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Abstract

Machine learning is increasingly targeting areas
where input data cannot be accurately described
by a single vector, but can be modeled instead us-
ing the more flexible concept of random vectors,
namely probability measures or more simply
point clouds of varying cardinality. Using deep
architectures on measures poses, however, many
challenging issues. Indeed, deep architectures
are originally designed to handle fixed-length
vectors, or, using recursive mechanisms, ordered
sequences thereof. In sharp contrast, measures
describe a varying number of weighted observa-
tions with no particular order. We propose in
this work a deep framework designed to handle
crucial aspects of measures, namely permutation
invariances, variations in weights and cardinal-
ity. Architectures derived from this pipeline can
(i) map measures to measures — using the con-
cept of push-forward operators; (ii) bridge the
gap between measures and Euclidean spaces —
through integration steps. This allows to design
discriminative networks (to classify or reduce the
dimensionality of input measures), generative ar-
chitectures (to synthesize measures) and recur-
rent pipelines (to predict measure dynamics). We
provide a theoretical analysis of these building
blocks, review our architectures’ approximation
abilities and robustness w.r.t. perturbation, and
try them on various discriminative and generative
tasks.

1. Introduction

Deep networks can now handle increasingly complex
structured data types, starting historically from im-
ages (Krizhevsky et al., 2012) and speech (Hinton et al.,
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2012) to deal now with shapes (Wu et al, 2015a),
sounds (Lee et al., 2009), texts (LeCun et al., 1998) or
graphs (Henaff et al., 2015). In each of these applications,
deep networks rely on the composition of several elemen-
tary functions, whose tensorized operations stream well on
GPUs, and whose computational graphs can be easily au-
tomatically differentiated through back-propagation. Ini-
tially designed for vectorial features, their extension to se-
quences of vectors using recurrent mechanisms (Hochreiter
and Schmidhuber, 1997) had an enormous impact.

Our goal is to devise neural architectures that can handle
probability distributions under any of their usual form: as
discrete measures supported on (possibly weighted) point
clouds, or densities one can sample from. Such probability
distributions are challenging to handle using recurrent net-
works because no order between observations can be used
to treat them recursively (although some adjustments can
be made, as discussed in Vinyals et al. 2016) and because,
in the discrete case, their size may vary across observations.
There is, however, a strong incentive to define neural archi-
tectures that can handle distributions as inputs or outputs.
This is particularly evident in computer vision, where the
naive representation of complex 3D objects as vectors in
spatial grids is often too costly memorywise, leads to a loss
in detail, destroys topology and is blind to relevant invari-
ances such as shape deformations. These issues were suc-
cessfully tackled in a string of papers well adapted to such
3D settings (Qi et al., 2016; 2017; Fan et al., 2016). In other
cases, ranging from physics (Godin et al., 2007), biology
(Grover et al., 2011), ecology (Tereshko, 2000) to census
data (Guckenheimer et al., 1977), populations cannot be
followed at an individual level due to experimental costs or
privacy concerns. In such settings where only macroscopic
states are available, densities appear as the right object to
perform inference tasks.

1.1. Previous works

Specificities of Probability Distributions. Data de-
scribed in point clouds or sampled i.i.d. from a density
are given unordered. Therefore architectures dealing with
them are expected to be permutation invariant; they are
also often expected to be equivariant to geometric trans-
formations of input points (translations, rotations) and to
capture local structures of points. Permutation invariance
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or equivariance (Ravanbakhsh et al., 2016; Zaheer et al.,
2017), or with respect to general groups of transformations
(Gens and Domingos, 2014; Cohen and Welling, 2016; Ra-
vanbakhsh et al., 2017) have been characterized, but with-
out tackling the issue of locality. Pairwise interactions
(Chen et al., 2014; Cheng et al., 2016; Guttenberg et al.,
2016) are appealing and helpful in building permutation
equivariant layers handling local information. Other strate-
gies consist in augmenting the training data by all permuta-
tions or finding its best ordering (Vinyals et al., 2015). (Qi
et al., 2016; 2017) are closer to our work in the sense that
they combine the search for local features to permutation
invariance, achieved by max pooling.

