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Abstract
Data augmentation, a technique in which a train-
ing set is expanded with class-preserving transfor-
mations, is ubiquitous in modern machine learn-
ing pipelines. In this paper, we seek to establish a
theoretical framework for understanding data aug-
mentation. We approach this from two directions:
First, we provide a general model of augmentation
as a Markov process, and show that kernels appear
naturally with respect to this model, even when
we do not employ kernel classification. Next, we
analyze more directly the effect of augmentation
on kernel classifiers, showing that data augmen-
tation can be approximated by first-order feature
averaging and second-order variance regulariza-
tion components. These frameworks both serve
to illustrate the ways in which data augmenta-
tion affects the downstream learning model, and
the resulting analyses provide novel connections
between prior work in invariant kernels, tangent
propagation, and robust optimization. Finally,
we provide several proof-of-concept applications
showing that our theory can be useful for accel-
erating machine learning workflows, such as re-
ducing the amount of computation needed to train
using augmented data, and predicting the utility
of a transformation prior to training.

1. Introduction
The process of augmenting a training dataset with synthetic
examples has become a critical step in modern machine
learning pipelines. The aim of data augmentation is to
artificially create new training data by applying transfor-
mations, such as rotations or crops for images, to input
data while preserving the class labels. This practice has
many potential benefits: Data augmentation can encode
prior knowledge about data or task-specific invariances, act
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as regularizer to make the resulting model more robust, and
provide resources to data-hungry deep learning models. As
a testament to its growing importance, the technique has
been used to achieve nearly all state-of-the-art results in
image recognition (Cireşan et al., 2010; Dosovitskiy et al.,
2016; Graham, 2014; Sajjadi et al., 2016), and is becoming
a staple in many other areas as well (Uhlich et al., 2017; Lu
et al., 2006). Learning augmentation policies alone can also
boost the state-of-the-art performance in image classifica-
tion tasks (Ratner et al., 2017; Cubuk et al., 2018).

Despite its ubiquity and importance to the learning process,
data augmentation is typically performed in an ad-hoc man-
ner with little understanding of the underlying theoretical
principles. In the field of deep learning, for example, data
augmentation is commonly understood to act as a regularizer
by increasing the number of data points and constraining the
model (Goodfellow et al., 2016; Zhang et al., 2017). How-
ever, even for simpler models, it is not well-understood how
training on augmented data affects the learning process, the
parameters, and the decision surface of the resulting model.
This is exacerbated by the fact that data augmentation is
performed in diverse ways in modern machine learning
pipelines, for different tasks and domains, thus precluding
a general model of transformation. Our results show that
regularization is only part of the story.

In this paper, we aim to develop a theoretical understand-
ing of data augmentation. First, in Section 3, we analyze
data augmentation as a Markov process, in which augmenta-
tion is performed via a random sequence of transformations.
This formulation closely matches how augmentation is often
applied in practice. Surprisingly, we show that performing k-
nearest neighbors with this model asymptotically results in
a kernel classifier, where the kernel is a function of the base
augmentations. These results demonstrate that kernels ap-
pear naturally with respect to data augmentation, regardless
of the base model, and illustrate the effect of augmentation
on the learned representation of the original data.

Motivated by the connection between data augmentation
and kernels, in Section 4 we show that a kernel classifier on
augmented data approximately decomposes into two com-
ponents: (i) an averaged version of the transformed features,
and (ii) a data-dependent variance regularization term. This
suggests a more nuanced explanation of data augmentation—
namely, that it improves generalization both by inducing
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invariance and by reducing model complexity. We vali-
date the quality of our approximation empirically, and draw
connections to other generalization-improving techniques,
including recent work in invariant learning (Zhao et al.,
2017; Mroueh et al., 2015; Raj et al., 2017) and robust
optimization (Namkoong & Duchi, 2017).

Finally, in Section 5, to illustrate the utility of our theoreti-
cal understanding of augmentation, we explore promising
practical applications, including: (i) developing a diagnos-
tic to determine, prior to training, the importance of an
augmentation; (ii) reducing training costs for kernel meth-
ods by allowing for augmentations to be applied directly to
features—rather than the raw data—via a random Fourier
features approach; and (iii) suggesting a heuristic for train-
ing neural networks to reduce computation while realizing
most of the accuracy gain from augmentation.

