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Abstract

The performance of a reinforcement learning algo-
rithm can vary drastically during learning because
of exploration. Existing algorithms provide little
information about the quality of their current pol-
icy before executing it, and thus have limited use
in high-stakes applications like healthcare. We
address this lack of accountability by proposing
that algorithms output policy certificates. These
certificates bound the sub-optimality and return of
the policy in the next episode, allowing humans
to intervene when the certified quality is not satis-
factory. We further introduce two new algorithms
with certificates and present a new framework for
theoretical analysis that guarantees the quality of
their policies and certificates. For tabular MDPs,
we show that computing certificates can even im-
prove the sample-efficiency of optimism-based
exploration. As a result, one of our algorithms is
the first to achieve minimax-optimal PAC bounds
up to lower-order terms, and this algorithm also
matches (and in some settings slightly improves
upon) existing minimax regret bounds.

1. Introduction

There is increasing excitement around applications of ma-
chine learning, but also growing awareness and concerns
about fairness, accountability and transparency. Recent re-
search aims to address these concerns but most work focuses
on supervised learning and only few results (Jabbari et al.,
2016; Joseph et al., 2016; Kannan et al., 2017; Raghavan
et al., 2018) exist on reinforcement learning (RL).

One challenge when applying RL in practice is that, unlike
in supervised learning, the performance of an RL algorithm
is typically not monotonically increasing with more data
due to the trial-and-error nature of RL that necessitates ex-
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ploration. Even sharp drops in policy performance during
learning are common, e.g., when the agent starts to explore
a new part of the state space. Such unpredictable perfor-
mance fluctuation has limited the use of RL in high-stakes
applications like healthcare, and calls for more accountable
algorithms that can quantify and reveal their performance
online during learning.

To address this lack of accountability, we propose that RL
algorithms output policy certificates in episodic RL. Pol-
icy certificates consist of (1) a confidence interval of the
algorithm’s expected sum of rewards (return) in the next
episode (policy return certificates) and (2) a bound on how
far from the optimal return the performance can be (pol-
icy optimality certificates). Certificates make the policy’s
performance more transparent and accountable, and allow
designers to intervene if necessary. For example, in medical
applications, one would need to intervene unless the policy
achieves a certain minimum treatment outcome; in financial
applications, policy optimality certificates can be used to
assess the potential loss when learning a trading strategy. In
addition to accountability, we also want RL algorithms to
be sample-efficient and quickly achieve good performance.
To formally quantify accountability and sample-efficiency
of an algorithm, we introduce a new framework for theo-
retical analysis called IPOC. IPOC bounds guarantee that
certificates indeed bound the algorithm’s expected perfor-
mance in an episode, and prescribe the rate at which the
algorithm’s policy and certificates improve with more data.
IPOC is stronger than other frameworks like regret (Jaksch
et al., 2010), PAC (Kakade, 2003) and Uniform-PAC (Dann
etal.,2017), that only guarantee the cumulative performance
of the algorithm, but do not provide bounds for individ-
ual episodes during learning. IPOC also provides stronger
bounds and more nuanced guarantees on per episode perfor-
mance than KWIK (Li et al., 2008).

A natural way to create accountable and sample-efficient
RL algorithms is to combine existing sample-efficient al-
gorithms with off-policy policy evaluation approaches to
estimate the return (expected sum of rewards) of the algo-
rithm’s policy before each episode. Existing policy evalua-
tion approaches estimate the return of a fixed policy from
a batch of data (e.g., Thomas et al., 2015b; Jiang & Li,
2016; Thomas & Brunskill, 2016). They provide little to no
guarantees when the policy is not fixed but computed from
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that same batch of data, as is here the case. They also do
not reason about the return of the unknown optimal policy
which is necessary for providing policy optimality certifi-
cates. We found that by focusing on optimism-in-the-face-
of-uncertainty (OFU) based RL algorithms for updating the
policy and model-based policy evaluation techniques for
estimating the policy returns, we can create sample-efficient
algorithms that compute policy certificates on both the cur-
rent policy’s return and its difference to the optimal return.
The main insight is that OFU algorithms compute an upper
confidence bound on the optimal return from an empirical
model when updating the policy. Model-based policy eval-
uation can leverage the same empirical model to compute
a confidence interval on the policy return, even when the
policy depends on the data. We illustrate this approach with
new algorithms for two different episodic settings.

Perhaps surprisingly, we show that in tabular Markov de-
cision processes (MDPs) it can be beneficial to explicitly
leverage the combination of OFU-based policy optimization
and model-based policy evaluation to improve either com-
ponent. Specifically, computing the certificates can directly
improve the underlying OFU approach and knowing that
the policy converges to the optimal policy at a certain rate
improves the accuracy of policy return certificates. As a
result, the guarantees for our new algorithm improve state-
of-the-art regret and PAC bounds in problems with large
horizons and are minimax-optimal up to lower-order terms.