(Point) Sets vs. Probability (Distributions). An impor-
tant distinction should be made between point sets, and
point clouds which stand usually for discrete probability
measures with uniform masses. The natural topology of
(point) sets is the Hausdorff distance. That distance is very
different from the natural topology for probability distribu-
tions, that of the convergence in law, a.k.a the weak™ topol-
ogy of measures. The latter is metrized (among other met-
rics) by the Wasserstein (optimal transport) distance, which
plays a key role in our work. This distinction between sets
and probability is crucial, because the architectures we pro-
pose here are designed to capture stably and efficiently reg-
ularity of maps to be learned with respect to the conver-
gence in law. Note that this is a crucial distinction between
our work and that proposed in PointNet (Qi et al., 2016)
and PointNet++ (Qi et al., 2017), which are designed to be
smooth and efficients architectures for the Hausdorff topol-
ogy of point sets. Indeed, they are not continuous for the
topology of measures (because of the max-pooling step)
and cannot approximate efficiently maps which are smooth
(e.g. Lipschitz) for the Wasserstein distance.

Centrality of optimal transport. The Wasserstein dis-
tance plays a central role in our architectures that are able
to handle measures. Optimal transport has recently gained
popularity in machine learning due to fast approximations,
which are typically obtained using strongly-convex regu-
larizers such as the entropy (Cuturi, 2013). The benefits
of this regularization paved the way to the use of OT in
various settings (Courty et al., 2017; Rolet et al., 2016;
Huang et al., 2016). Although Wasserstein metrics have
long been considered for inference purposes (Bassetti et al.,
2006), their introduction in deep learning architectures is
fairly recent, whether it be for generative tasks (Bernton
et al., 2017; Arjovsky et al., 2017; Genevay et al., 2018)
or regression purposes (Frogner et al., 2015; Hashimoto
et al., 2016). The purpose of our work is to provide an
extension of these works, to ensure that deep architectures
can be used at a granulary level on measures directly. In
particular, our work shares some of the goals laid out in

(Hashimoto et al., 2016), which considers recurrent archi-
tectures for measures (a special case of our framework).
The most salient distinction with respect to our work is that
our building blocks take into account multiple interactions
between samples from the distributions, while their archi-
tecture has no interaction but takes into account diffusion
through the injection of random noise.

1.2. Contributions

In this paper, we design deep architectures that can (i) map
measures to measures (ii) bridge the gap between measures
and Euclidean spaces. They can thus accept as input for in-
stance discrete distributions supported on (weighted) point
clouds with an arbitrary number of points, can generate
point clouds with an arbitrary number of points (arbitrary
refined resolution) and are naturally invariant to permuta-
tions in the ordering of the support of the measure. The
mathematical idealization of these architectures are infinite
dimensional by nature, and they can be computed numeri-
cally either by sampling (Lagrangian mode) or by density
discretization (Eulerian mode). The Eulerian mode resem-
bles classical convolutional deep network, while the La-
grangian mode, which we focus on, defines a new class of
deep neural models. Our first contribution is to detail this
new framework for supervised and unsupervised learning
problems over probability measures, making a clear con-
nexion with the idea of iterative transformation of random
vectors. These architectures are based on two simple build-
ing blocks: interaction functionals and self-tensorization.
This machine learning pipeline works hand-in-hand with
the use of optimal transport, both as a mathematical perfor-
mance criterion (to evaluate smoothness and approximation
power of these models) and as a loss functional for both su-
pervised and unsupervised learning. Our second contribu-
tion is theoretical: we prove both quantitative Lipschitz ro-
bustness of these architectures for the topology of the con-
vergence in law and universal approximation power. Our
last contribution is a showcase of several instantiations of
such deep stochastic networks for classification (mapping
measures to vectorial features), generation (mapping back
and forth measures to code vectors) and prediction (map-
ping measures to measures, which can be integrated in a
recurrent network).

1.3. Notations

We denote X € R(R?) a random vector on R? and aux €
ML (RY) its law, which is a positive Radon measure with
unit mass. It satisfies for any continuous map f € C(R?),
E(f(X)) = [ge f(z)dax(z). Its expectation is denoted
E(X) = [z zdax(z) € RY. We denote C(R%;R") the

space of continuous functions from R? to R"” and C(R?) =

C(R%;R). In this paper, we focus on the law of a random
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vector, so that two vectors X and X’ having the same law
(denoted X ~ X') are considered to be indistinguishable.

