
Lipschitz Generative Adversarial Nets

A. Proofs
A.1. Proof of Theorem 1

Let X,Y be two random vectors such that X ∼ Pg, Y ∼ Pr. Assume EX∼Pg‖X‖ < ∞ and EY∼Pr‖Y ‖ < ∞. Let
G(f) = EX∼Pgφ(f(X)) + EY∼Prϕ(f(Y )). Let ‖f‖Lip denote the Lipschitz constant of f . Let Sr and Sg denote the
supports of Pr and Pg , respectively. Let W1(Pr,Pg) denote the 1-st Wasserstein distance between Pr and Pg .

Lemma 1. Let φ and ϕ be two convex functions, whose domains are both R. Assume f is subject to ‖f‖Lip ≤ k. If there is
a0 ∈ R such that φ′(a0) + ϕ′(a0) = 0, then we have a lower bound for G(f).

Proof. Given that φ, ϕ are convex functions, we have

G(f) = EX∼Pgφ(f(X)) + EY∼Prϕ(f(Y ))

≥ EX∼Pg (φ′(a0)(f(x)− a0) + φ(a0)) + EY∼Pr (ϕ′(a0)(f(x)− a0) + ϕ(a0))

= φ′(a0)EX∼Pgf(x) + ϕ′(a0)EY∼Prf(Y ) + C

= (φ′(a0) + ϕ′(a0))EX∼Pgf(X) + ϕ′(a0)(EY∼Prf(Y )− EX∼Pgf(X)) + C

= kϕ′(a0)(EY∼Pr
1

k
f(Y )− EX∼Pg

1

k
f(X)) + C

≥ −kϕ′(a0)W1(Pr,Pg) + C.

(13)

Therefore, we get the lower bound.

Lemma 2. Let φ and ϕ be two convex functions, whose domains are both R. Assume f is subject to ‖f‖Lip ≤ k.

• If there exists a1 ∈ R such that φ′(a1) + ϕ′(a1) > 0, then we have: if f(0)→ +∞, then G(f)→ +∞;

• If there exists a2 ∈ R such that φ′(a2) + ϕ′(a2) < 0, then we have: if f(0)→ −∞, then G(f)→ +∞.

Proof. Since φ, ϕ are convex functions, we have

G(f) = EX∼Pgφ(f(X)) + EY∼Prϕ(f(Y ))

≥ EX∼Pg (φ′(a1)(f(x)− a1) + φ(a1)) + EY∼Pr (ϕ′(a1)(f(x)− a1) + ϕ(a1))

= φ′(a1)EX∼Pgf(x) + ϕ′(a1)EY∼Prf(Y ) + C1

= (φ′(a1) + ϕ′(a1))EX∼Pgf(X) + ϕ′(a1)(EY∼Prf(Y )− EX∼Pgf(X)) + C1

= (φ′(a1) + ϕ′(a1))EX∼Pgf(X) + kϕ′(a1)(EY∼Pr
1

k
f(Y )− EX∼Pg

1

k
f(X)) + C1

≥ (φ′(a1) + ϕ′(a1))EX∼Pgf(X)− kϕ′(a1)W1(Pr,Pg) + C1

≥ (φ′(a1) + ϕ′(a1))f(0)− k(φ′(a1) + ϕ′(a1))EX∼Pg‖X‖ − kϕ′W1(Pr,Pg) + C1.

(14)

Thus, if f(0)→ +∞, then G(f)→ +∞. And we can prove the other case symmetrically.

Lemma 3. Let φ and ϕ be two convex functions, whose domains are both R. If φ and ϕ satisfy the following properties:

• φ′ ≥ 0, ϕ′ ≤ 0;

• There exist a0, a1, a2 ∈ R such that φ′(a0) + ϕ′(a0) = 0, φ′(a1) + ϕ′(a1) > 0, φ′(a2) + ϕ′(a2) < 0.

Then we have G(f) = EX∼Prφ(f(X)) + EY∼Pgϕ(f(Y )), where f is subject to ‖f‖Lip ≤ k , has global minima.

That is, ∃f∗, s.t.

• ‖f∗‖Lip ≤ k;

• ∀f s.t. ‖f‖Lip ≤ k, we have G(f∗) ≤ G(f).
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Proof. According to Lemma 1, G(f) has a lower bound, which means inf(G(f)) > −∞. Thus we can get a series of
functions {fn}∞n=1 such that limn→∞G(fn) = inf(G(f)). Suppose that {ri}∞i=1 is the sequence of all rational points
in dom(f). Due to Lemma 2, for any x ∈ R, {fn(x)|n ∈ R} is bounded. By Bolzano-Weierstrass theorem, there is a
subsequence {f1n} ⊆ {fn} such that {f1n(r1)}∞n=1 converges. And there is a subsequence {f2n} ⊆ {f1n} such that
{f2n(r2)}∞n=1 converges. As for ri, there is a subsequence {fin} ⊆ {fi−1n} such that {fin(ri)}∞n=1 converges. Then the
sequence {fnn}∞n=1 will converge at ri.

Furthermore, for all x ∈ dom(f), we claim that {fnn}∞n=1 converges at x. Actually, ∀ε > 0, find r ∈ {ri} such that
‖x− r‖ ≤ ε

10k , we have

lim
m,l→∞

|fmm(x)− fll(x)| ≤ lim
m,l→∞

(|fmm(x)− fmm(r)|+ |fmm(r)− fll(r)|+ |fll(r)− fll(x)|)

≤ lim
m,l→∞

(
ε

10
+

ε

10
+ |fmm(r)− fll(r)|) =

ε

5

(15)

Let ε→ 0, then we get limm,l→∞ |fmm(x)− fll(x)| = 0.