2. Related Work
Data augmentation has long played an important role in ma-
chine learning. For many years it has been used, for example,
in the form of jittering and virtual examples in the neural
network and kernel methods literatures (Sietsma & Dow,
1991; Schölkopf et al., 1996; Decoste & Schölkopf, 2002).
These methods aim to augment or modify the raw training
data so that the learned model will be invariant to known
transformations or perturbations. Given its importance, re-
cent efforts have been made to apply data augmentation
more efficiently, for example with subsampling (Kuchnik
& Smith, 2019). There has also been significant work in
incorporating invariance directly into the model or training
procedure, rather than by expanding the training set (van der
Wilk et al., 2018; Tai et al., 2019). One illustrative example
is that of tangent propagation for neural networks (Simard
et al., 1992; 1998), which proposes a regularization penalty
to enforce local invariance, and has been extended in several
recent works (Rifai et al., 2011; Demyanov et al., 2015;
Zhao et al., 2017). However, while efforts have been made
that loosely connect traditional data augmentation with these
methods (Leen, 1995; Zhao et al., 2017), there has not been
a rigorous study on how these sets of procedures relate in
the context of modern models and transformations.

In this work, we make explicit the connection between aug-
mentation and modifications to the model, and show that
prior work on tangent propagation can be derived as a spe-
cial case of our more general theoretical framework (Sec-
tion 5). Moreover, we draw connections to recent work on
invariant learning (Mroueh et al., 2015; Raj et al., 2017) and
robust optimization (Namkoong & Duchi, 2017), illustrat-
ing that data augmentation not only affects the model by
increasing invariance to specific transformations, but also
by reducing the variance of the estimator. These analyses
lead to an important insight into how invariance can be most

effectively applied for kernel methods and deep learning
architectures (Section 5), which we show can be used to
reduce training computation and diagnose the effectiveness
of various transformations.

Prior theory also does not capture the complex process by
which data augmentation is often applied. For example,
previous work (Bishop, 1995; Chapelle et al., 2001) shows
that adding noise to input data has the effect of regularizing
the model, but these effects have yet to be explored for more
commonly applied complex transformations, and it is not
well-understood how the inductive bias embedded in com-
plex transformations manifest themselves in the invariance
of the model (addressed here in Section 4). A common
recipe in achieving state-of-the-art accuracy in image clas-
sification is to apply a sequence of more complex transfor-
mations such as crops, flips, or local affine transformations
to the training data, with parameters drawn randomly from
hand-tuned ranges (Cireşan et al., 2010; Dosovitskiy et al.,
2014). Similar strategies have also been employed in appli-
cations of classification for audio (Uhlich et al., 2017) and
text (Lu et al., 2006). In Section 3, we analyze a motivating
model reaffirming the connection between augmentation
and kernel methods, even in the setting of complex and
composed transformations.

Finally, while data augmentation has been well-studied in
the kernels literature (Burges, 1999; Schölkopf et al., 1996;
Muandet et al., 2012), it is typically explored in the con-
text of simple geometrical invariances with closed forms.
For example, van der Wilk et al. (2018) use Gaussian pro-
cesses to learn these invariances from data by maximizing
the marginal likelihood. Further, the connection is often
approached in the opposite direction—by looking for ker-
nels that satisfy certain invariance properties (Haasdonk &
Burkhardt, 2007; Teo et al., 2008). We instead approach the
connection directly via data augmentation, and show that
even complicated augmentation procedures akin to those
used in practice can be represented as a kernel method.

3. Data Augmentation as a Kernel
To begin our study of data augmentation, we propose and in-
vestigate a model of augmentation as a Markov process,
inspired by the general manner in which the process is
applied—via the composition of multiple different types
of transformations. Surprisingly, we show that this augmen-
tation model combined with a k-nearest neighbor (k-NN)
classifier is asymptotically equivalent to a kernel classifier,
where the kernel is a function of the base transformations.
While the technical details of the section can be skipped on
a first reading, the central message is that kernels appear
naturally in relation to data augmentation, even when we do
not start with a kernel classifier. This provides additional
motivation to study kernel classifiers trained on augmented
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data, as in Section 4.

Markov Chain Augmentation Process. In data augmenta-
tion, the aim is to perform class-preserving transformations
to the original training data to improve generalization. As
a concrete example, a classifier that correctly predicts an
image of the number ‘1’ should be able to predict this num-
ber whether or not the image is slightly rotated, translated,
or blurred. It is therefore common to pick some number of
augmentations (e.g., for images: rotation, zoom, blur, flip,
etc.), and to create synthetic examples by taking an original
data point and applying a sequence of these augmentations.
To model this process, we consider the following procedure:
given a data point, we pick augmentations from a set at
random, applying them one after the other. To avoid deviat-
ing too far, with some probability we discard the point and
start over from a random point in the original dataset. We
formalize this below.