2. Stochastic Deep Architectures

In this section, we define elementary blocks, mapping ran-
dom vectors to random vectors, which constitute a layer
of our proposed architectures, and depict how they can be
used to build deeper networks.

2.1. Elementary Blocks

Our deep architectures are defined by stacking a succession
of simple elementary blocks that we now define.

Definition 1 (Elementary Block). Given a function f :
R? x R? — IR, its associated elementary block Ty :
R(R?) — R(R") is defined as

VX € R(RY), Ty(X)=EExox(f(X,X) (1)

where X' is a random vector independent from X having
the same distribution.

Remark 1 (Discrete random vectors). A particular instance,
which is the setting we use in our numerical experiments,
is when X is distributed uniformly on a set (z;)]; of n
points i.e. when ax = %Z?zl 0z,. In this case, ¥ =
T¢(X) is also distributed on n points

1 n 1 n
oy :EZ% where y; = ﬁZf(ﬂ%xj)-
X Jj=1

This elementary operation (1) displaces the distribution of
X according to pairwise interactions measured through the
map f. As done usually in deep architectures, it is possible
to localize the computation at some scale 7 by imposing
that f(x,2’) is zero for |x — 2’| > 7, which is also useful
to reduce the computation time.

Remark 2 (Fully-connected case). As it is customary for
neural networks, the map f : R? x R? — R” we consider
for our numerical applications are affine maps composed
by a pointwise non-linearity, i.e.

Fla,2) = (Mye) k=1

where A : R — R is a pointwise non-linearity (in our ex-
periments, A(s) = max(s,0) is the ReLu map). The pa-
rameter is then § = (A,b) where A € R"*27 is a matrix
and b € R" is a bias.

Remark 3 (Deterministic layers). Classical “deterministic”
deep architectures are recovered as special cases when X
is a constant vector, assuming some value x € R? with
probability 1, i.e. ax = J,. A stochastic layer can out-
put such a deterministic vector, which is important for in-
stance for classification scores in supervised learning (see

where y=A-[z;2/] +beR"

Section 4 for an example) or latent code vectors in auto-
encoders (see Section 4 for an illustration). In this case, the
map f(x,2") = g(z’) does not depend on its first argument,
so that Y = T;(X) is constant equal to y = Ex (¢(X)) =
Jga 9(x)dax (x). Such a layer thus computes a summary
statistic vector of X according to g.

Remark 4 (Push-Forward). In sharp contrast to the previ-
ous remark, one can consider the case f(z,z’') = h(z)
so that f only depends on its first argument. One then
has Ty (X) = h(X), which corresponds to the notion of
push-forward of measure, denoted ar,(x) = hyax. For
instance, for a discrete law ax = % >; 0z, then ary(x) =
% i On(x:)- The support of the law of X is thus deformed
by h.

Remark 5 (Higher Order Interactions and Tensorization).
Elementary Blocks are generalized to handle higher-order
interactions by considering f : (R9)Y — R", one then

defines Tf(X) < Ex, . xy(f(X,Xa,...,Xy)) where
(Xa,...,Xn) are independent and identically distributed
copies of X. An equivalent and elegant way to introduce
these interactions in a deep architecture is by adding a ten-
sorization layer, which maps X — Xo ® ... ® Xy €
R((R?)N 1), Section 3 details the regularity and approxi-

mation power of these tensorization steps.