The second setting we consider are finite MDPs with linear
side information (context) (Abbasi-Yadkori & Neu, 2014;
Hallak et al., 2015; Modi et al., 2018), which is of particular
interest in practice. For example, in a drug treatment opti-
mization task where each patient is one episode, context is
the background information of the patient which influences
the treatment outcome. While one expects the algorithm
to learn a good policy quickly for frequent contexts, the
performance for unusual patients may be significantly more
variable due to the limited prior experience of the algorithm.
Policy certificates allow humans to detect when the current
policy is good for the current patient and intervene if a certi-
fied performance is deemed inadequate. For example, for
this health monitoring application, a human expert could in-
tervene to either directly specify the policy for that episode,
or in the context of automated customer service, the service
could be provided at reduced cost to the customer.

To summarize, We make the following main contributions:

1. We introduce policy certificates and the [IPOC framework
for evaluating RL algorithms with certificates. Similar to
existing frameworks like PAC, it provides formal require-
ments to be satisfied by the algorithm, here requiring the
algorithm to be an efficient learner and to quantify its
performance online through policy certificates.

2. We provide a new RL algorithm for finite, episodic

MDPs that satisfies this definition, and show that it
has stronger, minimax regret and PAC guarantees than
prior work. Formally, our sample complexity bound
is O(SAH? /e 4+ S2AH? /€) vs. prior O(SAH*/€? +
S?AH3/¢) (Dann et al., 2017), and our regret bound
O(VSAH?T + S2AH?) improves prior work (Azar
et al., 2017) since it has minimax rate up to log-terms in
the dominant term even for long horizons H > S A.

3. We introduce a new RL algorithm for finite, episodic
MDPs with linear side information that has a cumulative
IPOC bound, which is tighter than past results (Abbasi-
Yadkori & Neu, 2014) by a factor of vV SAH.

2. Setting and Notation

We consider episodic RL problems where the agent inter-
acts with the environment in episodes of a certain length.
While the framework for policy certificates applies more
breadly, we focus on finite MDPs with linear side informa-
tion (Modi et al., 2018; Hallak et al., 2015; Abbasi-Yadkori
& Neu, 2014) for concreteness. This setting includes tabular
MDPs as a special case but is more general and can model
variations in the environment across episodes, e.g., because
different episodes correspond to treating different patients
in a healthcare application. Unlike the tabular special case,
function approximation is necessary for efficient learning.

Tabular MDPs The agent interacts with the MDP in
episodes indexed by k. Each episode is a sequence
(Sk1, Gk1sTh 1y - - Sk H, Gk, H, Tk, i) Of H states sy €
S, actions ay, j, € A and scalar rewards 75, € [0,1]. For
notational simplicity, we assume that the initial state sy, 1
is deterministic. The actions are taken as prescribed by the
agent’s policy 7, and we here focus on deterministic time-
dependent policies, i.e., ay,, = 7i(Sk,n, h) for all time
steps h € [H] :={1,2,... H}. The successor states and re-
wards are sampled from the MDP as sy 1 ~ P(sk.n, Gk 1)
and ry p, ~ Pr(Sk n,ag,n). In tabular MDPs the size of the
state space S = |S| and action space A = |.A| are finite.

Finite MDPs with linear side information. We assume
that state- and action-space are finite as in tabular MDPs,
but here the agent essentially interacts with a family of
infinitely many tabular MDPs that is parameterized by lin-
ear contexts. At the beginning of episode k, two contexts,
2" e RY” and 2P € RY"™ are observed and the agent
interacts in this episode with a tabular MDP, whose dynam-
ics and reward function depend on the contexts in a linear
fashion. Specifically, it is assumed that the rewards are
sampled from Pr(s, a) with means ry (s, a) = (z\") 765
To®)

s’,s,a

and transition probabilities are Py (s'|s,a) = (x,(cp )

where 0§’2 € Rdm and 937 )S_a S Rd(p) are unknown pa-
rameter vectors for each s,s’ € S,a € A. As a reg-

ularity condition, we assume bounded parameters, i.e.,
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|\9§’2||2 < &gy and ||0(p) ll2 < &y as well as bounded

s’.s,a
contexts Hx,(f)Hg < &, and ||x,(€p)H2 < &y, We al-
low a:,(:) and ng ) to be different, and use z, to denote

(z{”), 2P} in the following. Note that our framework and

algorithms can handle adversarially chosen contexts.

Return and optimality gap. The quality of a policy 7 in
any episode £ is evaluated by the total expected reward or
return: pg(m) := E [2;13;1 rk7h|ak,1:H ~ W] , where this
notation means that all actions in the episode are taken as
prescribed by a policy 7. Optimal policy and return pj =
max, pr(7) may depend on the episode’s contexts. The
difference of achieved and optimal return is called optimality
gap A, = p} — pi(my) for each episode k where my, is the
algorithm’s policy in that episode.