Definition 1 (Markov chain augmentation model). Given a
dataset of n examples zi = (xi, yi) ∈ X × Y , we augment
the dataset via augmentation matrices A1, A2, . . . , Am, for
Aj ∈ RΩ×Ω, which are stochastic transition matrices over a
finite state space of possible labeled (augmented) examples
Ω := X × Y . We model this via a discrete time Markov
chain with the transitions:

• With probability proportional to βj , a transition occurs
via augmentation matrix Aj .

• With probability proportional to γi, a retraction to the
training set occurs, and the state resets to zi.

For example, the probability of retracting to training ex-
ample z1 is γ1/(γ1 + · · · + γn + β1 + · · · + βm). The
augmentation process starts from any point and follows Def-
inition 1 for an arbitrary amount of time. The retraction
steps intuitively keep the final distribution grounded closer
to the original training points.

From Definition 1, by conditioning on which transition is
chosen, it is evident that the entire process is equivalent
to a Markov chain whose transition matrix is the weighted
average of the base transitions. Note that the transition ma-
trices Aj do not need to be materialized but are implicit
from the description of the augmentation. A concrete ex-
ample is given in Section B.2. Without loss of generality,
we let all rates βj , γi be normalized with

∑
j γi = 1. Let

{eω}ω∈Ω be the standard basis of Ω, and let ezi be the basis
element corresponding to zi. The resulting transition matrix
and stationary distribution are given below; proofs and ad-
ditional details are provided in Appendix A. This describes
the long-run distribution of the augmented dataset.

Proposition 1. The described augmentation process is a

Markov chain with transition matrix:

R =
(

1 +
∑m
j=1 βj

)−1 [∑m
i=1 βjAj +

∑n
i=1 γi

(
1e>zi

)]
.

Lemma 1 (Stationary distribution). The stationary distri-
bution is given by:

π = ρ> (I(β + 1)−A)
−1
, (1)

where

A =
∑m
j=1 βjAj , β =

∑m
j=1 βj , ρ =

∑n
i=1 γiezi .

Lemma 1 agrees intuitively with the augmentation process:
When all βj ≈ 0 (i.e., low rate of augmentation), Lemma 1
implies that the stationary distribution π is close to ρ, the
original data distribution. As βj increases, the stationary
distribution becomes increasingly distorted by the augmen-
tations.

Classification Yields a Kernel. Using our proposed model
of augmentation, we can show that classifying an unseen
example using augmented data results in a kernel classifier.
In doing so, we can observe the effect that augmentation
has on the learned feature representation of the original data.
We discuss several additional uses and extensions of the
result itself in Appendix A.1.

Theorem 1. Consider running the Markov chain augmen-
tation process in Definition 1 and classifying an unseen
example x ∈ X using an asymptotically Bayes-optimal clas-
sifier, such as k-nearest neighbors. Suppose that the Ai are
time-reversible with equal stationary distributions. Then in
the limit as time T → ∞ and k → ∞, this classification
has the following form:

ŷ = sign
∑n
i=1 yiαziKxi,x , (2)

where α ∈ RΩ is supported only on the dataset z1, . . . , zn,
and K ∈ RΩ×Ω is a kernel matrix (i.e., K is symmetric
positive definite and non-negative) depending only on all
the augmentations Aj , βj .

Theorem 1 follows from formulating the stationary distri-
bution (Lemma 1) as π = α>K for a kernel matrix K and
α ∈ RΩ. Noting that k-NN asymptotically acts as a Bayes
classifier, selecting the most probable label according to this
stationary distribution, leads to (2).1 In Appendix A, we
include a closed form for α and K along with the proof. We
include details and examples, and elaborate on the strength
of the assumptions.

Takeaways. This result has two important implications:
First, kernels appear naturally in relation to complex forms

1We use k-NN as a simple example of a nonparametric classi-
fier, but the result holds for any asymptotically Bayes classifier.
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of augmentation, even when we do not begin with a kernel
classifier. This underscores the connection between aug-
mentation and kernels even with complicated compositional
models, and also serves as motivation for our focused study
on kernel classifiers in Section 4. Second, and more gener-
ally, data augmentation—a process that produces synthetic
training examples from the raw data—can be understood
more directly based on its effect on downstream components
in the learning process, such as the features of the original
data and the resulting learned model. We make this link
more explicit in Section 4, and show how to exploit it in
practice in Section 5.