We denote {fnn}∞n=1 as {gn}∞n=1 and {gn}∞n=1 converges to g. Due to Lemma 2, we know that ∃C ′ such that |gn(0)| ≤
C ′, ∀n ∈ N. Because φ′ ≥ 0, ϕ′ ≤ 0, we have

φ(gn(x)) ≥ φ(gn(0)− k‖x‖) ≥ φ(−C ′ − k‖x‖) ≥ φ′(a0)(−C ′ − k‖x‖ − a0) + φ(a0) = −kφ′(a0)‖x‖+ C
′′

(16)

That is, φ(gn(x)) + kφ′(a0)‖x‖ − C ′′ ≥ 0.

By Fatou’s Lemma,

EX∼Pg (φ(g(X)) + kφ′(a0)‖X‖ − C
′′
) = EX∼Pg lim

n→∞
(φ(gn(X)) + kφ′(a0)‖X‖ − C

′′
)

≤ lim
n→∞

EX∼Pg (φ(gn(X)) + kφ′(a0)‖X‖ − C
′′
)

= lim
n→∞

EX∼Pgφ(gn(X)) + EX∼Pg (kφ′(a0)‖X‖ − C
′′
)

(17)

It means EX∼Pgφ(g(X)) ≤ limn→∞ EX∼Pgφ(gn(X)). Similarly, we have EY∼Prϕ(g(Y )) ≤ limn→∞ EY∼Prϕ(gn(Y )).
Combining the two inequalities, we have

G(g) = EX∼Pgφ(g(X)) + EY∼Prϕ(g(Y )) ≤ lim
n→∞

EX∼Pgφ(gn(X)) + lim
n→∞

EY∼Prϕ(gn(Y ))

≤ lim
n→∞

(EX∼Pgφ(gn(X)) + EY∼Prϕ(gn(Y ))) = inf
‖f‖Lip≤k

G(f)
(18)

Note that for any x, y ∈ dom(g), |g(x)−g(y)| ≤ limn→∞(|g(x)−gn(x)|+ |gn(x)−gn(y)|+ |gn(y)−g(y)|) ≤ k‖x−y‖.
That is, ‖g‖Lip ≤ k, G(g) = inf‖f‖Lip≤kG(f).

Lemma 4 (Wasserstein distance). T(f) = EX∼Pgf(X) − EY∼Prf(Y ), where f is subject to ‖f‖Lip ≤ k, has global
minima.

Proof. It is easy to find that for any C ∈ R, T(f + C) = T(f). Similar to the previous lemma, we can get a series of
functions {fn}∞n=1 such that limn→∞ T(fn) = inf(T(f)). Without loss of generality, we assume that fn(0) = 0,∀n ∈ N+.
Because ‖fn‖Lip ≤ k, we can claim that for any x ∈ R, {fn(x)|n ∈ R} is bounded. Then we can imitate the method used
in Lemma 3 and find the optimal function f∗ such that T(f∗) = inf

‖f‖Lip≤k
T(f).

Lemma 5. Let φ and ϕ be two convex functions, whose domains are both R. If we further suppose that the support sets Sr
and Sg are bounded. Then if φ and ϕ satisfy the following properties:

• φ′ ≥ 0, ϕ′ ≤ 0;

• There is a0 ∈ R such that φ′(a0) + ϕ′(a0) = 0.
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We have G(f) = EX∼Pgφ(f(X)) + EY∼Prϕ(f(Y )), where f is subject to
∥∥f∥∥

Lip
≤ k, has global minima.

That is, ∃f∗, s.t.

•
∥∥f∗∥∥

Lip
≤ k

• ∀f s.t.
∥∥f∥∥

Lip
≤ k , we have G(f∗) ≤ G(f).

Proof. We have proved most conditions in previous lemmas. And we only have to consider the condition that for any x ∈ R,
φ′(x) + ϕ′(x) ≥ 0 (or φ′(x) + ϕ′(x) ≤ 0) and there exists a1 such that φ′(a1) + ϕ′(a1) > 0 (or φ′(a1) + ϕ′(a1) < 0).

Without loss of generality, we assume that φ′(x) + ϕ′(x) ≥ 0 for all x and there exists a1 such that φ′(a1) + ϕ′(a1) > 0.
Then we know ∀x ≤ a0, φ

′(x) + ϕ′(x) = 0, which leads to ∀x ≤ a0, φ
′(x) = −ϕ′(x). Thus, for any x ≤ a0,

0 ≤ φ′′(x) = −ϕ′′(x) ≤ 0, which means ∀x ≤ a0, φ(x) = −ϕ(x) = tx, t ≥ 0. Similar to the previous lemmas, we can
get a series of functions {fn}∞n=1 such that limn→∞G(fn) = inf(G(f)). Actually we can assume that for all n ∈ N+,
there is fn(0) ∈ [−C,C], where C is a constant. In fact, it is not difficult to find fn(0) ≤ C with Lemma 2. On the other
hand, when C > k · diam(Sr ∪ Sg) + a0, then: if f(0) < −C, we have f(X) < a0 for all X ∈ Sr ∪ Sg. In this case,
G(f) = G(f − f(0)− C). This is the reason we can assume fn(0) ∈ [−C,C]. Because ‖fn‖Lip ≤ k, we can assert that
for any x ∈ R, {fn(x)|n ∈ R} is bounded. So we can imitate the method used in Lemma 3 and find the optimal function f∗

such that G(f∗) = inf
‖f‖Lip≤k

G(f).

Lemma 6 (Theorem 1 Part I). Under the same assumption of Lemma 5, we have F(f) = EX∼Pgφ(f(X)) +
EY∼Prϕ(f(Y )) + λ‖f‖αLip with λ > 0 and α > 1 has global minima.

