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Abstract

We study the problem of learning-to-learn: infer-
ring a learning algorithm that works well on a fam-
ily of tasks sampled from an unknown distribution.
As class of algorithms we consider Stochastic Gra-
dient Descent (SGD) on the true risk regularized
by the square euclidean distance from a bias vec-
tor. We present an average excess risk bound for
such a learning algorithm that quantifies the po-
tential benefit of using a bias vector with respect
to the unbiased case. We then propose a novel
meta-algorithm to estimate the bias term online
from a sequence of observed tasks. The small
memory footprint and low time complexity of our
approach makes it appealing in practice while our
theoretical analysis provides guarantees on the
generalization properties of the meta-algorithm
on new tasks. A key feature of our results is that,
when the number of tasks grows and their vari-
ance is relatively small, our learning-to-learn ap-
proach has a significant advantage over learning
each task in isolation by standard SGD without
a bias term. Numerical experiments demonstrate
the effectiveness of our approach in practice.

1. Introduction

The problem of learning-to-learn (LTL) (Baxter, 2000;
Thrun & Pratt, 1998) is receiving increasing attention in
recent years, due to its practical importance (Finn et al.,
2017; Franceschi et al., 2018; Ravi & Larochelle, 2017)
and the theoretical challenge of statistically principled and
efficient solutions (Alquier et al., 2017; Balcan et al., 2015;
Maurer et al., 2016; Pentina & Lampert, 2014; Denevi et al.,
2018a;b; Gupta & Roughgarden, 2017). The principal aim
of LTL is to design a meta-learning algorithm to select a
supervised learning algorithm that is well suited to learn
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tasks from a prescribed family. To highlight the difference
between the meta-learning algorithm and the learning algo-
rithm, throughout the paper we will refer to the latter as the
inner or within-task algorithm.

The meta-algorithm is trained from a sequence of datasets,
associated with different learning tasks sampled from a meta-
distribution (also called environment in the literature). The
performance of the selected inner algorithm is measured by
the transfer risk (Baxter, 2000; Maurer, 2005), that is, the
average risk of the algorithm, trained on a random dataset
from the same environment. A key insight is that, when the
learning tasks share specific similarities, the LTL framework
provides a means to leverage such similarities and select an
inner algorithm of low transfer risk.

In this work, we consider environments of linear regres-
sion or binary classification tasks and we assume that the
associated weight vectors are all close to a common vec-
tor. Because of the increasing interest in low computational
complexity procedures, we focus on the family of within-
task algorithms given by Stochastic Gradient Descent (SGD)
working on the regularized true risk. Specifically, motivated
by the above assumption on the environment, we consider
as regularizer the square distance of the weight vector to a
bias vector, playing the role of a common mean among the
tasks. Knowledge of this common mean can substantially
facilitate the inner algorithm and the main goal of this paper
is to design a meta-algorithm to learn a good bias that is
supported by both computational and statistical guarantees.

Contributions. The first contribution of this work is to
show that, when the variance of the weight tasks’ vectors
sampled from the environment is small, SGD regularized
with the “right” bias yields a model with smaller error than
its unbiased counterpart. The latter approach does not ex-
ploit the relatedness among the tasks, and it corresponds to
learning the tasks in isolation — also known as independent
task learning (ITL). The second and principal contribution
of this work is to propose a meta-algorithm that estimates
the bias term, so that the transfer risk of the corresponding
SGD algorithm is as small as possible. We consider the
setting in which we receive in input a sequence of datasets
and we propose an online meta-algorithm which efficiently
updates the bias term used by the inner SGD algorithm. Our
meta-algorithm consists in applying a (meta) SGD algo-
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rithm to a proxy of the transfer risk, given by the expected
minimum regularized empirical risk of a task. We provide
a bound on the statistical performance of the biased inner
SGD algorithm found by our procedure. It establishes that,
when the number of observed tasks grows and the variance
of the tasks’ weight vectors is significantly smaller than
their second moment, then, running the inner SGD algo-
rithm with the estimated bias brings an improvement in
comparison to learning the tasks in isolation with no bias.
The bound is coherent with the state-of-the-art LTL analysis
for other families of algorithms, but it applies for the first
time to a fully online meta-algorithm. Our results holds for
Lipschitz loss functions both in the regression and binary
classification setting.