Additional notation. We denote the largest possible op-
timality gap by Ap.x = H, and the value functions
of 7 in episode k by Q7*(s,a) = E[Zih ThotlQkn =
a,ap pt1:m ~ ) and V7% (s) = Q7 (s, (s, h)). Optimal
versions are marked by superscript = and subscripts are
omitted when unambiguous. We treat P(s, a) as a linear
operator, thatis, P(s,a)f = >, .5 P(s|s,a) f(s") for any
f:8 — R. Wealso use a,(f) = \/q(f — ¢qf)? for the
standard deviation of f with respect to a state distribution
gand V™ = (H — h+ 1) for all h € [H]. We also use
the common short hand notation a V b = max{a,b} and
aAb = min{a,b} as well as O(f) = O(f - poly(log(f))).

3. The IPOC Framework

During execution, the optimality gaps Ay, are hidden and
the algorithm only observes the sum of rewards which is a
sample of py (7). This causes risk as one does not know
whether the algorithm is playing a good or potentially bad
policy. We introduce a new learning framework that miti-
gates this limitation. This framework forces the algorithm to
output its current policy 7 as well as certificates ¢, € R
and Z;, C R before each episode k. The return certificate Iy,
is a confidence interval on the return of the policy, while the
optimality certificate €j, informs the user how sub-optimal
the policy can be for the current context, i.e., € > Ay.
Certificates allow one to intervene if needed. For example,
in automated customer services, one might reduce the ser-
vice price in episode k if certificate €j, is above a certain
threshold, since the quality of the provided service cannot
be guaranteed. When there is no context, an optimality
certificate upper bounds the sub-optimality of the current
policy in any episode which makes algorithms anytime in-
terruptable (Zilberstein & Russell, 1996): one is guaranteed
to always know a policy with improving performance. Our
learning framework is formalized as follows:

Definition 1 (Individual Policy Certificates (IPOC) Bounds).
An algorithm satisfies an individual policy certificate (IPOC)

bound F iffor a given § € (0, 1) it outputs the current policy
my, a return certificate Z, C R and an optimality certificate
ex with €, > |Ij| before each episode k (after observing
the contexts) so that with probability at least 1 — §:

1. all return certificates contain the return policy m, played
in episode k and all optimality certificates are upper
bounds on the sub-optimality of my, ie, ¥V k € N :
€r > Ay and pi () € Iy ; and either

2a. for all number of episodes T’ the cumulative sum of cer-
tificates is bounded 25:1 ex < F(W,T,0) (Cumulative
Version), or

2b. for any threshold e, the number of times certificates can
exceed the threshold is bounded as ;- | 1{e, > €} <
F(W,e¢,0) (Mistake Version).

Here, W can be (known or unknown) properties of the envi-
ronment. If conditions 1 and 2a hold, we say the algorithm
has a cumulative IPOC bound and if conditions 1 and 2b
hold, we say the algorithm has a mistake IPOC bound.

Condition 1 alone would be trivial to satisfy with ¢, =
Apmax and T, = [0, Apax], but condition 2 prohibits this
by controlling the size of ¢ (and therefore the size of
|Zi| < €x). Condition 2a bounds the cumulative sum of
optimality certificates (similar to regret bounds), and condi-
tion 2b bounds the size of the superlevel sets of ¢ (similar to
PAC bounds). We allow both alternatives as condition 2b is
stronger but one sometimes can only prove condition 2a (see
Appendix D'). An IPOC bound controls simultaneously the
quality of certificates (how big e, — A, and |Zj| are) as well
as the optimality gaps Ay themselves and, hence, an IPOC
bound not only guarantees that the algorithm improves its
policy but also becomes better at telling us how well the
policy performs. Note that the condition €5 > |Z| in Defi-
nition 1 is natural as any upper bound on pj; is also an upper
bound on py () and is made for notational convenience.

We would like to emphasize that we provide certificates
on the return, the expected sum of rewards, in the next
episode. Due to the stochasticity in the environment, one
in general cannot hope to accurately predict the sum of
rewards directly. Since return is the default optimization
criteria in RL, certificates for it are a natural starting point
and relevant in many scenarios. Nonetheless, certificates
for other properties of the sum-of-reward distribution of
a policy are an interesting direction for future work. For
example, one might want certificates on properties that take
into account the variability of the sum of rewards (e.g.,
conditional value at risk) in high-stakes applications which
are often the objective in risk-sensitive RL.