Proof. When ‖f‖Lip = ∞, it is trivial that F(f) = ∞. And when ‖f‖Lip < ∞, combining Lemma 1, we have
F(f) = G(f) + λ‖f‖αLip ≥ −‖f‖Lipϕ′(a0)W1(Pr,Pg) + λ‖f‖αLip. When λ > 0 and α > 1, the right term is a convex
function about ‖f‖Lip, it has a lower bound. So we can find a sequence {fn}∞n=1 such that limn→∞ F(fn) = inff∈dom F(f).
It is no doubt that there exists a constant C such that ‖fn‖Lip ≤ C for all fn. Then it is not difficult to show for any
point x, {fn(x)} is bounded. So we can imitate the method used in main theorem to find the sequence {gn} such that
{gn} ⊆ {fn} and {gn}∞n=1 converge at every point x. Suppose limn→∞ gn = g, then by Fatou’s Lemma, we have
G(g) ≤ limn→∞G(gn).

Next, We prove that ‖g‖Lip ≤ limn→∞ ‖gn‖Lip. If the claim holds, then F(g) = G(g) + λ‖g‖αLip ≤ limn→∞G(gn) +
limn→∞ λ‖gn‖αLip ≤ limn→∞(G(gn) + λ‖gn‖αLip) = inf F(f). Thus, the global minima exists. In fact, if ‖g‖Lip >
limn→∞ ‖gn‖Lip, then there exist x, y such that |g(x)−g(y)|

‖x−y‖ ≥ limn→∞ ‖gn‖Lip + ε ≥ limn→∞
|gn(x)−gn(y)|
‖x−y‖ + ε. i.e.

|g(x) − g(y)| ≥ limn→∞ |gn(x) − gn(y)| + ε‖x − y‖ = |g(x) − g(y)| + ε‖x − y‖ > |g(x) − g(y)|. The contradiction
tells us that ‖g‖Lip ≤ limn→∞ ‖gn‖Lip.

Lemma 7 (Theorem 1 Part II). Let φ and ϕ be two convex functions, whose domains are both R. If φ or ϕ is strictly convex,
then the minimizer of F(f) = EX∼Pgφ(f(X)) + EY∼Prϕ(f(Y )) + λ‖f‖αLip with λ > 0 and α > 1 is unique (in the
support of Sr ∪ Sg).

Proof. Without loss of generality, we assume that φ is strictly convex. By the strict convexity of φ, we have ∀x, y ∈
R, φ(x+y

2 ) < 1
2 (φ(x) + φ(y)). Assume f1 and f2 are two different minimizers of F(f).

First, we have ∥∥∥f1 + f2

2

∥∥∥
Lip

= sup
x,y

f1(x)+f2(x)
2 − f1(y)+f2(y)

2

‖x− y‖

≤ sup
x,y

1

2

|f1(x)− f1(y)|+ |f2(x)− f2(y)|
‖x− y‖

≤ 1

2

(
sup
x,y

|f1(x)− f1(y)|
‖x− y‖

+ sup
x,y

|f2(x)− f2(y)|
‖x− y‖

)
=

1

2
(‖f1‖Lip + ‖f2‖Lip).

(19)
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And given λ > 0 and α > 1, we further have

λ
∥∥∥f1 + f2

2

∥∥∥α
Lip
≤ λ

(1

2
(‖f1‖Lip + ‖f2‖Lip)

)α
≤ λ1

2
(‖f1‖αLip + ‖f2‖αLip).

(20)

Let F(f1) = F(f2) = inf F(f). Then we have

G
(f1 + f2

2

)
= EX∼Pgφ

(f1 + f2

2

)
+ EY∼Prϕ

(f1 + f2

2

)
+ λ
∥∥∥f1 + f2

2

∥∥∥α
Lip

< EX∼Pg
(φ(f1) + φ(f2)

2

)
+ EY∼Prϕ

(f1 + f2

2

)
+ λ
∥∥∥f1 + f2

2

∥∥∥α
Lip

≤ EX∼Pg
(φ(f1) + φ(f2)

2

)
+ EY∼Pr

(ϕ(f1) + ϕ(f2)

2

)
+ λ
∥∥∥f1 + f2

2

∥∥∥α
Lip

≤ EX∼Pg
(φ(f1) + φ(f2)

2

)
+ EY∼Pr

(ϕ(f1) + ϕ(f2)

2

)
+ λ

1

2
(‖f1‖αLip + ‖f2‖αLip)

=
1

2
(G(f1) + G(f2)) = inf G(f)

(21)

We get a contradiction G( f1+f2
2 ) < inf G(f), which implies that the minimizer of G(f) is unique.

A.2. Proof of Theorem 2

Let JD = Ex∼Pg [φ(f(x))]+Ex∼Pr [ϕ(f(x))]. Let J̊D(x) = Pg(x)φ(f(x))+Pr(x)ϕ(f(x)). Clearly, JD =
∫
Rn J̊D(x)dx.

Let J∗D(k) = minf∈Fk-Lip JD = minf∈F1-Lip,b Ex∼Pg [φ(k · f(x) + b)] + Ex∼Pr [ϕ(k · f(x) + b)].

Let k(f) denote the Lipschitz constant of f . Define J = JD + λ · k(f)2 and f∗ = arg minf [JD + λ · k(f)2].

Lemma 8. It holds ∂J̊D(x)
∂f∗(x) = 0 for all x, if and only if, k(f∗) = 0.

Proof.

(i) If ∂J̊D(x)
∂f∗(x) = 0 holds for all x, then k(f∗) = 0.

For the optimal f∗, it holds that ∂J
∂k(f∗) =

∂J∗D
∂k(f∗) + 2λ · k(f∗) = 0.

∂J̊D(x)
∂f∗(x) = 0 for all x implies ∂J∗D

∂k(f∗) = 0. Thus we conclude that k(f∗) = 0.