Our proof techniques combines ideas from online learning,
stochastic and convex optimization, with tools from LTL.
A key insight in our approach is to exploit the inner SGD
algorithm to compute an approximate subgradient of the
surrogate objective, in a such way that the degree of approx-
imation can be controlled, without affecting the overall per-
formance or the computational cost of the meta-algorithm.

Paper Organization. We start by recalling in Sec. 2 the
basic concepts of LTL. In Sec. 3 we cast the problem of
choosing a right bias term in SGD on the regularized ob-
jective in the LTL framework. Thanks to this formulation,
in Sec. 4 we characterize the situations in which SGD with
the right bias term is beneficial in comparison to SGD with
no bias. In Sec. 5 we propose an online meta-algorithm to
estimate the bias vector from a sequence of datasets and we
analyze its statistical properties. In Sec. 6 we report on the
empirical performance of the proposed approach while in
Sec. 7 we discuss future research directions.

Previous Work. Online LTL (Alquier et al., 2017; Denevi
et al., 2018a;b; Pentina & Urner, 2016) has received lim-
ited attention and is less developed than standard LTL ap-
proaches, in which the data are processed in one batch as
opposed to incrementally, see for instance (Baxter, 2000;
Maurer, 2009; Maurer et al., 2013; 2016; Pentina & Lam-
pert, 2014). The idea of introducing a bias in the learn-
ing algorithm is not new, see e.g. (Denevi et al., 2018b;
Kuzborskij & Orabona, 2017; Pentina & Lampert, 2014)
and Sec. 3. In this work, we consider the family of inner
SGD algorithms with biased regularization and we develop
a theoretically grounded meta-learning algorithm to find the
bias. Differently from others online methods (Alquier et al.,
2017; Denevi et al., 2018a), our approach does not need to
keep previous training points in memory and it runs online
both across and within the tasks. As a result, both the low
space and time complexity are the strengths of our method.
We finally point out the recent related work by Khodak
et al. (2019) and Finn et al. (2019), that was brought to our
attention after completion of the present work.

2. Preliminaries

In this section, we recall the standard supervised (i.e. single-
task) learning setting and the learning-to-learn setting.

We first introduce some notation used throughout this work.
Let Z = X x ) be the data space, where X C R¢ and
Y C R (regression) or Y = {—1,+1} (binary classifi-
cation). We consider linear supervised learning tasks i,
namely distributions over Z, parametrized by a weight vec-
tor w € RY, We measure the performance by a loss function
£:Y x )Y — Ry such that, forany y € ), £(-,y) is con-
vex and closed. Finally, for any positive & € N, we let
[k] = {1,...,k} and, we denote by (-, -) and || - || the stan-
dard inner product and euclidean norm. In the rest of this
work, when specified, we make the following assumptions.

Assumption 1 (Bounded Inputs). Let X C B(0, R), where
B(0,R) = {z € R?: ||z|| < R}, for some radius R > 0.

Assumption 2 (Lipschitz Loss). Let £(-,y) be L-Lipschitz
foranyy e ).

For example, for any y, § € ), the absolute loss £(§, y) =
|9 — y| and the hinge loss £(§, y) = max {0,1 — yj} are
both 1-Lipschitz. We now briefly recall the main notion of
single-task learning.

2.1. Single-Task Learning

In standard linear supervised learning, the goal is to learn
a linear functional relation f, : X — Y, fu,(-) = (-, w)
between the input space X and the output space ). This
target can be reformulated as that of finding a weight vector
w,, minimizing the expected risk (or true risk)

Ru (w) = E(z,y)wu €(<$, w)a y) (D

over the entire space R?. The expected risk measures the pre-
diction error that the weight vector w incurs on average with
respect to points sampled from the distribution p. In prac-
tice, the task p is unknown and only partially observed by a
corresponding dataset of n i.i.d. points Z,, = (2;)1; ~ u",
where, for every ¢ € [n], z; = (z;,v;) € Z. In the sequel,
we often use the more compact notation Z,, = (X,,,¥,,),
where X,, € R"*? is the matrix containing the input vec-
tors z; as rows and y, € R" is the vector with entries
given by the labels y;. A learning algorithm is a function
A : UpenZ™ — R? that, given such a training dataset
Z, € Z™, returns a “good” estimator, that is, in our case, a
weight vector A(Z,) € R%, whose expected risk is small
and tends to the minimum of Eq. (1) as n increases.