'See full version of this paper at https://arxiv.org/
abs/1811.03056.
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3.1. Relation to Existing Frameworks

Unlike IPOC, existing frameworks for RL only guarantee
sample-efficiency of the algorithm over multiple episodes
and do not provide performance bounds for single episodes
during learning. The common existing frameworks are:

e Mistake-style PAC bounds (Strehl et al., 2006; 2009; Szita
& Szepesvari, 2010; Lattimore & Hutter, 2012; Dann &
Brunskill, 2015) bound the number of e-mistakes, that
is, the size of the set {k € N : Ay > €} with high
probability, but do not tell us when mistakes happen. The
same is true for the stronger Uniform-PAC bounds (Dann
et al., 2017) which hold for all € jointly.

o Supervised-learning style PAC bounds (Kearns & Singh,
2002; Jiang et al., 2017; Dann et al., 2018) ensure that the
algorithm outputs an e-optimal policy for a given ¢, i.e.,
they ensure Ay < e for k greater than the bound. Yet,
they need to know e ahead of time and tell us nothing
about Ay, during learning (for k& smaller than the bound).

e Regret bounds (Osband et al., 2013; 2016; Azar et al.,
2017; Jin et al., 2018) control the cumulative sum of
optimality gaps ZZ:1 Ay, (regret) which does not yield
any nontrivial guarantee for individual Ay, because it does
not reveal which optimality gaps are small.

We show that mistake [POC bounds are stronger than any of
the above guarantees, i.e., they imply Uniform PAC, PAC,
and regret bounds. Cumulative IPOC bounds are slightly
weaker but still imply regret bounds. Both versions of IPOC
also ensure that the algorithm is anytime interruptable, i.e.,
it can be used to find better and better policies that have
small Ay, with high probability 1 — §. That means IPOC
bounds imply supervised-learning style PAC bounds for all
€ jointly. These claims are formalized as follows:

Proposition 2. Assume an algorithm has a cumulative
IPOC bound F (W, T, ).

1. Then it has a regret bound of same order, i.e., with prob-
ability at least 1 — &, for all T the regret R(T) :=
S i_, Ay is bounded by F(W, T, 6).

2. If F has the form E;V:O(CP(VV, 6)T)ﬁ for appropri-
ate functions C,,, then with probability at least 1 — § for
any €, it outputs a certificate ¢, < € within

i C(W,6)P(N + 1)p+1

P+l M

p=0

episodes. Hence, for settings without context, the algo-

rithm outputs an e-optimal policy within that number of

episodes (supervised learning-style PAC bound).
Proposition 3. If an algorithm has a mistake IPOC bound
F(W,¢,6), then

1. it has a uniform PAC bound F(W,¢,0), i.e., with proba-
bility at least 1 — 0, the number of episodes with Ay, > €

is at most F'(W, ¢, 9) for all ¢ > 0;

2. with probability > 1 — ¢ for all ¢, it outputs a certificate
ex < € within F(W,€,0) + 1 episodes. For settings
without context, that means the algorithm outputs an
e-optimal policy within that many episodes (supervised
learning-style PAC).

N np
3. if F has the form ZN G (W,9) (ln C(VGV’(S)) with

p=1 P
Cp(W,6) > 1 and constants N,n € N, it also has a
cumulative IPOC bound of order

N

O~ (Z CP(Wa 5)1/pT% pOlyIOg(Amaxv C’(VV’ 6)7 T)) :
p=1

The functional form in part 2 of Proposition 2 includes

common polynomial bounds like O(v/T') or O(T?/3) with

appropriate factors and similarly for part 3 of Proposition 3

which covers for example O(1/€?).

Our IPOC framework is similar to KWIK (Li et al., 2008),
in that the algorithm is required to declare how well it will
perform. Hower, KWIK only requires an algorithm to de-
clare whether the output will perform better than a single
pre-specified input threshold. Existing KWIK for RL meth-
ods only provide such a binary classification, and have less
strong learning guarantees. In a sense IPOC is a generaliza-
tion of KWIK.

4. Algorithms with Policy Certificates

A natural path to obtain RL algorithms with IPOC bounds is
to combine existing provably efficient online RL algorithms
with an off-policy policy evaluation method to compute a
confidence interval on the online RL algorithm’s policy for
the current episode. This yields policy return certificates,
but not necessarily policy optimality certificates — bounds
on the difference of the optimal and current policy’s return.
Estimating the optimal return using off-policy evaluation
algorithms in order to compute optimality certificates would
require a significant computational burden, e.g. evaluating
all (exponentially many) policies.

However optimism in the face of uncertainty (OFU) algo-
rithms can be modified to provide both policy return cer-
tificates and optimality certificates without the need for a
separate off-policy policy optimization step. Specifically,
we here consider OFU algorithms that maintain an upper
confidence bound (for a potentially changing confidence
level) on the optimal value function Q) ;, and therefore
optimal return py. This bound is also an upper bound on
the return of the current policy which is chosen to maxi-
mize this bound. Many OFU methods explicitly maintain
a confidence set of the MDP model to compute the upper
confidence bound on Q; 5. These same confidence sets of
the model can be used to compute a lower bound on the
value function of the current policy. In doing so, OFU algo-
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rithms can be modified with little computational overhead
to provide policy return and optimality certificates.