(ii) If k(f∗) = 0, then ∂J̊D(x)
∂f∗(x) = 0 holds for all x.

For the optimal f∗, it holds that ∂J
∂k(f∗) =

∂J∗D
∂k(f∗) + 2λ · k(f∗) = 0.

k(f∗) = 0 implies ∂J∗D
∂k(f∗) = 0. k(f∗) = 0 also implies ∀x, y, f∗(x) = f∗(y).

Given ∀x, y, f∗(x) = f∗(y), if there exists some point x such that ∂J̊D(x)
∂f∗(x) 6= 0, then it is obvious that ∂J∗D

∂k(f∗) 6= 0.

It is contradictory to ∂J∗D
∂k(f∗) = 0. Thus we have ∀x, ∂J̊D(x)

∂f∗(x) = 0.

Lemma 9. If ∀x, y, f∗(x) = f∗(y), then Pr = Pg .

Proof. ∀x, y, f∗(x) = f∗(y) implies k(f∗) = 0. According to Lemma 8, for all x it holds ∂J̊D(x)
∂f∗(x) = 0, i.e., Pg(x)∂φ(f∗(x))

∂f∗(x)

+Pr(x)∂ϕ(f∗(x))
∂f∗(x) = 0. Thus, Pg(x)

Pr(x) = −
∂ϕ(f∗(x))
∂f∗(x)

∂φ(f∗(x))
∂f∗(x)

. That is, Pg(x)
Pr(x) has a constant value, which straightforwardly implies

Pr = Pg .
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Proof of Theorem 2.

(a): Let k be the Lipschitz constant of f∗. Consider x with ∂J̊D(x)
∂f∗(x) 6= 0. Define k(x) = supy

|f(y)−f(x)|
‖y−x‖ .

(i) If ∀δ s.t. ∀ε there exist z, w ∈ B(x, ε) such that |f
∗(z)−f∗(w)|
‖z−w‖ ≥ k − δ, which means there exists t such that

f ′(t) ≥ k − δ, because |f
∗(z)−f∗(w)|
‖z−w‖ =

∫ z
w
f∗′(t)dt

‖z−w‖ . Let ε → 0, we have t → x. Then |f∗′(t)| → |f∗′(x)|. Let
δ → 0, we have (k − δ) → k. Assume f∗ is smooth, we have that |f ′(x)| = k, which means there exists a y such that
|f∗(y)− f∗(x)| = k‖y − x‖.

(ii) Assume that ∃δ s.t. ∃ε and for all z, w ∈ B(x, ε), |f
∗(z)−f∗(w)|
‖z−w‖ < k − δ. Consider the following condition,

for all δ2 and ε2 ∈ (0, ε/2), ∃y ∈ B(x, ε2), such that k(y) > k − δ2. Then there exists a sequence of {yn}∞n=1 s.t.
limn→∞

|f(y)−f(yn)
‖y−yn‖ = k(y). Then there exists a y′ such that |f(y)−f(y′)

‖y−y′‖ ≥ k − δ2. According to the assumption,

we have ‖y − y′‖ ≥ ε
2 . Then k(x) ≥ |f∗(x)−f∗(y)|

‖x−y‖ ≥ |f∗(y)−f∗(y′)|−|f∗(x)−f∗(y)|
‖x−y‖+‖y−y′‖ ≥ |f∗(y)−f∗(y′)|−k‖x−y‖

‖x−y‖+‖y−y′‖ ≥ (k −
δ2) ‖y−y′‖
‖x−y‖+‖y−y′‖ − k

‖x−y‖
‖x−y‖+‖y−y′‖ ≥ (1− ε2

ε2+‖y−y′‖ )(k − δ2)− k ε2
‖y−y′‖ ≥ (1− ε2

ε2+‖y−y′‖ )(k − δ2)− k ε2
‖y−y′‖ . Let

ε2 → 0 and δ2 → 0. We get k(x) = k, which means there exists a y such that |f∗(y)− f∗(x)| = k‖y − x‖.

(iii) Now we can assume ∃δ2 s.t. ∃ε2 and for all y ∈ B(x, ε2), such that k(y) ≤ k − δ2. If ∂J̊D(x)
∂f∗(x) 6= 0, without loss

of generality, we can assume ∂J̊D(x)
∂f∗(x) > 0. Then, for all y ∈ B(x, ε2), we have ∂J̊D(y)

∂f∗(y) > 0, as long as ε2 is small enough.

Now we change the value of f∗(y) for y ∈ B(x, ε2). Let g(y) =

{
f∗(y)− ε2

N (1− ‖x−y‖ε2
), y ∈ B(x, ε2);

f∗(y) otherwise.
. Because

∂J̊D(y)
∂f∗(y) > 0, ∀y ∈ B(x, ε2), when N is sufficiently large, it is not difficult to show JD(g) < JD(f∗). We next verify

that ‖g‖Lip ≤ k. For any y, z, if y, z /∈ B(x, ε2), then |g(y)−g(z)|
‖y−z‖ = |f∗(y)−f∗(z)|

‖y−z‖ < k. If y ∈ B(x, ε2), z /∈ B(x, ε2),

then |g(y)−g(z)|
‖y−z‖ ≤

|(f∗(y)−f∗(z)|+ ε2
N (1− ‖x−y‖ε2

))

‖y−z‖ ≤ |f∗(y)−f∗(z)|
‖y−z‖ +

ε2
N (1− ‖x−y‖ε2

)

ε2−‖x−y‖ = |(f∗(y)−f∗(z)|
‖y−z‖ + 1

N ≤ k(y) + 1
N ≤

k − δ2 + 1
N < k (when N � 1

δ2
). If y, z ∈ B(x, ε), then |g(y)−g(z)|

‖y−z‖ ≤
|f∗(y)−f∗(z)|+| ε2N (1− ‖x−y‖ε2

)− ε2N (1− ‖x−z‖ε2
)|

‖y−z‖ =

|f∗(y)−f∗(z)|
‖y−z‖ +

ε2
N (
‖x−y‖−‖x−z‖

ε2
)|

‖y−z‖ ≤ |f
∗(y)−f∗(z)|
‖y−z‖ + 1

N
‖y−z‖
‖y−z‖ = |f∗(y)−f∗(z)|

‖y−z‖ + 1
N ≤ k − δ2 + 1

N < k (when N � 1
δ2

).
So, we have ‖g‖Lip ≤ k. But we have JD(g) < JD(f∗). The contradiction tells us that there must exists a y such that
|f∗(y)− f∗(x)| = k‖y − x‖.