2.2. Building Stochastic Deep Architectures

These elementary blocks are stacked to construct deep ar-
chitectures. A stochastic deep architecture is thus a map

X € R(R®) s Y =Ty, 00Ty, (X) € RRT), (2)

where f; : R%-1 x R%-1 — RY, Typical instances of
these architectures includes:

e Predictive: this is the general case where the architec-
ture inputs a random vector and outputs another ran-
dom vector. This is useful to model for instance time
evolution using recurrent networks, and is used in Sec-
tion 4 to tackle a dynamic prediction problem.

e Discriminative: in which case Y is constant equal to a
vector y € R (i.e. oy = §,) which can represent ei-
ther a classification score or a latent code vector. Fol-
lowing Remark 3, this is achieved by imposing that
fr only depends on its second argument. Section 4
shows applications of this setting to classification and
variational auto-encoders (VAE).

e Generative: in which case the network should input a
deterministic code vector o € R% and should out-
put a random vector Y. This is achieved by adding
extra randomization through a fixed random vector
Xo € R(R%~9%) (for instance a Gaussian noise)
and stacking Xo = (%o, Xo) € R(R®). Section 4
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shows an application of this setting to VAE generative
models. Note that while we focus for simplicity on
VAE models, it is possible to use our architectures for
GANSs (Goodfellow et al., 2014) as well.

2.3. Recurrent Nets as Gradient Flows

Following the work of (Hashimoto et al., 2016), in the spe-
cial case R? = R", one can also interpret iterative appli-
cations of such a Ty (i.e. considering a recurrent deep net-
work) as discrete optimal transport gradient flows (Santam-
brogio, 2015) (for the W5 distance, see also Definition (3))
in order to minimize a quadratic interaction energy & (o) &
Jzaxga F (@, 2")do(z)da(a’) (we assume for ease of nota-
tion that F' is symmetric). Indeed, introducing a step size
T > 0, setting f(x,2’) = x — 27V, F(z,z’), one sees that
the measure a x, defined by the iterates X, = T¢(X/)
of a recurrent nets is approximating at time t = {7 the
Wasserstein gradient flow «(¢) of the energy £. As detailed
for instance in (Santambrogio, 2015), such a gradient flow
is the solution of the PDE 22 = div(aV(€'(w))) where
E'(a) = [ F(x,-)da(z) is the “Euclidean” derivative of
£. The pioneer work of (Hashimoto et al., 2016) only con-
siders linear and entropy functionals of the form £(a) =
J(F(z) + log(4%))da(z) which leads to evolutions c(t)
being Fokker-Plank PDEs. Our work can thus be inter-
preted as extending this idea to the more general setting
of interaction functionals (see Section 3 for the extension
beyond pairwise interactions).

3. Theoretical Analysis

In order to get some insight on these deep architectures, we
now highlight some theoretical results detailing the regular-
ity and approximation power of these functionals. This the-
oretical analysis relies on the Wasserstein distance, which
allows us to make quantitative statements associated to the
convergence in law.

3.1. Convergence in Law Topology

Wasserstein distance. In order to measure regularity of
the involved functionals, and also to define loss functions
to fit these architectures (see Section 4), we consider the
p-Wasserstein distance (for 1 < p < +00) between two
probability distributions (v, 3) € M2 (R?)

def.

Wg(a,ﬁ) =

win_ [ e yaney) )
T1=a,T2=0 (R9)2

where m, 2 € MY (RY) are the two marginals of a cou-
pling measure 7, and the minimum is taken among cou-
pling measures 7 € M (R? x R?).

A classical result (see (Santambrogio, 2015)) asserts that

W is a norm, and can be conveniently computed using

Wi(a, B) = Wia = B) =

max

d(a - B),
Lip(g)<1 /Xg (O/ 6)

where Lip(g) is the Lipschitz constant of amap g : X —
R (with respect to the Euclidean norm unless otherwise
stated).

With an abuse of notation, we write W,(X,Y) to denote
W, (ax,ay), but one should be careful that we are con-
sidering distances between laws of random vectors. An al-
ternative formulation is W, (X,Y) = minx/ vy E(| X’ —
X'|P)}/P where (X’,Y”) is a couple of vectors such that
X' (resp. Y') has the same law as X (resp. Y), but of
course X' and Y’ are not necessarily independent. The
Wasserstein distance metrizes the convergence in law (de-
noted —) in the sense that X} — X is equivalent to
W1 (Xk, X) — 0.

In the numerical experiments, we estimate W, using
Sinkhorn’s algorithm (Cuturi, 2013), which provides a
smooth approximation amenable to (possibly stochastic)
gradient descent optimization schemes, whether it be for
generative or predictive tasks (see Section 4).