For these reasons, we focus on OFU methods, introducing
two new algorithms with policy certificates, one for tabular
MDPs and and one for the more general MDPs with linear
side information setting. Both approaches have a similar
structure, but leverage different confidence sets and model
estimators. In the first case, we show that maintaining lower
bounds on the current policy’s value has significant benefits
beyond enabling policy certificates: lower bounds help us
to derive a tighter bound on our uncertainty over the range
of future values. Thus we are able to provide the strongest,
to our knowledge, PAC and regret bounds for tabular MDPs.
It remains an intriguing but non-trivial question if we can
create confidence sets that leverage explicit upper and lower
bounds for the linear side information setting.

4.1. Tabular MDPs

We present the ORLC (optimistic RL with certificates) Algo-
rithm shown in Algorithm 1 (see the appendix for a version
with empirically tighter confidence bounds but same theoret-
ical guarantees). It shares similar structure with recent OFU
algorithms like UBEV (Dann et al., 2017) and UCBVI-BF
(Azar et al., 2017) but has some significant differences high-
lighted in red. Before each episode k, Algorithm 1 computes
an optimistic estimate th of @j in Line 10 by dynamic
programming on the empirical model (Isk7 7)) with confi-
dence intervals v, j,. Importantly, it also computes Q 5, a
pessimistic estimate of Q" in similar fashion in Line 11.
The optimistic and pessimistic estimates Q) p, Q;“h (resp.
Vie.ns Vk,h) allow us to compute the certificates €; and Zy,
and enables more sample-efficient learning. Specifically,
Algorithm 1 uses a novel form of confidence intervals
that explicitly depends on this difference. These confidence
intervals are key for proving the following IPOC bound:

Theorem 4 (Mistake [POC Bound of Alg. 1). For any given
d € (0,1), Alg. 1 satisfies in any tabular MDP with S
states, A actions and horizon H, the following Mistake
IPOC bound: For all € > 0, the number of episodes where
Alg. 1 outputs a certificate |I| = e, > € s

2 2 3
O((SAZH +SAH )ln1>. (2)

€ € g

By Proposition 3, this implies a Uniform-PAC bound of
same order as well as the regret and PAC bounds listed
in Table 1. This table also contains previous state of the
art bounds of each type? as well as lower bounds. The
IPOC lower bound follows from the PAC lower bound by

>These model-free and model-based methods have the best
known bounds in our problem class. Q-learning with UCB and
UBEV allow time-dependent dynamics. One might be able to im-

prove their regret bound by v H when adapting them to our setting.

Dann & Brunskill (2015) and Proposition 3. For e small
enough (< O(1/(SH)) specifically), our IPOC bound is
minimax, i.e., the best achievable, up to log-factors. This
is also true for the Uniform-PAC and PAC bounds implied
by Theorem 4 as well as the implied regret bound when
the number of episodes T = Q(S2AH*?) is large enough.
ORLC is the first algorithm to achieve this minimax rate
for PAC and Uniform-PAC. While UCBVI-BF achieves
minimax regret for problems with small horizon, their bound
is suboptimal when H > S A. The lower-order term in our
regret bound O(S 2 AH?3) has a slightly worse dependency
on H than Azar et al. (2017) but we can trade-off a factor
of H for A (see appendix) and believe that this term can be
further reduced by a more involved analysis.

We defer details of our IPOC analysis to the appendix avail-
ble at https://arxiv.org/abs/1811.03056 but
the main advances leverage that [Qy 1, (s, a), Q.1 (s, a)] is
an observable confidence interval for both Qj(s,a) and
Q" (s, a). Specifically, our main novel insights are:

e While prior works (e.g. Lattimore & Hutter, 2012; Dann
& Brunskill, 2015) control the suboptimality Q7 — Q7"
of the policy by recursively bounding Q kh — QpF, we
instead recursively bound Qk,h — Qk,h < 29 +

Pk(‘?k’h+1 — Vi h+1) which is not only simpler but also
controls both the suboptimality of the policy and the size
of the certificates simultaneously.

e As existing work (e.g. Azar et al.,, 2017; Jin et al.,
2018), we use empirical Bernstein-type concentration
inequalities to construct Q. (s, a) as an upper bound
to Q7 (s,a) = r(s,a) + P(s,a)V}, ;. This results in a
dependency of the upper bound on the variance of the
optimal next state value o, ., (Vj .1)? under the em-
pirical model. Since V}*, ; is unknown this has to be
upper-bounded by o5, ,» (Vi.ns1)? + B with an addi-
tional bonus B to account for the difference between
the values, th“ - "1 which is again unobserv-
able. Azar et al. (2017) now constructs an observable
bound on B through an intricate regret analysis that in-
volves additional high-probability bounds on error terms
(see their £¢,./E,, events) which causes the suboptimal
V H3T term in their regret bound. Instead, we use the
fact that f/k,hﬂ — Vi,h+1 1s an observable upper bound
on Vk7h+1 -V i which we can directly use in our
confidence widths 1y, ;, (see the last term in Line 9 of
Alg. 1). Hence, availability of lower bounds through
certificates improves also our upper confidence bounds
on @)} and yields more sample-efficient exploration with
improved performance bounds as we avoid additional
high-probability bounds of error terms.