(b): For x ∈ Sr∪Sg−Sr∩Sg , assumingPg(x) 6= 0 andPr(x) = 0, we have ∂J̊D(x)
∂f∗(x) = Pg(x)∂φ(f∗(x))

∂f∗(x) +Pr(x)∂ϕ(f∗(x))
∂f∗(x) =

Pg(x)∂φ(f∗(x))
∂f∗(x) > 0, because Pg(x) > 0 and ∂φ(f∗(x))

∂f∗(x) > 0. Then according to (a), there must exist a y such that
|f∗(y)− f∗(x)| = k(f∗) · ‖y − x‖. The other situation can be proved in the same way.

(c): According to Lemma 9, in the situation that Pr 6= Pg, for the optimal f∗, there must exist at least one pair of points x
and y such that y 6= x and f∗(x) 6= f∗(y). It also implies that k(f∗) > 0. Then according to Lemma 8, there exists a point
x such that ∂J̊D(x)

∂f∗(x) 6= 0. According to (a), there exists y with y 6= x satisfying that |f∗(y)− f∗(x)| = k(f∗) · ‖y − x‖.

(d): In Nash equilibrium state, it holds that, for any x ∈ Sr ∪Sg , ∂J
∂k(f) =

∂J∗D
∂k(f) + 2λ · k(f) = 0 and ∂J̊D(x)

∂f(x)
∂f(x)
∂x = 0. We

claim that in the Nash equilibrium state, the Lipschitz constant k(f) must be 0. If k(f) 6= 0, according to Lemma 8, there
must exist a point x̂ such that ∂J̊D(x̂)

∂f(x̂) 6= 0. And according to (a), it must hold that ∃ŷ fitting |f(ŷ)− f(x̂)| = k(f) · ‖x̂− ŷ‖.

According to Theorem 4, we have
∥∥∂f(x̂)

∂x̂

∥∥ = k(f) 6= 0. This is contradictory to that ∂J̊D(x̂)
∂f(x̂)

∂f(x̂)
∂x̂ = 0. Thus k(f) = 0.

That is, ∀x ∈ Sr ∪ Sg, ∂f(x)
∂x = 0, which means ∀x, y, f(x) = f(y). According to Lemma 9, ∀x, y, f(x) = f(y) implies

Pr = Pg . Thus Pr = Pg is the only Nash equilibrium in our system.

Remark 1. For the Wasserstein distance, ∇f∗(x)J̊D(x) = 0 if and only if Pr(x) = Pg(x). For the Wasserstein distance,
penalizing the Lipschitz constant also benefits: at the convergence state, it will hold ∂f∗(x)

∂x = 0 for all x.
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A.3. Proof of Theorem 3

Lemma 10. Let k be the Lipschitz constant of f . If f(a) − f(b) = k‖a − b‖ and f(b) − f(c) = k‖b − c‖, then
f(a)− f(c) = k‖a− c‖ and (a, f(a)), (b, f(b)), (c, f(c)) lies in the same line.

Proof. f(a)− f(c) = f(a)− f(b) + f(b)− f(c) = k‖a− b‖+ k‖b− c‖ ≥ k‖a− c‖. Because the Lipschitz constant of f
is k, we have f(a)− f(c) ≤ k‖a− c‖. Thus f(a)− f(c) = k‖a− c‖. Because the triangle equality holds, we have a, b, c
is in the same line. Furthermore, because f(a)− f(b) = k‖a− b‖, f(b)− f(c) = k‖b− c‖ and f(a)− f(c) = k‖a− c‖,
we have (a, f(a)), (b, f(b)), (c, f(c)) lies in the same line.

Lemma 11. For any x with ∂J̊D(x)
∂f∗(x) > 0, there exists a y with ∂J̊D(x)

∂f∗(x) < 0 such that f∗(y)− f∗(x) = k(f∗)‖y − x‖.

For any y with ∂J̊D(y)
∂f∗(y) < 0, there exists a x with ∂J̊D(x)

∂f∗(x) > 0 such that f∗(y)− f∗(x) = k(f∗)‖y − x‖.

Proof. Consider x with ∂J̊D(x)
∂f∗(x) > 0. According to Theorem 2, there exists y such that |f∗(y)− f∗(x)| = k(f∗)‖y − x‖.

Assume that for every y that holds |f∗(y) − f∗(x)| = k(f∗)‖y − x‖, it has ∂J̊D(y)
∂f∗(y) ≥ 0. Consider the set S(x) = {y |

f∗(y) − f∗(x) = k(f∗)‖y − x‖}. Note that, according to Lemma 10, any z that holds f∗(z) − f∗(y) = k(f∗)‖z − y‖
for any y ∈ S(x) will also be in S(x). Similar as the proof of (a) in Theorem 2, we can decrease the value of f∗(y)

for all y ∈ S(x) to construct a better f . By contradiction, we have that there must exist a y with ∂J̊D(x)
∂f∗(x) < 0 such that

|f∗(y) − f∗(x)| = k(f∗)‖y − x‖. Given the fact ∂J̊D(x)
∂f∗(x) > 0 and ∂J̊D(x)

∂f∗(x) < 0, we can conclude that f∗(y) > f∗(x) and
f∗(y)−f∗(x) = k(f∗)‖y−x‖. Otherwise, if f∗(x)−f∗(y) = k(f∗)‖y−x‖, then we can construct a better f by decreasing
f∗(x) and increasing f∗(y) which does not break the k-Lipschitz constraint. The other case can be proved similarly.