Lipschitz property. Amap7 : R(R?) — R(R") is con-
tinuous for the convergence in law (aka the weak* of mea-
sures) if for any sequence X, — X, then T'(X}) — T(X).
Such a map is furthermore said to be C-Lipschitz for the 1-
Wasserstein distance if

V(X,Y) € RIRY)?, Wi(T(X), T(Y)) < CW(X,Y).
“)
Lipschitz properties enable us to analyze robustness to in-
put perturbations, since it ensures that if the input distribu-
tions of random vectors are close enough (in the Wasser-
stein sense), the corresponding output laws are close too.

3.2. Regularity of Building blocks

Elementary blocks. The following proposition, whose
proof can be found in Appendix B, shows that elementary
blocks are robust to input perturbations.

Proposition 1 (Lipschitzianity of elementary blocks). If
for all z, f(x,-) and f(-,x) are C(f)-Lipschitz, then Ty
is 2rC(f)-Lipschitz in the sense of (4).

As a composition of Lipschitz functions defines Lipschitz
maps, the architectures of the form (2) are thus Lipschitz,
with a Lipschitz constant upper-bounded by 2 > ", ¢:C( f¢),
where we used the notations of Proposition 1.

Tensorization. As highlighted in Remark 5, tensoriza-
tion plays an important role to define higher-order inter-
action blocks.
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Definition 2 (Tensor product). Given (X,Y) € R(X) x
R(Y), a tensor product random vector is X @ Y <&

(X",Y') € R(X x ) where X' and Y’ are indepen-
dent and have the same laws as X and Y. This means
that dax gy (z,y) = dax (z)day (y) is the tensor product
of the measures.

Remark 6 (Tensor Product between Discrete Measures).
If we consider random vectors supported on point clouds,
with laws ax = & > | 6, and ay = = 37", 6y, then
X ®Y is adiscrete random vector supported on nm points,
since axgy = —— > i Oy

The following proposition shows that tensorization blocks
maintain the stability property of a deep architecture.

Proposition 2 (Lipschitzness of tensorization). One has,
for (X, X", YY) € R(X)?* x R(Y)?,

Wi(X ®RY, X' ®Y’) < Wl(X, X/) +W1(Y, Y’).
Proof. One has

Wi(a® B, @ 8)
[ st pldal@as() - do’ (@08 )]

= max
Lip(g)<1

= max
Lip(g)<1

+ALg(x7y)[da($) —da/(w)]dﬁ(y)7

//ﬁ%ﬂ%@—%@%d@
xJYy

hence the result. O

3.3. Approximation Theorems

Universality of elementary block. The following theo-
rem shows that any continuous map between random vec-
tors can be approximated to arbitrary precision using three
elementary blocks. Note that it includes through A a fixed
random input which operates as an “excitation block™ sim-
ilar to the generative VAE models studied in Section 4.2.

Theorem 1. Let F : R(X) — R()) be a continuous map
for the convergence in law, where X C R%and ) C R" are
compact. Then Ve > 0 there exists three continuous maps
f, g, h such that

VX € R(X), Wy(F(X),ThoAoT,oT(X)) <e. (5)

where A : X — (X,U) concatenates a uniformly dis-
tributed random vector U.

The architecture that we use to prove this theorem is dis-
played on Figure 1, bottom (left). Since f, g and h are
smooth maps, according to the universality theorem of neu-
ral networks (Cybenko, 1989; Leshno et al., 1993) (assum-
ing some restriction on the non-linearity A, namely its be-
ing a nonconstant, bounded and continuous function), it is

possible to replace each of them (at the expense of increas-
ing €) by a sequence of fully connected layers (as detailed
in Remark 2). This is detailed in Section D of the appendix.

Since deterministic vectors are a special case of random
vectors (see Remark 3), this results encompasses as a spe-
cial case universality for vector-valued maps F : R(€2) —
R" (used for instance in classification in Section 4.1) and
in this case only 2 elementary blocks are needed. Of course
the classical universality of multi-layer perceptron (Cy-
benko, 1989; Leshno et al., 1993) for vectors-to-vectors
maps F : R? — R" is also a special case (using a single
elementary block).