4. Effects of Augmentation: Invariance and
Regularization

In this section we build on the connection between kernels
and augmentation in Section 3, exploring directly the effect
of augmentation on a kernel classifier. It is commonly un-
derstood that data augmentation can be seen as a regularizer,
in that it reduces generalization error but not necessarily
training error (Goodfellow et al., 2016; Zhang et al., 2017).
We make this more precise, showing that data augmenta-
tion has two specific effects: (i) increasing the invariance
by averaging the features of augmented data points, and
(ii) penalizing model complexity via a regularization term
based on the variance of the augmented forms. These are
two approaches that have been explicitly applied to get more
robust performance in machine learning, though outside of
the context of data augmentation. We demonstrate connec-
tions to prior work in our derivation of the feature averaging
(Section 4.1) and variance regularization (Section 4.2) terms.
We also validate our theory empirically (Section 4.3), and in
Section 5, show the practical utility of our analysis to both
kernel and deep learning pipelines.

General Augmentation Process. To illustrate the effects
of augmentation, we explore it in conjunction with a general
kernel classifier. In particular, suppose that we have an
original kernel K with a finite-dimensional2 feature map φ :
Rd → RD, and we aim to minimize some smooth convex
loss l : R× R→ R with parameter w ∈ RD over a dataset
(x1, y1), . . . , (xn, yn). The original objective function to
minimize is f(w) = 1

n

∑n
i=1 l

(
w>φ(xi); yi

)
, with two

common losses being logistic l(ŷ; y) = log(1 + exp(−yŷ))
and quadratic l(ŷ; y) = (ŷ − y)2.

Now, suppose that we first augment the dataset using an
augmentation kernel T . Whereas the augmentation kernel
in Section 3 had a specific form based on the stationary
distribution of the proposed Markov process, here we make
this more general, simply requiring that for each data point

2We focus on finite-dimensional feature maps for ease of expo-
sition, but the analysis still holds for infinite-dimensional feature
maps.

xi, T (xi) describes the distribution over data points into
which xi can be transformed. The new objective function
becomes:

g(w) = 1
n

∑n
i=1 Eti∼T (xi)

[
l
(
w>φ(ti); yi

)]
. (3)

4.1. Data Augmentation as Feature Averaging
We begin by showing that, to first order, objective (3) can
be approximated by a term that computes the average aug-
mented feature of each data point. In particular, suppose
that the applied augmentations are “local” in the sense that
they do not significantly modify the feature map φ. Using
the first-order Taylor approximation, we can expand each
term around any point φ0 that does not depend on ti:

Eti∼T (xi)

[
l
(
w>φ(ti); yi

)]
≈

l
(
w>φ0; yi

)
+Eti∼T (xi)

[
w>(φ0 − φ(ti))

]
l′(w>φ0; yi) .

Picking φ0 = Eti∼T (xi) [φ(ti)], the second term vanishes,
yielding the first-order approximation:

g(w) ≈ ĝ(w) := 1
n

∑n
i=1 l

(
w>Eti∼T (xi) [φ(ti)] ; yi

)
.
(4)

This is exactly the objective of a linear model with a new
feature map ψ(x) = Et∼T (x) [φ(t)], i.e., the average fea-
ture of all the transformed versions of x. If we overload
notation and use T (x, u) to denote the probability density
of transforming x to u, this feature map corresponds to a
new kernel:

K̄(x, x′)

= 〈ψ(x), ψ(x′)〉 = 〈Eu∼T (x) [φ(u)] ,Eu′∼T (x′) [φ(u′)]〉

=

∫
u∈Rn

∫
u′∈Rn

〈φ(u), φ(u′)〉T (x, u)T (x′, u′) du′ du

=

∫
u∈Rn

∫
u′∈Rn

K(u, u′)T (x, u)T (x′, u′) du′ du

= (TKT>)(x, x′) .

