perfor-
mance improvement, but it must nevertheless be emphasized
that even with the subsampling strategy, our implementa-
tion of MASS Learning is roughly twice as computationally
costly as SoftmaxCE training. (Unless 8 = 0, in which
case the cost is the same as SoftmaxCE.) This is by far
the most significant drawback of (our implementation of)
MASS Learning. There are many easier-to-compute up-
per bounds or estimates of J, that one could use to make
MASS Learning faster, but we do not explore these in this
work.

We performed all experiments on the CIFAR-10 dataset
(Krizhevsky, 2009), and coded all our models in PyTorch
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(Paszke et al., 2017).

5.1. Classification Accuracy and Regularization

We first confirm that networks trained by MASS Learning
can make accurate predictions in supervised learning tasks.
We also compare the classification accuracy of networks
trained on varying amounts of data to see whether MASS
Learning successfully regularizes networks and improves
their generalization performance.

Classification accuracies for the SmallMLP network are
shown in Table 1, and for the ResNet20 network in Ta-
ble 2. For the SmallMLP network, MASS Learning does
not appear to offer any performance benefits. For the
larger ResNet20 network, the results show that while MASS
Learning maintains or improves accuracy compared to Soft-
maxCE training, often fairly significantly, these improve-
ments do not seem to be due to the MASS loss Lysa55(0, ¢)
itself, since the same performance improvements are ob-
tained even when the H (f(X)) and Ex [log J;(X)] terms
in the MASS loss are set to O (i.e. the case when 3 = 0).

This suggests that it is the use of the variational distribution
¢4(x|y) to produce the output of the network, rather than the
MASS Learning approach, that is providing the benefit. This
is an interesting finding, but does not suggest an advantage
to using the full MASS Learning method if one is concerned
with accuracy or regularization.

5.2. Uncertainty Quantification

We also evaluate the ability of networks trained by MASS
Learning to properly quantify their uncertainty about their
predictions. We assess uncertainty quantification in two
ways: using proper scoring rules (Lakshminarayanan et al.,
2016), which are scalar measures of how well a network’s
predictive distribution is calibrated, and by observing per-
formance on an out-of-distribution (OOD) detection task.

Tables 3 and 4 show the uncertainty quantification perfor-
mance of networks according to three proper scoring rules:
the Negative Log Likelihood (NLL), the Brier Score, and
entropy of the predictive distribution p(y|fg(z)). With the
SmallMLP network SoftmaxCE and VIB training perform
best, while with the ResNet20 network the results are more
varied. In general, though, any benefits produced by MASS
Learning seem to derive not from the MASS objective but
from the network architecture, since MASS Learning with
B = 0 gives performance comparable to MASS Learning
with 8 # 0.

Table 5 shows scalar metrics for performance on an OOD de-
tection task where the network is asked to identify whether
an image is from its training distribution (CIFAR-10 images)
or from another distribution (SVHN images (Netzer et al.,
2011)). Following Hendrycks & Gimpel (2016) and Alemi

Table 1. Test-set classification accuracy (percent) on CIFAR-10
dataset using the SmallMLP network trained by various methods.
Full experiment details are in Supplementary Material 7.7. Val-
ues are the mean classification accuracy over 4 training runs with
different random seeds plus or minus the standard deviation. Em-
boldened accuracies are those for which the maximum observed
mean accuracy in the column was within one standard deviation.
WD is weight decay; D is dropout.

TRAINING SET SIZE
METHOD 2500 10,000 40,000
SoftmaxCE 33.94+05 445+03 524+1.1
SoftmaxCE, WD 26.2 4+ 0.9 36.5 + 0.8 47.8 £0.6
SoftmaxCE, D 33.0+1.1 43.9+0.6 54.2+0.5
VIB, S=1le—1 32.3+04 40.6 £ 0.6 46.4 +£ 0.6
VIB, f=1e—2 34.24+04 44.1 0.5 51.6 0.4
VIB, S=1e—3 351+07 44.2+0.6 51.7+0.7
VIB, f=1e—1,D 289 +0.9 39.94+0.5 49.8 +£0.1
VIB, 8=1e—2,D 329+1.2 43.7+ 0.8 53.9+0.4
VIB, f=1e—3,D 341+10 44.3+05 54.5+0.3
MASS, f=1e—2 30.3+0.4 39.9+1.1 454+ 1.4
MASS, B=1e—3 32.6 0.6 40.9+0.6 47.0+0.8
MASS, f=1e—4 33.44+0.6 40.7+0.4 4714+1.1
MASS, 8=0 34.0+0.5 40.8 +1.0 47.0+0.6
MASS, f=1e—2,D 29.6 £1.2 42.24+0.5 51.94+0.5
MASS, f=1e—3,D 31.8+1.3 43.4+04 53.0£0.5
MASS, B=1e—4,D 31.94+0.8 43.24+0.2 52.94+0.6
MASS, 8=0, D 321+1.3 434+04 52.7+04

Table 2. Test-set classification accuracy (percent) on CIFAR-10
dataset using the ResNet20 network trained by various methods.
No data augmentation or learning rate scheduling was used —
full details in Supplementary Material 7.7. Values are the mean
classification accuracy over 4 training runs with different random
seeds plus or minus the standard deviation. Emboldened accuracies
are those for which the maximum observed mean accuracy in the
column was within one standard deviation.