Note that by augmenting our state space with a time index, our
algorithm also achieves minimax optimality with O(v SAH3T)
regret up to lower order terms in their setting.
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Algorithm 1: ORLC (Optimistic Reinforcement Learning with Certificates)

Input : failure tolerance ¢ € (0, 1]

1 é(n) = 1A \/052 (LAlnln(e v n) + In BSAGE145)),

2 fork=1,2,3,... do

Vk’H+1(8) =0; Vk,H+1(5) =0 VseS,keN;

3 fors’,s € S,a € Ado // update empirical model and number of observations
k—1 H .
4 nk(s,a) = Zi:l Zh:l l{si,h =S8,aip = a} ; // number of times (s,a) was observed
~ k—1 H
5 7r(s,a) = m Dot 2one rin{sin = s,a0 = a}; // avg. reward observed for (s,a)
D (o 1 k—1 —~H ,
6 Pi(s']s,a) = nx(5,a) 2ic1 2an—1 Hsin = s,ain = a,sipp1 = '}

7 forh=Htoland s € Sdo // optimistic planning with upper and lower confidence bounds

8 for a € Ado

9 Yr.n(s,a) = (1+\/ﬁopk(s,a)(Vk7h+1))¢(nk(s, a)) + 455 H?¢(nk(s,a))?++P(s,a) (Vi nr1 — Vins1);
10 th(s, a) =0V (fk(s,a) + Pk(s,a)Vk,hH + ¢k,h(3, a)) A Vﬁnax ; // UCB of Q;Hl
11 kah(s, a) =0V (fk(s a) + Pk(s,a)yk,hﬂ — L‘/)k,h(sa a)) A V}:"ax ) // LCB of Q:I_‘H
12 | 7k (s, h) = argmax, Qr.n(s,a); Vien(s) = Qin(s, T (s, h));

13 output policy 7 with certificates Z;, = |
14 | sample episode k with policy my;

Vien(s) = Qun (s, m(s, h));
Vier(s1.1), %:,1(51.1)] and €, = |Z;,

)

// Observe Sk,1, k1, k,1,Sk,2y-++3Sk,H,Uk,H, Tk,H

y Algorithm \ Regret \ PAC | Mistake IPOC
UCBVI-BF (area. 01 | O(VSAH2T +H3T + S?AH?) - -
Q-1. w/ UCB? Ginetat. 2018) O(VSAHAT + 15 A5 H45) - -
UCF'H (Dann & Brunskill, 2015) - O (SZ?ZHQ ) -
UBEV 2 (Dann etal, 2017) O(VSAHAT + S?AH?) O %54 % -
ORLC (this work) O(VSAH?T + S?AH®) O (842 | SPAIT) | (%52 SPAHD
Lower bounds Q (\/m) Q (%52) Q (%512)

Table 1. Comparison of the state of the art and our bounds for episodic RL in tabular MDPs. A dash means that the algorithm does not satisfy
a non-trivial bound without modifications. 7 is the number of episodes and In(1/§) factors are omitted for readability. For an empirical
comparison of the sample-complexity of these approaches, see Appendix E.2 available at https://arxiv.org/abs/1811.03056.

e As opposed to the upper bounds, we cannot simply ap-
ply concentration inequalities to construct Q, 1 (s, a) as
a lower bound to Q™ because the estimation target
Q™ (s,a) =r(s,a)+ P(s,a)V,"F, is itself random. The
policy 7 depends in highly non-trivial ways on all sam-
ples from which we also estimate the empirical model
Py, e A prevalent approach in model-based policy eval-
uation (Strehl & Littman, 2008; Ghavamzadeh et al.,
2016, e.g.) to deal with this challenge is to instead apply
a concentration argument on the ¢/; distance of the transi-
tion estimates || P(s,a) — Py(s,a)|l1 < VSé(nk(s,a)).
This yields confidence intervals that shrink at a rate
of H\/S¢(ni(s,a)). Instead, we can exploit that 7y,
is generated by a sample-efficient algorithm and con-
struct Q. », as a lower bound to the non-random quantity
r(s,a) + P(s, a)Vy, . We account for the difference
P(s, a)(Vh*H - Vhﬂ-ﬁl) < P(s,a)(Viher — Vient1) ex-
plicitly, again through a recursive bound. This allows us

to achieve confidence intervals that shrink at a faster rate
of Yy ~ He(nk(s,a)) + SH2¢(nk(s,a))? without
the v/S dependency in the dominating ¢(ny (s, a)) term
(recall ¢(nk(s,a)) < 1 and goes to 0). Hence, by lever-
aging that 7y, is computed by a sample-efficient approach,
we improve the tightness of the certificates.