Proof. (of Theorem 1) In the following, we denote the
probability simplex as ¥, = {a€R}; Y, a; =1}.
Without loss of generality, we assume X C [0, 1]? and
Y C [0,1]". We consider two uniform grids of n and m
points (z;)j; of [0,1]7 and (y;)72, of [0,1]". On these
grids, we consider the usual piecewise affine P1 finite el-
ement bases (;)i_; and (¢;)7L,, which are continuous
hat functions supported on cells (R;); and (S;); which are
cubes of width 2/n'/9 and 2/m'/". We define discretiza-
tion operators as Dy : a € M (X) (*fRi pida) | €

Snand Dy : B € MI(Y) = ([g, ¥;dB)fL; € . We
also define D% : a € ¥, — >, a;0,, € M{(X) and
Dy ib € Xy 30 bi6y, € MT(Y).

The map F induces a discrete map G : 3,, — X, defined

by G & Dy o F o D%. Remark that D% is continuous

from 3J,, (with the usual topology on R™) to Mﬁr (X) (with
the convergence in law topology), F is continuous (for the
convergence in law), Dy is continuous from M ()) (with
the convergence in law topology) to X, (with the usual
topology on R™). This shows that GG is continuous.

For any b € ¥,,, Lemma 2 proved in the appendices de-
fines a continuous map H so that, defining U to be a ran-
dom vector uniformly distributed on [0, 1]" (with law ),
H(b,U) has law (1 —£)D3,(b) + €U.

We now have all the ingredients, and define the three con-
tinuous maps for the elementary blocks as

f(z,2') = (pi(a))izy €R", gla,d’) = G(d') €R™,
and h((b,u), (¥, u")) = H(b,u) € Y.

The corresponding architecture is displayed on Figure 1,

bottom. Using these maps, one needs to control the error
2. def.

between F and F = T oA oTyoTy = HyoAoDyoFo

def.

D% oDy where we denoted Hy(b) = H (b, )y the law of
H(b,U) (i.e. the pushforward of the uniform distribution
U of Uby H(b,-)).

(i) We define & & D% Dx(c). The diameters of the cells
Riis Aj = \/(j/nl/q, so that Lemma 1 in the appendices
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shows that W1 (a, &) < ,/g/n'/?. Since F is continuous
for the convergence in law, choosing n large enough en-
sures that Wy (F (o), F(&)) < e.

A def.

(ii) We define 8 = D3, Dy F(&). Similarly, using m large
enough ensures that W1 (F(&), 3) < e.

(iii) Lastly, let us define 3 < Hy o Dy(3) = F(a). By
construction of the map H in Lemma 2, one has hat B =
(1 —&)B + el so that W1 (B, B) = e W (B,U) < Ce for
the constant C' = 2/r since the measures are supported in
a set of diameter /7.

Putting these three bounds (i), (ii) and (iii) together using
the triangular inequality shows that W1 (F(«), F(a)) <
(24 C)e. O

Universality of tensorization. The following Theorem,
whose proof can be found in Appendix E, shows that one
can approximate any continuous map using a high enough
order of tensorization followed by an elementary block.

Theorem 2. Let F : R(2) — R a continuous map for
the convergence in law, where 0 C RY is compact. Then
Ve > 0, there exists n > 0 and a continuous function f
such that

VX €R(Q), |F(X)-Trob,(X)<c (6

where 0,,(X) = X®...®X is the n-fold self tensorization.

The architecture used for this theorem is displayed on the
bottom (right) of Figure 1. The function f appearing in (6)
plays a similar role as in (5), but note that the two-layers
factorizations provided by these two theorems are very dif-
ferent. It is an interesting avenue for future work to com-
pare them theoretically and numerically.

4. Applications

To exemplify the use of our stochastic deep architectures,
we consider classification, generation and dynamic predic-
tion tasks. The goal is to highlight the versatility of these
architectures and their ability to handle as input and/or out-
put both probability distributions and vectors. In all cases,
the procedures displayed similar results when rerun, hence
results can be considered as quite stable and representative.