TRAINING SET SIZE
METHOD 2500 10,000 40,000
SoftmaxCE 374407 520+1.1 67.842.7
VIB, f=le—3 335409 491415 66.0+0.6
VIB, B=le—4 340410 503+1.6 67.1+0.6
VIB, f=le—5 347406 502416 67.840.6
VIB, =0 353407 50.0+1.7 68.0+0.1
MASS, f=le—3 | 385+0.9 520+1.0 67.1+05
MASS, B=le—4 | 39.1+0.3 52.7+0.7 689+1.1
MASS, B=le—5 | 39.0+1.0 525+1.1 695+0.6
MASS, 8=0 397405 529+04 69.0+0.8
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et al. (2018), the metrics we report are the Area under the
ROC curve (AUROC) and Average Precision score (APR).
APR depends on whether the network is tasked with predict-
ing whether an image is in-distribution or out of distribution;
we report both metrics as APR In and APR Out, respec-
tively. The Entropy detection method uses the entropy of
the network’s learned predictive distribution p(y| fo(x)) as
the OOD detection value. The max; ¢¢( fo()|y;) detection
method uses the maximum pdf value for any of the poten-
tial output classes y; as the OOD detection value. (For the
SoftmaxCE trained networks, g, (fo(z)|y;) was estimated
by MLE of a mixture of 10 full-covariance, 10-dimensional
multivariate Gaussians on the training set.) And for the
VIB networks, the Rate detection method uses the KL di-
vergence between the VIB’s marginal distribution and the
representation as the OOD detection value.

Here we see MASS Learning outperforming SoftmaxCE and
VIB, but again with the caveat that the benefits appear to be
due to the variational distribution in the network architecture,
rather than the MASS loss function.

5.3. Does MASS Learning finally solve the mystery of
why stochastic gradient descent with the cross
entropy loss works so well in deep learning?

We do not believe so. MASS Learning and SoftmaxCE
training seem to be producing fairly different representa-
tions during training. Figure 2 shows how the values of
the three terms in Lyra55(0, ) change as the MLP net-
work trains on the CIFAR-10 dataset using either the usual
SoftmaxCE training or MASS training. Despite achieving
similar accuracy, the SoftmaxCE training method does not
seem to be implicitly performing MASS Learning, based
on the differing values of the entropy (orange) and Jacobian
(green) between the two methods as training progresses.

6. Conclusion

MASS Learning is a new approach to representation learn-
ing based on the goal of finding minimal achievable suffi-
cient statistics. We have shown that networks trained by
MASS Learning perform well on classification tasks and on
regularization and uncertainty quantification benchmarks,
despite not being directly formulated for any of these tasks.

There remain many open questions about MASS Learn-
ing. Of primary interest is more investigation into the prop-
erties of the representations learned by MASS Learning
and how they differ from those learned in standard deep
learning. There is also much to learn about how to best
minimize the MASS loss. In this paper we used optimizer
settings tuned for standard softmax cross entropy learning,
but Lnras5(0, ¢) is such a different optimization objective
that there are likely many potential improvements to be

made in how we train the networks. We also plan to explore
more expressive variational distributions gg. Finally, in
terms of efficiency, although MASS Learning is applicable
in principle to any deep learning architecture, there is cur-
rently a significant computational cost in computing the Jy,
term in the MASS Loss function. Finding non-invertible
network architectures which admit more efficiently com-
putable Jacobians, as is done in methods like normalizing
flows (Rezende & Mohamed, 2015) or ReaINVP (Dinh et al.,
2016), would greatly increase the utility of MASS Learning.
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Table 3. Uncertainty quantification metrics (proper scoring rules) on CIFAR-10 using the SmallMLP network trained on 40,000 datapoints.
Values are the mean over 4 training runs with different random seeds plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard deviation. Lower values are better.