That is, training a kernel linear classifier with a particular
loss function plus data augmentation is equivalent, to first
order, to training a linear classifier with the same loss on an
augmented kernel K̄ = TKT>, with feature map ψ(x) =
Et∼T (x) [φ(t)]. This feature map is exactly the embedding
of the distribution of transformed points around x into the
reproducing kernel Hilbert space (Muandet et al., 2017;
Raj et al., 2017). This means that the first-order effect
of training on augmented data is equivalent to training a
support measure machine (Muandet et al., 2012), with the n
input distributions corresponding to the n distributions of
transformed points around x1, . . . , xn. The new kernel K̄
has the effect of increasing the invariance of the model, as
averaging the features from transformed inputs that are not
necessarily present in the original dataset makes the features
less variable to transformation.
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(a) Absolute Objective Difference (b) Prediction Disagreement (c) Example Trace: Rotation

Figure 1. For the MNIST dataset, we validate that (a) the proposed approximate objectives ĝ(w) and g̃(w) are close to the true objective
g(w), and (b) training on the approximate objectives leads to similar predictions as training on the true objective. We plot the relative
difference between the proposed approximations and the true augmented objective, in terms of difference in objective value (1a) and
resulting test prediction disagreement (1b), using the non-augmented objective as a baseline. The 2nd-order approximation closely
matches the true objective, particularly in terms of the resulting predictions. We observe that the accuracy of the approximations remains
stable throughout training (1c). Full experiments are provided in Appendix E.

By Jensen’s inequality, since the function l is convex,
ĝ(w) ≤ g(w). In other words, if we solve the optimiza-
tion problem that results from data augmentation, the re-
sulting objective value using K̄ will be no larger. Further,
if we assume that the loss function is strongly convex and
strongly smooth, we can quantify how much the solution to
the first-order approximation and the solution of the original
problem with augmented data will differ (see Proposition 3
in the appendix). We validate the accuracy of this first-order
approximation empirically in Section 4.3.

4.2. Data Augmentation as Variance Regularization
Next, we show that the second-order approximation of the
objective on an augmented dataset is equivalent to variance
regularization, making the classifier more robust. We can
get an exact expression for the error by considering the
second-order term in the Taylor expansion, with ζi denoting
the remainder function from Taylor’s theorem:

g(w)− ĝ(w)

=
1

2n

n∑
i=1

Eti∼T (xi)

[(
w>(φ(ti)−ψ(xi))

)2
l′′(ζi(w

>φ(ti)); yi)

]

=w>
(

1

2n

n∑
i=1

Eti∼T (xi)

[
∆ti,xi∆

>
ti,xi

l′′(ζi(w
>φ(ti)); yi)

])
w,

where ∆ti,xi := φ(ti) − ψ(xi) is the difference between
the features of the transformed image ti and the averaged
features ψ(xi). If (as is the case for logistic and linear
regression) l′′ is independent of y, the error term is indepen-
dent of the labels. That is, the original augmented objective
g is the modified objective ĝ plus some regularization that
is a function of the training examples, but not the labels. In

other words, data augmentation has the effect of performing
data-dependent regularization.

The second-order approximation to the objective is:

g̃(w) := ĝ(w)+ (5)

1

2n

n∑
i=1

w>Eti∼T (xi)

[
∆ti,xi

∆>ti,xi

]
l′′(w>ψ(xi))w .

For a fixed w, this error term is exactly the variance of
the output w>φ(X), where the true data X is assumed
to be sampled from the empirical data points xi and
their augmented versions specified by T (xi), weighted by
l′′(w>ψ(xi)). This data-dependent regularization term fa-
vors weight vectors that produce similar outputs wTφ(x)
and wTφ(x′) if x′ is a transformed version of x.

4.3. Validation of Approximation
We empirically validate3 the first- and second-order approx-
imations, ĝ(w) and g̃(w), on MNIST (LeCun et al., 1998)
and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets, per-
forming rotation, crop, or blur as augmentations, and using
either an RBF kernel with random Fourier features (Rahimi
& Recht, 2007) or LeNet (details in Appendix E.1) as a base
model. Our results show that while both approximations
perform reasonably well, the second-order approximation
indeed results in a better approximation of the actual ob-
jective than the first-order approximation alone, validating
the significance of the variance regularization component of
data augmentation.