4.1. Classification tasks

MNIST Dataset. We perform classification on the 2-D
MNIST dataset of handwritten digits. To convert a MNIST
image into a 2D point cloud, we threshold pixel values
(threshold p = 0.5) and use as a support of the input em-
pirical measure the n = 256 pixels of highest intensity,
represented as points (z;)"_; C R? (if there are less than

n = 256 pixels of intensity over p, we repeat input coor-
dinates), which are remapped along each axis by mean and
variance normalization. Each image is therefore turned into
a sum of n = 256 Diracs % > 0z,. Our stochastic net-
work architecture is displayed on the top of Figure 1 and
is composed of 5 elementary blocks (17, )5_, with an in-
terleaved self-tensorisation layer X +— X ® X. The first
elementary block 7'y, maps measures to measures, the sec-
ond one Ty, maps a measure to a deterministic vector (i.e.
does not depend on its first coordinate, see Remark 3),
and the last layers are classical vectorial fully-connected
ones. We use a ReLu non-linearity A (see Remark 2). The
weights are learnt with a weighted cross-entropy loss func-
tion over a training set of 55,000 examples and tested on a
set of 10,000 examples. Initialization is performed through
the Xavier method (Glorot and Bengio, 2010) and learning
with the Adam optimizer (Kingma and Ba, 2014). Table 1
displays our results, compared with the PointNet (Qi et al.,
2016) baseline. We observe that maintaining stochasticity
among several layers is beneficial (as opposed to replacing
one Elementary Block with a fully connected layer allocat-
ing the same amount of memory).

Table 1. MNIST classification results

input type error (%)
PointNet point set 0.78
Ours measure (1 stochastic layer) 1.07
Ours measure (2 stochastic layers) 0.76

ModelNet40 Dataset. We evaluate our model on the
ModelNet40 (Wu et al., 2015b) shape classification bench-
mark. The dataset contains 3-D CAD models from 40 man-
made categories, split into 9,843 examples for training and
2,468 for testing. We consider n = 1, 024 samples on each
surface, obtained by a farthest point sampling procedure.
Our classification network is similar to the one displayed
on top of Figure 1, excepted that the layer dimensions are
[3,10, 500,800,400, 40]. Our results are displayed in fig-
ure 2. As previously observed in 2D, peformance is im-
proved by maintaining stochasticity among several layers,
for the same amount of allocated memory.

Table 2. ModelNet40 classification results

input type accuracy (%)
3DShapeNets volume 77
Pointnet point set 89.2
Ours measure 82.0
(1 stochastic layer)
Ours measure 83.5

(2 stochastic layers)

4.2. Generative networks

We further evaluate our framework for generative tasks,
on a VAE-type model (Kingma and Welling, 2013) (note
that it would be possible to use our architectures for
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Figure 1. Top and center: two examples of deep stochastic architectures applied to the MNIST dataset: top for classification purpose
(Section 4.1), center for generative model purpose (Section 4.2). Bottom: architecture for the proof of Theorems 1 and 2.

GANSs (Goodfellow et al., 2014) as well). The task con-
sists in generating outputs resembling the data distribution
by decoding a random variable z sampled in a latent space
Z. The model, an encoder-decoder architecture, is learnt
by comparing input and output measures using the Way
Wasserstein distance loss, approximated using Sinkhorn’s
algorithm (Cuturi, 2013; Genevay et al., 2018). Follow-
ing (Kingma and Welling, 2013), a Gaussian prior is im-
posed on the latent variable z. The encoder and the de-
coder are two mirrored architectures composed of two ele-
mentary blocks and three fully-connected layers each. The
corresponding stochastic network architecture is displayed
on the bottom of 1. Figure 2 displays an application on the
MNIST database where the latent variable z € R? param-
eterizes a 2-D of manifold of generated digits. We use as
input and output discrete probability measures of n = 100
Diracs, displayed as point clouds on the right of Figure 2.