Method Test Accuracy ‘ NLL Brier Score Entropy
SoftmaxCE 524+1.1 4.19+£0.15 0.0835 £ 0.0018 0.230 £ 0.003
SoftmaxCE, WD 47.8 £ 0.6 1.47+0.02 0.0662 + 0.0006 1.511 +£0.019
SoftmaxCE, D 54.2+£0.5 1.56 £0.01 0.0642 + 0.0006 0.739 £ 0.007
VIB, f=le—1 46.4 £ 0.6 4.78 £0.13 0.0919 £ 0.0009 0.296 £ 0.008
VIB, f=1le—2 51.6 +0.4 4.81 £0.10 0.0861 £ 0.0006 0.207 £ 0.002
VIB, f=1e—3 51.7+ 0.7 5.09 £ 0.27 0.0863 £+ 0.0013 0.194 £ 0.008
VIB, f=1le—1,D 49.8£0.1 1.49 £0.01 0.0642 £+ 0.0001 1.101 £ 0.008
VIB, f=1e—2,D 53.9+0.4 1.52 £ 0.00 0.0636 + 0.0002 0.803 £ 0.010
VIB, f=1e—3,D 54.5+£0.3 1.53 £0.01 0.0641 £+ 0.0002 0.754 £ 0.009
MASS, fg=1e—2 454+14 6.85 + 0.26 0.0979 £+ 0.0027 0.207 £ 0.007
MASS, =1e—3 47.0£0.8 5.85+£0.24 0.0943 + 0.0019 0.218 £ 0.007
MASS, f=1e—4 471+1.1 5.71 +£0.25 0.0942 £ 0.0025 0.219 £ 0.006
MASS, =0 47.0£0.6 5.67£0.28 0.0945 + 0.0019 0.221 £ 0.004
MASS, g=1e—2,D 51.9+0.5 1.60 £ 0.03 0.0662 £ 0.0004 0.846 £+ 0.025
MASS, f=1e—3,D 53.0£0.5 1.56 £ 0.02 0.0648 + 0.0008 0.812 £0.017
MASS, g=1e—4,D 52.9+0.6 1.55£0.02 0.0646 £ 0.0005 0.831 £ 0.020
MASS, =0,D 52.7+£0.4 1.55 £ 0.02 0.0648 + 0.0004 0.832 £0.012

Table 4. Uncertainty quantification metrics (proper scoring rules) on CIFAR-10 using the ResNet20 network trained on 40,000 datapoints.
Values are the mean over 4 training runs with different random seeds plus or minus the standard deviation. Emboldened values are those
for which the minimum observed mean value in the column was within one standard deviation. Lower values are better.

Method Test Accuracy \ NLL Brier Score Entropy
SoftmaxCE 67.8 £2.7 1.98+0.15  0.0546 +0.0043 0.209 £ 0.021
VIB, f=1e—3 66.0 + 0.6 2.28£0.12  0.0577 £0.0011 0.210 + 0.004
VIB, f=le—4 67.1£0.6 2.23£0.07  0.0563 £ 0.0010 0.196 + 0.003
VIB, f=1e—5 67.8 £ 0.6 2.35£0.11 0.0559 £ 0.0012 0.175 + 0.003
VIB, =0 68.0£0.1 2.45£0.05  0.0558 £ 0.0003 0.167 £ 0.003
MASS, f=1e—3 67.1+0.5 1.77+£0.03 0.0555+ 0.0010 0.227 + 0.006
MASS, g=1e—4 689+£1.1 1.91+£0.07 0.0533+0.0018 0.193+£0.011
MASS, f=1e—5 69.5+0.6 1.96 £0.05 0.0522+0.0011 0.188 £ 0.007
MASS, =0 69.0 £ 0.8 2.00£0.08 0.0528 £0.0015 0.190 £ 0.003
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Table 5. Out-of-distribution detection metrics on CIFAR-10 with SVHN digits as the out-of-distribution examples using ResNet20 network
trained on 40,000 datapoints. Values are the mean over 4 training runs with different random seeds plus or minus the standard deviation.
Emboldened values are those for which the maximum observed mean value in the column was within one standard deviation. Higher
values are better.

Training Method  Test Accuracy ‘ Detection Method AUROC APR In APR Out
A A S e
s wesne | Bm o 0TRON omepn omeon
gt mases | Bm o GSTebm o omenw omeon
s oscs | B bE0N 0meom 0 son
o ewenn | Bm o nsom o omepn 0meon
T I SR N et e (e
wass et o in | B uson pmsnon o son
WA ety onsn | B Geeonl omeon ogsson

Entropy 0.65 £ 0.01 0.69+£0.02 0.59+£0.01

MASS, =0 69.0£0.8

max; gy (fo(z)|ly:;) 0.76£0.03 0.76 £0.03 0.75+ 0.03

Loss Term
—— H(Y|f(X)) (nats)
H(f(X)) (nats)
—— —Ex[log JAX)]
—— Validation Accuracy (%)
Training Method
—— SoftmaxCE
--- MASS

Value

0 10000 20000 30000 40000 50000
Training Step

Figure 2. Value of each term in the MASS Learning loss function, Larass(f) = H(Y|f(X)) +BH(f(X)) — BEx [log J¢(X)], during
training of the SmallMLP network on the CIFAR-10 dataset. The MASS training was performed with 8 = 0.001, though the plotted
values are for the terms without being multiplied by the 3 coefficients. The values of these terms for SoftmaxCE training are estimated
using a variational distribution ¢4 (z|y), the parameters of which were estimated at each timestep by MLE over the training data.
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