In particular, in Figure 1a, we plot the difference after 10
epochs of SGD training, between the actual objective func-

3Code to reproduce experiments and plots: https://
github.com/HazyResearch/augmentation_code

https://github.com/HazyResearch/augmentation_code
https://github.com/HazyResearch/augmentation_code
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tion over augmented data g(w) and: (i) the first-order ap-
proximation ĝ(w), (ii) second-order approximation g̃(w),
and (iii) second-order approximation without the first-order
term, f(w) + (g̃(w)− ĝ(w)). As a baseline, we plot these
differences relative to the difference between the augmented
and non-augmented objective (i.e., the original images),
f(w). In Figure 1b, to see how training on approximate
objectives affect the predicted test values, we plot the pre-
diction disagreement between the model trained on true
objective and the models trained on approximate objec-
tives. Finally, Figure 1c shows that these approximations
are relatively stable in terms of performance throughout the
training process. For the CIFAR-10 dataset and the LeNet
model (Appendix E), the results are quite similar, though
we additionally observe that the first-order approximation
is very close to the model trained without augmentation for
LeNet, suggesting that the data-dependent regularization
of the second-order term may be the dominating effect in
models with learned feature maps.

4.4. Connections to Prior Work
The approximations we have provided in this section unify
several seemingly disparate works.

Invariant kernels. The derived first-order approximation
can capture prior work in invariant kernels as a special case,
when the transformations of interest form a group and aver-
aging features over the group induces invariance (Mroueh
et al., 2015; Raj et al., 2017). The form of the aver-
aged kernel can then be used to learn the invariances from
data (van der Wilk et al., 2018).

Robust optimization. Our work also connects to robust
optimization. For example, previous work (Bishop, 1995;
Chapelle et al., 2001) shows that adding noise to input data
has the effect of regularizing the model. Maurer & Pontil
(2009) bounds generalization error in terms of the empirical
loss and the variance of the estimator. The second-order
objective here adds a variance penalty term, thus optimizing
generalization and automatically balancing bias (empirical
loss) and variance with respect to the input distribution com-
ing from the empirical data and their transformed versions
(this is presumably close to the population distribution if
the transforms capture the right invariance in the dataset).
Though the resulting problem is generally non-convex, it
can be approximated by a distributionally robust convex
optimization problem, which can be efficiently solved by a
stochastic procedure (Namkoong & Duchi, 2017; 2016).

Tangent propagation. In Section 5.3, we show that when
applied to neural networks, the described second-order
objective can realize classical tangent propagation meth-
ods (Simard et al., 1992; 1998; Zhao et al., 2017) as a
special case. More precisely, the second-order only term
(orange in Figure 1) is equivalent to the approximation de-

scribed in Zhao et al. (2017), proposed there in the context
of regularizing CNNs. Our results indicate that considering
both the first- and second-order terms, rather than just this
second-order component, in fact results in a more accurate
approximation of the true objective, e.g., providing a 6–9x
reduction in the resulting test prediction disagreement (Fig-
ure 1b). This suggests an approach to improve classical
tangent propagation methods, explored in Section 5.3.

5. Practical Connections: Accelerating
Training With Data Augmentation

We now present several proof-of-concept applications to
illustrate how the theoretical insights in Section 4 can be
used to accelerate training with data augmentation. First,
we propose a kernel similarity metric that can be used to
quickly predict the utility of potential augmentations, help-
ing to obviate the need for guess-and-check work. Next,
we explore ways to reduce training computation over aug-
mented data, including incorporating augmentation directly
in the learned features with a random Fourier features ap-
proach, and applying our derived approximation at various
layers of a deep network to reduce overall computation. We
perform these experiments on common benchmark datasets,
MNIST and CIFAR-10, as well a real-world mammography
tumor-classification dataset, DDSM.

5.1. A Fast Kernel Metric for Augmentation Selection
For new tasks and datasets, manually selecting, tuning,
and composing augmentations is one of the most time-
consuming processes in a machine learning pipeline, yet
is critical to achieving state-of-the-art performance. Here
we propose a kernel alignment metric, motivated by our
theoretical framework, to quickly estimate if a transforma-
tion is likely to improve generalization performance without
performing end-to-end training.