4.3. Dynamic Prediction

The Cucker-Smale flocking model (Cucker and Smale,
2007) is non-linear dynamical system modelling the emer-
gence of coherent behaviors, as for instance in the evolu-
tion of a flock of birds, by solving for positions and speed

() Z (ps(t) € RY, v(t) e RY) fori = 1,...,n

= Lp@®)o(t) T

iy ,.i‘&b.";.l’.‘“{g?;?,,“’;‘,ﬁf}f}
Aadaes s SEL00

R GeeoH BB 000
N8 9eeE s e EARN A0
bt R L
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Figure 2. Left: Manifold of digits generated by the VAE network
displayed on the bottom of 1. Right: Corresponding point cloud
(displaying only a subset of the left images).

where L£(p) € R™*" is the Laplacian matrix associated to
a group of points p € (R%)"

ef. 1
[’(p)i,j = 1 g E(p)z i = *Zﬁ(p%]
+ lpi — pj —
In the numerics, we set m = 0.6. This setting can be

adapted to weighted particles (x;(t), tt;)i=1...n, where each
weight ; stands for a set of physical attributes impacting
dynamics — for instance, mass — which is what we consider
here. This model equivalently describes the evolution of
the measure a(t) = Y7 ; f1i0,,(+) in phase space (R)?,
and following Remark 2.3 on the ability of our architectures
to model dynamical system involving interactions, (7) can
be discretized in time which leads to a recurrent network
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making use of a single elementary block T’y between each
time step. Indeed, our block allows to maintain stochastic-
ity among all layers — which is the natural way of proceed-
ing to follow densities of particles over time.

It is however not the purpose of this article to study such a
recurrent network and we aim at showcasing here whether
deep (non-recurrent) architectures of the form (2) can ac-
curately capture the Cucker-Smale model. More precisely,
since in the evolution (7) the mean of v(¢) stays constant,
we can assume » . v;(t) = 0, in which case it can be
shown (Cucker and Smale, 2007) that particles ultimately
reach stable positions (p(t),v(t)) — (p(c0),0). We de-
note F(a(0)) & >t Hilp, (o0) the map from some ini-
tial configuration in the phase space (which is described by
a probability distribution «(0)) to the limit probability dis-
tribution (described by a discrete measure supported on the
positions p;(00)). The goal is to approximate this map us-
ing our deep stochastic architectures. To showcase the flex-
ibility of our approach, we consider a non-uniform initial
measure «(0) and approximate its limit behavior F(a(0))
by a uniform one (1; = ).

In our experiments, the measure «(t) models the dynam-
ics of several (2 to 4) flocks of birds moving towards each
other, exhibiting a limit behavior of a single stable flock.
As shown in Figures 3 and 4, positions of the initial flocks
are normally distributed, centered respectively at edges
of a rectangle (—4;2), (—4; —2), (4;2), (4; —2) with vari-
ance 1. Their velocities (displayed as arrows with lengths
proportional to magnitudes in Figures 3 and 4) are uni-
formly chosen within the quarter disk [0; —0.1] x [0.1;0].
Their initial weights p; are normally distributed with mean
0.5 and sd 0.1, clipped by a ReLu and normalized. Fig-
ures 3 (representing densities) and 4 (depicting correspond-
ing points’ positions) show that for a set of n = 720 par-
ticles, quite different limit behaviors are successfully re-
trieved by a simple network composed of five elementary
blocks with layers of dimensions [2, 10, 20, 40, 60], learnt
with a Wasserstein (Genevay et al., 2018) fitting criterion
(computed with Sinkhorn’s algorithm (Cuturi, 2013)).

Conclusion

In this paper, we have proposed a new formalism for
stochastic deep architectures, which can cope in a seamless
way with both probability distributions and deterministic
feature vectors. The salient features of these architectures
are their robustness and approximation power with respect
to the convergence in law, which is crucial to tackle high
dimensional classification, regression and generation prob-
lems over the space of probability distributions.

(a)
~
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» o
>
-

d
/

C 4 L 4

(©
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1'%
q

Initial «(0) F(a(0)) Predicted

Figure 3. Prediction of the asymptotic density of the flocking
model, for various initial speed values v(0) and n = 720 par-
ticles. Eg. for top left cloud: (a) v(0) = (0.050; —0.085); (b)

(0) = (0.030; —0.094); (¢) v(0) = (0.056; —0.081).

(a)

Initial «(0)

F((0)) Predicted
Figure 4. Prediction of particles’ positions corresponding to Fig-
ure 3. Dots’ diameters are proportial to weights y; (predicted ones
all have the same size since y; = %).
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