4.2. MDPs With Linear Side Information

We now present an algorithm for the more general setting
with side information, which, for example, allows us to

take background information about a customer into account
and generalize across different customers. Algorithm 2
gives an extension, called ORLC-ST, of the OFU algorithm
by Abbasi-Yadkori & Neu (2014). Its overall structure is
the same as the tabular Algorithm 1 but here the empiri-
cal model are least-squares estimates of the model param-
eters evaluated at the current contexts. Specifically, the
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Algorithm 2: ORLC-STI (Optimistic Reinforcement Learning with Certificates and Side Information)

Input : failure prob. § € (0, 1], regularizer A > 0
1 &y = Vd; gy =V, Vi 1(s) = 0;

det N

3fork=1,2,3,... do

th_H(S) =0 VseS§,keN;

S(SA+A+H
[VRE + /3 ST 3y e

4 | Observe current contexts ng) and ng ).
5 |fors,s’€S,ae Ado // estimate model with least-squares
6 N(Q) =\ + Zk*1 ZH 1{8 _ _ (@) (O\NT .

ksa hl ih = 8,aip = a}xy (xk) forg € {r,p};
T | e = (Vi)™ S Ty M = sian = a)ailro (s a) = 0V (2) ), A T;
s 02’2 o= (NP )T S i = 5,000 = a, 51001 = s
s | [ Asls,a) =0V (@ @w,apz wa M
10 |forh=Htolandsc Sdo // optimistic planning with ellipsoid confidence bounds
11 for a € Ado
12 Uin(s,a) = ||V, h+1||1¢(N;£pg w2 o) + SN k 5, avxk ) €om);
13 Qrn(s,a) =0V (74(s,a) + Pi(s,a)Vi npr + Yip(s,a)) AV, // UCB of Qi
14 Qkyh(s, a) =0V (f'k(s,a) + Pk(s,a)yk,hﬂ — ¢k7h(8, a)) AN Vmax ) // LCB of Qh+1
15 | 7k (s, h) = argmax, Qr.n(s,a); Vien(s) = Qr.n(s, mh(s,1)); Vien(s) = Qrn(s, mr(s,1));
16 | output policy 7, with certificates Zj, = [Vi 1(s1.1), ‘N/k71(3171)] and € = |Zy/;
17 %sample episode &k with policy 7, ; // ObServe Sk,1,0k1,Tk1ySk2,---Sk HyQk Hy Tk H

empirical transition probability Py (s'|s, a) is (x,(f ))Tésgm
where és/,s,a is the least squares estimate of model parame-
ter 65/ 5 . Since transition probabilities are normalized, this
estimate is then clipped to [0, 1]. This model is estimated
separately for each (s, s, a)-triple, but generalizes across
different contexts. The confidence widths 1)y, 5, are derived
using ellipsoid confidence sets on model parameters. We

show the following IPOC bound:

Theorem 5 (Cumulative [POC Bound for Alg. 2 ). For
any 0 € (0,1) and regularizer X > 0, Alg. 2 satisfies the
following cumulative IPOC bound in any MDP with con-
texts of dimensions d) and d®) and bounded parameters
o < \/(ﬁ, Eom < Vd®). With prob. at least 1 — 0 all
return certificates contain the return of m and optimality
certificates are upper bounds on the optimality gaps and
their total sum after T episodes is bounded for all T' by

2
<\/S3AH4T)\( ) 4+d™) log W) 3)

By Proposition 2, this IPOC bound implies a re-
gret bound of the same order which improves on the
O(\/d2S*AH5T log 1/6) regret bound of Abbasi-Yadkori
& Neu (2014) with d = d® + d") by a factor of v/SAH.
While they make a different modelling assumption (gen-
eralized linear instead of linear), we believe at least our
better S dependency is due to using improved least-squares
estimators for the transition dynamics  and can likely be

3They estimate 0 s, only from samples where the transition

transferred to their setting. The mistake-type PAC bound by
Modi et al. (2018) is not comparable because our cumulative
IPOC bound does not imply a mistake-type PAC bound.*
Nonetheless, loosely translating our result to a PAC-like

bound yields 0 (M) which is much smaller than

their O (% max{d?, S2}> bound for small e.

The confidence bounds in Alg. 2 are more general but looser
than those for the tabular case of Alg. 1. Instantiating the
IPOC bound for Alg. 2 from Theorem 5 for tabular MDPs
(a:,(~C = :l:,(cp) = 1) yields O(v/S3AHAT) which is worse
than the cumulative IPOC bound O(v/SAH?T + S?AH?)
of Alg. 1 implied by Thm. 4 and Prop. 3.