Kernel alignment metric. Given a transformation T , and
an original feature map φ(x), we can leverage our analysis
in Section 4.1 to approximate the features for each data point
x as ψ(x) = Et∼T (x) [φ(t)]. Defining the feature kernel
K̄(x, x′) = ψ(x)>ψ(x′) and the label kernel KY (y, y′) =
1 {y = y′}, we can compute the kernel target alignment
(Cristianini et al., 2002) between the feature kernel K̄ and
the target kernel KY without training:

Â(X, K̄,KY ) =
〈K̄,KY 〉√

〈K̄, K̄〉〈KY ,KY 〉
,

where 〈Ka,Kb〉 =
∑n
i,j Ka(xi, xj)Kb(xi, xj). This align-

ment statistic can be estimated quickly and accurately from
subsamples of the data (Cristianini et al., 2002). In our case,
we use random Fourier features (Rahimi & Recht, 2007)
as an approximate feature map φ(x) and sample t ∼ T (x)
to estimate the averaged feature ψ(x) = Et∼T (x) [φ(t)].
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(a) MNIST: Kernel Target Alignment (b) CIFAR-10: Kernel Target Alignment

Figure 2. Accuracy vs. kernel target alignment for RBF kernel and LeNet models, for MNIST (left) and CIFAR-10 (right) datasets.
This alignment metric can be used to quickly select transformations (e.g., MNIST: rotation) that improve performance and avoid bad
transformations (e.g., MNIST: flips).

The kernel target alignment measures the extent to which
points in the same class have similar features. If this align-
ment is larger than that between the original feature kernel
K(x, x′) = φ(x)>φ(x) and the target kernel, we postulate
that the transformation T is likely to improve generalization.
We validate this method on MNIST and CIFAR-10 with
numerous transformations (rotation, blur, flip, brightness,
and contrast). In Figure 2, we plot the accuracy of the ker-
nel classifier and LeNet against the kernel target alignment.
We see that there is indeed a correlation between kernel
alignment and accuracy, as points tend to cluster in the up-
per right (higher alignment, higher accuracy) and lower left
(lower alignment, lower accuracy) quadrants, indicating that
this approach may be practically useful to detect the utility
of a transformation prior to training.

5.2. Efficient Augmentation via Random Features
Beyond predicting the utility of an augmentation, we can
also use our theory to reduce the computation required to
perform augmentation on a kernel classifier—resulting, e.g.,
in a 4x speedup while achieving the same accuracy (MNIST,
Table 1). For affine transforms (e.g., rotation, translation,
scaling, shearing), we can perform transforms directly on
the approximate kernel features, rather than the raw data,
thus gaining efficiency while maintaining accuracy.

Recall from Section 4 that the first-order approximation of
the new feature map is given by ψ(x) = Et∼T (x) [φ(t)],
i.e., the average feature of all the transformed versions of
x. Suppose that the transform is linear in x of the form
Aαx, where the transformation is parameterized by α. For
example, a rotation by angle α has the form T (x) = Rαx,
where Rα is a d × d matrix that 2D-rotates the image x.
Further, assume that the original kernel k(x, x′) is shift-
invariant (say an RBF kernel), so that it can be approximated
by random Fourier features (Rahimi & Recht, 2007). Instead
of transforming the data point x itself, we can transform the

averaged feature map for x directly as:

ψ̃(x)k = 1
s
√
D

∑s
j=1 exp(i(A>αj

ωk)>x), k = 1, . . . , D,

where ω1, . . . , ωD are sampled from the spectral distribu-
tion, and α1, . . . , αs are sampled from the distribution of
the parameter α (e.g., uniformly from [−15, 15] if the trans-
form is rotation by α degrees). One could also approximate
the expectation over α by Gaussian quadrature (Dao et al.,
2017), which could be more accurate than Monte Carlo
sampling when α is low-dimensional. This type of random
feature map has been suggested by Raj et al. (2017) in the
context of kernels invariant to actions of a group. Our theo-
retical insights in Section 4 thus connect data augmentation
to invariant kernels, allowing us to leverage the approxi-
mation techniques in this area. Our framework highlights
additional ways to improve this procedure: if we view aug-
mentation as a modification of the feature map, we naturally
apply this feature map to test data points as well, implicitly
reducing the variance in the features of different versions
of the same data point. This variance regularization is the
second goal of data augmentation discussed in Section 4.