Lemma 12. For any x, if ∂J̊D(x)
∂f(x) > 0, then Pg(x) > 0. For any y, if ∂J̊D(y)

∂f(y) < 0, then Pr(y) > 0.

Proof. ∂J̊D(x)
∂f(x) = Pg(x)∂φ(f(x))

∂f(x) +Pr(x)∂ϕ(f(x))
∂f(x) . And we know φ′(x) > 0 and ϕ′(x) < 0. Naturally, ∂J̊D(x)

∂f(x) > 0 implies

Pg(x) > 0. Similarly, ∂J̊D(y)
∂f(y) < 0 implies Pr(y) > 0.

Proof of Theorem 3.

For any x ∈ Sg, if ∂J̊D(x)
∂f∗(x) > 0, according to Lemma 11, there exists a y with ∂J̊D(x)

∂f∗(x) < 0 such that
f∗(y) − f∗(x) = k(f∗)‖y − x‖. According to Lemma 12, we have Pr(y) > 0. That is, there is a y ∈ Sr such
that f∗(y)− f∗(x) = k(f∗)‖y − x‖. We can prove the other case symmetrically.

Remark 2. ∂J̊D(x)
∂f∗(x) < 0 for some x ∈ Sg means x is at the overlapping region of Sr and Sg . It can be regarded as a y ∈ Sr,

and one can apply the other rule which guarantees that there exists a x′ ∈ Sg that bounds this point.

A.4. Proof of Theorem 4

In this section, we will prove Theorem 4, i.e., Lipschitz continuity with l2-norm (Euclidean Distance) can guarantee that the
gradient is directly pointing towards some sample.

Let (x, y) be such that y 6= x, and we define xt = x+ t · (y − x) with t ∈ [0, 1].

Lemma 13. If f(x) is k-Lipschitz with respect to ‖.‖p and f(y)− f(x) = k‖y − x‖p, then f(xt) = f(x) + t · k‖y − x‖p

Proof. As we know f(x) is k-Lipschitz, with the property of norms, we have

f(y)− f(x) = f(y)− f(xt) + f(xt)− f(x)

≤ f(y)− f(xt) + k‖xt − x‖p = f(y)− f(xt) + t · k‖y − x‖p
≤ k‖y − xt‖p + t · k‖y − x‖p = k · (1− t)‖y − x‖p + t · k‖y − x‖p
= k‖y − x‖p. (22)
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f(y)− f(x) = k‖y − x‖p implies all the inequalities is equalities. Therefore, f(xt) = f(x) + t · k‖y − x‖p.

Lemma 14. Let v be the unit vector y−x
‖y−x‖2 . If f(xt) = f(x) + t · k‖y − x‖2, then ∂f(xt)

∂v equals to k.

Proof.

∂f(xt)

∂v
= lim
h→0

f(xt + hv)− f(xt)

h
= lim
h→0

f(xt + h y−x
‖y−x‖2 )− f(xt)

h

= lim
h→0

f(xt+ h
‖y−x‖2

)− f(xt)

h
= lim
h→0

h
‖y−x‖2 · k‖y − x‖2

h
= k.

Proof of Theorem 4. Assume p = 2. According to (Adler & Lunz, 2018), if f(x) is k-Lipschitz with respect to ‖.‖2 and
f(x) is differentiable at xt, then ‖∇f(xt)‖2 ≤ k. Let v be the unit vector y−x

‖y−x‖2 . We have

k2 = k
∂f(xt)

∂v
= k 〈v,∇f(xt)〉 = 〈kv,∇f(xt)〉 ≤ ‖kv‖2‖∇f(xt)‖2 = k2. (23)

Because the equality holds only when∇f(xt) = kv = k y−x
‖y−x‖2 , we have that∇f(xt) = k y−x

‖y−x‖2 .

A.5. Proof of the New Dual Form of Wasserstein Distance

We here provide a proof for our new dual form of Wasserstein distance, i.e., Eq. (4).

The Wasserstein distance is given as follows

W1(Pr,Pg) = inf
π∈Π(Pr,Pg)

E(x,y)∼π [d(x, y)], (24)

where Π(Pr,Pg) denotes the set of all probability measures with marginals Pr and Pg on the first and second factors,
respectively. The Kantorovich-Rubinstein (KR) dual (Villani, 2008) is written as

WKR(Pr,Pg) = supf Ex∼Pr [f(x)]− Ex∼Pg [f(x)],

s.t. f(x)− f(y) ≤ d(x, y), ∀x, ∀y.
(25)

We will prove that Wasserstein distance in its dual form can also be written as

WLL(Pr,Pg) = supf Ex∼Pr [f(x)]− Ex∼Pg [f(x)],

s.t. f(x)− f(y) ≤ d(x, y), ∀x ∈ Sr,∀y ∈ Sg,
(26)

which relaxes the constraint in the KR dual form of Wasserstein distance.

Theorem 5. Given WKR(Pr,Pg) = W1(Pr,Pg), we have WKR(Pr,Pg) = WLL(Pr,Pg) = W1(Pr,Pg).

Proof.

(i) For any f that satisfies “f(x)− f(y) ≤ d(x, y), ∀x, ∀y”, it must satisfy “f(x)− f(y) ≤ d(x, y), ∀x ∈ Sr,∀y ∈ Sg”.

Thus, WKR(Pr,Pg) ≤WLL(Pr,Pg).