By Prop. 3, a mistake IPOC bound is stronger than the
cumulative version we proved for Algorithm 2. One
might wonder if Alg. 2 also satisfies a mistake bound, but
in Appendix D (at https://arxiv.org/abs/1811.
03056) we show that this is not the case because of its non-
decreasing ellipsoid confidence sets. There could be other
algorithms with mistake IPOC bounds for this setting, but
they they would likely require entirely different confidence
sets.

s,a — s was observed instead of all occurrences of s,a (no
matter whether s’ was the next state).

4 An algorithm with a sub-linear cumulative IPOC bound can
output a certificate larger than a threshold e > ¢ infinitely often
as long as it does so sufficiently less frequently (see Section D).
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Figure 1. Certificates and (unobserved) optimality gaps of Algo-
rithm 2 for 4M episodes on an MDP with context distribution shift
after 2M (episodes sub-sampled for better visualization)

5. Simulation Experiment

One important use case for certificates is to detect sud-
den performance drops when the distribution of contexts
changes. For example, in a call center dialogue system,
there can be a sudden increase of customers calling due to a
certain regional outage. We demonstrate that certificates can
identify such performance drops caused by context shifts.
We consider a simulated MDP with 10 states, 40 actions
and horizon 5 where rewards depend on a 10-dimensional
context and let the distribution of contexts change after 2M
episodes. As seen in Figure 1, this causes a spike in optimal-
ity gap as well as in the optimality certificates. While our
certificates need to upper bound the optimality gap / contain
the return in each episode up to a small failure probability,
even for the worst case, our algorithm reliably can detect
this sudden decrease of performance. In fact, the optimality
certificates have a very high correlation of 0.94 with the
unobserved optimality gaps.

One also may wonder if our algorithms leads to improve-
ments over prior approaches in practice or only in the the-
oretical bounds. To help answer this, we present results

in Appendix E at https://arxiv.org/abs/1811.

03056 both on analyzing the policy certificates provided,
and examining ORLC’s performance in tabular MDPs versus
other recent papers with similar regret (Azar et al., 2017) or
PAC (Dann et al., 2017) bounds. Encouragingly in the small
simulation MDPs considered, we find that our algorithms
lead to faster learning and better performance. Therefore
while our primary contribution is theoretical results, these
simulations suggest the potential benefits of the ideas under-
lying our proposed framework and algorithms.

6. Related Work

The connection of IPOC to other frameworks is formally
discussed in Section 3. Our algorithms essentially compute
confidence bounds as in OFU methods, and then use those in
model-based policy evaluation to obtain policy certificates.
There are many works on off-policy policy evaluation (e.g.,
Jiang & Li, 2016; Thomas & Brunskill, 2016; Mahmood
et al., 2017), some of which provide non-asymptotic con-

fidence intervals (e.g., Thomas et al., 2015b;a; Sajed et al.,
2018). However, these methods focus on the batch setting
where a set of episodes sampled by fixed policies is given.
Many approaches rely on importance weights that require
stochastic data-collecting policies but most sample-efficient
algorithms for which we would like to provide certificates
deploy deterministic policies. One could treat previous
episodes to be collected by one stochastic data-dependent
policy but that introduces bias in the importance-weighting
estimators that is not accounted for in the analyses.

Interestingly, there is very recent work (Zanette & Brun-
skill, 2019) that also observed the benefits of using lower
bounds in optimism-based exploration in tabular episodic
RL. Though both their and our work obtain improved theo-
retical results, the specific forms of the optimistic bonuses
are distinct and the analyses differ in many parts (e.g., we
provide (Uniform-)PAC and regret bounds instead of only
regret bounds). Most importantly, our work provides policy
certificate guarantees as a main contribution whereas that
work focuses on problem-dependent regret bounds.

Approaches on safe exploration (Kakade & Langford, 2002;
Pirotta et al., 2013; Thomas et al., 2015a; Ghavamzadeh
et al., 2016) guarantee monotonically increasing perfor-
mance by operating in a batch loop. Our work is orthogonal,
as we are not restricting exploration but rather exposing its
impact to the users and give them the choice to intervene.

7. Conclusion and Future Work

We introduced policy certificates to improve accountabil-
ity in RL by enabling users to intervene if the guaranteed
performance is deemed inadequate. Bounds in our new
theoretical framework IPOC ensure that certificates indeed
bound the return and suboptimality in each episode and pre-
scribe the rate at which certificates and policy improve. By
combining optimism-based exploration with model-based
policy evaluation, we have created two algorithms for RL
with policy certificates, including for tabular MDPs with
side information. For tabular MDPs, we demonstrated that
policy certificates help optimism-based policy learning and
vice versa. As a result, our new algorithm is the first to
achieve minimax-optimal PAC bounds up to lower-order
terms for tabular episodic MDPs, and, also the first to have
both, minimax PAC and regret bounds, for this setting.

Future areas of interest include scaling up these ideas to
continuous state spaces, extending them to model-free RL,
and to provide per-episode risk-sensitive guarantees on the
reward obtained.
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