We validate this approach on standard image datasets
MNIST and CIFAR-10, along with a real-world mammog-
raphy tumor-classification dataset called Digital Database
for Screening Mammography (DDSM) (Heath et al., 2000;
Clark et al., 2013; Lee et al., 2016). DDSM comprises 1506
labeled mammograms, to be classified as benign versus ma-
lignant tumors. In Table 1, we compare: (i) a baseline model
trained on non-augmented data, (ii) a model trained on the
true augmented objective, and (iii) a model that uses aug-
mented random Fourier features. We augment via rotation
between −15 and 15 degrees. All models are RBF kernel
classifiers with 10,000 random Fourier features, and we re-
port the mean accuracy and standard deviation over 10 trials.
To make the problem more challenging, we also randomly
rotate the test data points. The results show that augmented
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Table 1. Performance of augmented random Fourier features on MNIST, CIFAR-10, and DDSM.
Model MNIST CIFAR-10 DDSM

Acc. (%) Time Acc. (%) Time Acc. (%) Time

No augmentation 96.1 ± 0.1 34s 39.4 ± 0.5 51s 57.3 ± 6.7 27s
Traditional augmentation 97.6 ± 0.2 220s 45.3 ± 0.5 291s 59.4 ± 3.2 61s

Augmented RFFs 97.6 ± 0.1 54s 45.2 ± 0.4 124s 58.8 ± 5.1 34s

(a) MNIST (b) CIFAR-10

Figure 3. Accuracy gain relative to baseline (no augmentation)
when averaging at various layers of a LeNet network. Approxima-
tion at earlier layers saves computation but can reduce the fidelity
of the approximation.

random Fourier features can retain 70-100% of the accuracy
boost of augmentation, with 2-4x faster training time.

5.3. Intermediate-Layer Feature Averaging for Deep
Learning

Finally, while our theory does not hold exactly given the
non-convexity of the objective, we show that our theoreti-
cal framework also suggests ways in which augmentation
can be efficiently applied in deep learning pipelines. Let
the first k layers of a deep neural network define a fea-
ture map φ, and the remaining layers define a non-linear
function f(φ(x)). The loss on each data point is then of
the form Eti∼T (xi) [l(f(φ(ti)); yi)]. The 2nd-order Tay-
lor expansion around ψ(xi) = Eti∼T (xi) [φ(ti)] yields the
objective:

1

n

n∑
i =1

l(f(ψ(xi)); yi) +
1

2
Eti ∼T (xi)

[
(φ(ti)

− ψ(xi))
>∇2

ψ(xi)
l(f(ψ(xi)); yi)(φ(ti)− ψ(xi))

]
.

If f(φ(x)) = w>φ(x), we recover the result in Sec-
tion 4 (Equation 5). Operationally, we can carrying out
the forward pass on all transformed versions of the data
points up to layer k (i.e., computing φ(ti)), and then aver-
aging the features and continuing with the remaining layers
using this averaged feature, thus reducing computation.

We train with this approach, applying the approximation
at various layers of a LeNet network using rotation as the

augmentation. To get a rough measure of tradeoff between
accuracy of the model and computation, we record the frac-
tion of time spent at each layer in the forward pass, and use
this to measure the expected reduction in computation when
approximating at layer k. In Figure 3, we plot the relative
accuracy gain of the classifier when trained on approximate
objectives against the fraction of computation time, where 0
corresponds to accuracy (averaged over 10 trials) of training
on original data, and 1 corresponds to accuracy of training
on true augmented objective g(w). These results indicate,
e.g., that this approach can reduce computation by 30%,
while maintaining 92% of the accuracy gain (red, Figure 3a).
In Appendix E.4, we demonstrate similar results in terms of
the test prediction distribution throughout training.

Connection to tangent propagation. If we perform the
described averaging before the very first layer and use the
analytic form of the gradient with respect to the transforma-
tions (i.e., tangent vectors), this procedure recovers tangent
propagation (Simard et al., 1992). The connection between
augmentation and tangent propagation in this special case
was recently observed in Zhao et al. (2017). However, as we
see in Figure 3, applying the approximation at the first layer
(standard tangent propagation) can in fact yield very poor
accuracy results—similar to performing no augmentation—
showing that our more general approximation can improve
this approach in practice.

6. Conclusion
We have taken steps to establish a theoretical base for mod-
ern data augmentation. First, we analyze a general Markov
process model and show that the k-nearest neighbors classi-
fier applied to augmented data is asymptotically equivalent
to a kernel classifier, illustrating the effect that augmentation
has on downstream representation. Next we show that local
transformations for data augmentation can be approximated
by first-order feature averaging and second-order variance
regularization components, having the effects of inducing
invariance and reducing model complexity. We use our
insights to suggest ways to accelerate training for kernel
and deep learning pipelines. Generally, a tension exists
between incorporating domain knowledge more naturally
via data augmentation, or through more principled kernel
approaches. We hope our work will enable easier transla-
tion between these two paths, leading to simpler and more
theoretically grounded applications of data augmentation.
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