(ii) Let FLL = {f | f(x)− f(y) ≤ d(x, y), ∀x ∈ Sr,∀y ∈ Sg}.

Let A = {(x, y) |x ∈ Sr, y ∈ Sg} and IA =

{
1, (x, y) ∈ A;

0, otherwise
.

Let Ac denote the complementary set of A and define IAc accordingly.

∀π ∈ Π(Pr,Pg), we have the following:
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WLL(Pr,Pg) = supf∈FLL Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

= supf∈FLL E(x,y)∼π[f(x)− f(y)]

= supf∈FLL E(x,y)∼π[(f(x)− f(y))IA] + E(x,y)∼π[(f(x)− f(y))IAc ]

= supf∈FLL E(x,y)∼π[(f(x)− f(y))IA]

≤ E(x,y)∼π[‖y − x‖IA]

≤ E(x,y)∼π[d(x, y)].

WLL(Pr,Pg) ≤ E(x,y)∼π[d(x, y)],∀π ∈ Π(Pr,Pg)

⇒WLL(Pr,Pg) ≤ infπ∈Π(Pr,Pg) E(x,y)∼π [d(x, y)] = W1(Pr,Pg).

(iii) Combining (i) and (ii), we have WKR(Pr,Pg) ≤WLL(Pr,Pg) ≤W1(Pr,Pg).

Given I(Pr,Pg) = W1(Pr,Pg), we have I(Pr,Pg) = WLL(Pr,Pg) = W1(Pr,Pg).

B. The Practical Behaviors of Gradient Uninformativeness
To study the practical behaviors of gradient uninformativeness, we conducted a set of experiments with various hyper-
parameter settings. We use the Least-Squares GAN in this experiments as an representative of traditional GANs. The value
surface and the gradient of generated samples under various situations are plotted as follows.

Figure 7: ADAM with lr=1e-2, beta1=0.0, beta2=0.9. MLP with RELU activations, #hidden units=1024, #layers=1.

Figure 8: ADAM with lr=1e-2, beta1=0.0, beta2=0.9. MLP with RELU activations, #hidden units=1024, #layers=4.

These experiments shown that the practical f highly depend on the hyper-parameter setting. Given limited capacity, the
neural network try to learn the best f . When the neural network is capable of learning approximately the optimal f∗, how
the actual f approaches f∗ and how the points whose gradients are theoretically undefined behave highly depends the
optimization details and the characteristics of the network.
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Figure 9: ADAM with lr=1e-5, beta1=0.0, beta2=0.9. MLP with RELU activations, #hidden units=1024, #layers=4.

Figure 10: SGD with lr=1e-3. MLP with SELU activations, #hidden units=128, #layers=64.

Figure 11: SGD with lr=1e-4. MLP with SELU activations, #hidden units=128, #layers=64.

C. On the Implementation of Lipschitz continuity for GANs
Typical techniques for enforcing k-Lipschitz includes: spectral normalization (Miyato et al., 2018), gradient penalty
(Gulrajani et al., 2017), and Lipschitz penalty (Petzka et al., 2017). Before moving into the detailed discussion of these
methods, we would like to provide several important notes in the first place.

Firstly, enforcing k-Lipschitz in the blending-region of Pr and Pg is actually sufficient.

Define B(Sr,Sg) = {x̂ = x · t+y · (1− t) | x ∈ Sr and y ∈ Sg and t ∈ [0, 1]}. It is clear that f is 1-Lipschitz in B(Sr,Sg)
implies f(x)− f(y) ≤ d(x, y),∀x ∈ Sr,∀y ∈ Sg . Thus, it is a sufficient constraint for Wasserstein distance in Eq. (4). In
fact, f(x) is k-Lipschitz in B(Pr,Pg) is also a sufficient condition for all properties described in Lipschitz GANs.

Secondly, enforcing k-Lipschitz with regularization would provide a dynamic Lipschitz constant k.

Lemma 15. With Wasserstein GAN objective, we have minf∈Fk-Lip JD(f) = k ·minf∈F1-Lip JD(f).

Assuming we can directly control the Lipschitz constant k(f) of f , the total loss of the discriminator becomes J(k) ,
minf∈Fk-Lip JD(f) + λ · (k − k0)2. With Lemma 15, let α = −minf∈F1-Lip JD(f), then J(k) = −k · α + λ · (k − k0)2,
and J(k) achieves its minimum when k = α

2λ + k0. When α goes to zero, i.e., Pg converges to Pr, the optimal k decreases.
And when Pr = Pg , we have α = 0 and the optimal k = k0. The similar analysis applies to Lipschitz GANs.
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(a) Gradient Penalty (b) Maximum Gradient Penalty

Figure 12: Comparison between gradient penalty and maximum gradient penalty, with Pr and Pg consist of ten real and
noise images, respectively. The leftmost in each row is a x ∈ Sg and the second is its gradient∇xf∗(x). The interiors are
x+ ε · ∇xf∗(x) with increasing ε, which will pass through a real sample, and the rightmost is the nearest y ∈ Sr.

C.1. Existing Methods

For practical methods, though spectral normalization (Miyato et al., 2018) recently demonstrates their excellent results
in training GANs, spectral normalization is an absolute constraint for Lipschitz over the entire space, i.e., constricting
the maximum gradient of the entire space, which is unnecessary. On the other side, we also notice both penalty methods
proposed in (Gulrajani et al., 2017) and (Petzka et al., 2017) are not exact implementation of the Lipschitz continuity
condition, because it does not directly penalty the maximum gradient, but penalties all gradients towards the given target
Lipschitz constant or penalties all these greater than one towards the given target.

We also empirically found that the existing methods including spectral normalization (Miyato et al., 2018), gradient penalty
(Gulrajani et al., 2017), and Lipschitz penalty (Petzka et al., 2017) all fail to converge to the optimal f∗(x) in some of our
synthetic experiments.

C.2. The New Method

Note that this practical method of imposing Lipschitz continuity is not the key contribution of this work. We leave the
more rigorous study on this topic as our further work. We introduce it for the necessity for understanding our paper and
reproducing of experiments.

Combining the idea of spectral normalization and gradient penalty, we developed a new way of implementing the regulariza-
tion of Lipschitz continuity in our experiments. Spectral normalization is actually constraining the maximum gradient over
the entire space. And as we argued previously, enforcing Lipschitz continuity in the blending region is sufficient. Therefore,
we propose to restricting the maximum gradient over the blending region:

Jmaxgp = λ max
x∼B(Sr,Sg)

[
∥∥∇xf(x)

∥∥2
] (27)

In practice, we sample x from B(Sr,Sg) as in (Gulrajani et al., 2017; Petzka et al., 2017) using training batches of real and
fake samples.

We compare the practical result of (centralized) gradient penalty Ex∼B [
∥∥∇xf(x)

∥∥2
] and the proposed maximum gradient

penalty in Figure 12. Before switching to maximum gradient penalty, we struggled for a long time and cannot achieve a
high quality result as shown in Figure 12b. The other forms of gradient penalty (Gulrajani et al., 2017; Petzka et al., 2017)
perform similar as Ex∼B [

∥∥∇xf(x)
∥∥2

].

To improve the stability and reduce the bias introduced via batch sampling, one can further keep track x with the maximum∥∥∇xf(x)
∥∥. A practical and light weight method is to maintain a list Smax that has the currently highest (top-k)

∥∥∇xf(x)
∥∥

2
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(initialized with random samples), use the Smax as part of the batch that estimates Jmaxgp, and update the Smax after each
batch updating of the discriminator. According to our experiments, it is usually does not improve the training significantly.

D. Extended Discussions and More Details
D.1. Various φ and ϕ That Satisfies Eq. (11)

For Lipschitz GANs, φ and ϕ are required to satisfy Eq. (11). Eq. (11) is actually quite general and there exists many
other instances, e.g., φ(x) = ϕ(−x) = x, φ(x) = ϕ(−x) = − log(σ(−x)), φ(x) = ϕ(−x) = x+

√
x2 + α with α > 0,

φ(x) = ϕ(−x) = exp(x), etc. We plot these instances of φ and ϕ in Figure 13.

To devise a loss satisfies Eq. (11), it is practical to let φ be an increasing function with non-decreasing derivative and set
φ(x) = ϕ(−x). Note that rescaling and offsetting along the axes are trivial operation to found more φ and ϕ within a
function class, and linear combination of two or more φ or ϕ from different function classes also keep satisfying Eq. (11).

D.2. Experiment Details

In our experiments with real datas (CIFAR-10, Tiny Imagenet and Oxford 102), we follow the network architecture and
hyper-parameters in (Gulrajani et al., 2017). The network architectures are detailed in Table 3. We use Adam optimizer
with beta1=0.0, beta2=0.9, and the learning rate is 0.0002 which linear decays to zero in 200, 000 iterations. We use 5
discriminator updates per generator update. We use MaxGP for all our experiments of LGANs and search the best penalty
weight λ in [0.01, 0.1, 1.0, 10.0]. Please check more details in our codes. For all experiments in Table 2, we only change φ
and ϕ and the dataset, and all other components are fixed.

We plot the IS training curve of LGANs in Figure 14 and 15. We provide the visual results of LGANs in Figure 16, Figure 17
for CIFAR-10 and Tiny Imagenet, respectively. As an extra experiment, we also provide the visual results of LGANs on
Oxford 102 in Figure 18.

Figure 13: Various φ and ϕ that satisfies Eq. (11).

Figure 14: IS training curves on CIFAR-10. Figure 15: IS training curves on Tiny ImageNet.
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(a) x (b) exp(x)

(c) − log(σ(−x)) (d) x+
√
x2 + 1

(e) (x+ 1.0)2 (f) max(0, x+ 1.0)

Figure 16: Random samples of LGANs with different loss metrics on CIFAR-10.
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(a) x (b) exp(x)

(c) − log(σ(−x)) (d) x+
√
x2 + 1

(e) (x+ 1.0)2 (f) max(0, x+ 1.0)

Figure 17: Random samples of LGANs with different loss metrics on Tiny Imagenet.
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(a) x (b) exp(x)

(c) − log(σ(−x)) (d) x+
√
x2 + 1

(e) (x+ 1.0)2 (f) max(0, x+ 1.0)

Figure 18: Random samples of LGANs with different loss metrics on Oxford 102.
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Figure 19: The gradient of LGANs with real world data, where Pr consists of ten images and Pg is Gaussian noise. Up:
Each odd column are x ∈ Sg and the nearby column are their gradient ∇xf∗(x). Down: the leftmost in each row is x ∈ Sg ,
the second are their gradients ∇xf∗(x), the interiors are x+ ε · ∇xf∗(x) with increasing ε, and the rightmost is the nearest
y ∈ Sr.
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Generator:
Operation Kernel Resample Output Dims

Noise N/A N/A 128

Linear N/A N/A 128×4×4

Residual block 3×3 UP 128×8×8

Residual block 3×3 UP 128×16×16

Residual block 3×3 UP 128×32×32

Conv & Tanh 3×3 N/A 3×32×32

Discriminator:
Operation Kernel Resample Output Dims

Residual Block 3×3×2 Down 128×16×16

Residual Block 3×3×2 Down 128×8×8

Residual Block 3×3×2 N/A 128×8×8

Residual Block 3×3×2 N/A 128×8×8

ReLU,mean pool N/A N/A 128

Linear N/A N/A 1

Table 3: The network architectures.
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