2.2. Learning-to-Learn (LTL)

In the LTL framework, we assume that each learning task
1+ we observe is sampled from an environment p, that is a
(meta-)distribution on the set of probability distributions on
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Z. The goal is to select a learning algorithm (hence the name
learning-to-learn) that is well suited to the environment.

Specifically, we consider the following setting. We receive
a stream of tasks j1, .. ., up, which are independently sam-
pled from the p and only partially observed by correspond-
ing i.i.d. datasets Z,(Ll)7 S, ZﬁbT), ... each formed by n
datapoints. Starting from these datasets, we wish to learn an
algorithm A, such that, when we apply it on a new dataset
(composed by n points) sampled from a new task p ~ p, the
corresponding true risk is low. We reformulate this target
into requiring that algorithm A trained with n points' over
the environment p, has small transfer risk

En(A) = ]E;wp EZnNu" RM(A(Zn)) 2

The transfer risk measures the expected true risk that the
inner algorithm A, trained on the dataset Z,,, incurs on aver-
age with respect to the distribution of tasks |1 sampled from
p- Therefore, the process of learning a learning algorithm
is a meta-learning one, in that the inner learning algorithm
is applied to tasks from the environment and then chosen
from a sequence of training tasks (datasets) in attempt to
minimize the transfer risk.

3. SGD on the Biased Regularized Risk

In this section, we introduce the LTL framework for the
family of within-task algorithms we analyze in this work.

We consider a family of learning algorithms Ay
parametrized by a bias vector h € R?. The idea of in-
troducing a bias in a specific family of learning algorithms
is not new in the LTL literature, see e.g. (Denevi et al.,
2018b; Kuzborskij & Orabona, 2017; Pentina & Lampert,
2014) and references therein. A natural choice is given by
regularized empirical risk minimization, in which we intro-
duce a bias vector in the square norm regularizer — which
we simply refer to as ERM throughout — namely

APRM(Z) = wi(Z,) = argmin Rz, n(w), ()
weR
where, for any w,h € R% X > 0, we have defined the
empirical error and its biased regularized version as

R, (w) = = 3 (o, w)
k=1 “)

A
Rz, () = Ra, (w) + 5w = hl[*.

Intuitively, if the weight vectors w,, of the tasks sampled
from p are close to each other, then running ERM with

'In order to simplify the presentation, we assume that all
datasets are composed by the same number of points n. The gen-
eral setting can be addressed by introducing the slightly different
notion of transfer risk £(A) = E(n u)~p Bz, opn Ru(A(Z0)).

Algorithm 1 Within-Task Algorithm: SGD on the Biased
Regularized True Risk

Input ) > 0 regularization parameter, & bias, y task
Initialization w,() = h
For k=1ton

Receive (g, yk) ~ 1

Build £i() = el ) + 51 —h?

Define ~; = 1/(kX)

Compute u), € 9y ((xg, wy, ™))

Define s;, = zul, + M w,®) —h) € 0y (wy ™)

Update wy, ¥+ = w,*) — 450

I~ G
Return (w;, ™)1, @), = — E wy,
n
=1

h = m = E,.,w, should have a smaller transfer risk
than running ERM with, for instance, h = 0. We make
this statement precise in Sec. 4. Recently, a number of
papers have considered how to learn a good bias h in a
LTL setting, see e.g. (Pentina & Lampert, 2014; Denevi
et al., 2018b). However, one drawback of these works is
that they assume the ERM solution to be known exactly,
without leveraging the interplay between the optimization
and the generalization error. Furthermore, in LTL settings,
data naturally arise in an online manner, both between and
within tasks. Hence, an ideal LTL approach should focus
on inner algorithms processing one single data point at the
time.

Motivated by the above reasoning, in this work, we propose
to analyze an online learning algorithm that is computation-
ally and memory efficient while retaining (on average with
respect to the sampling of the data) the same statistical guar-
antees of the more expensive ERM estimator. Specifically,
for a training dataset Z,, ~ p'*, a regularization parameter
A > 0 and a bias vector h € R, we consider the learning
algorithm defined as

AFCP(Z,)) = wn(Z,), (5)

where, wy,(Z,) is the average of the first n iterations of
Alg. 1, in which, for any k& € [n], we have introduced the
notation 5 (-) = £(-, yx).

Alg. 1 coincides with online subgradient algorithm applied
to the strongly convex function Rz, ;. Moreover, thanks to
the assumption that Z,, ~ ", Alg. 1 is equivalent to SGD
applied to the regularized true risk

A
R,L,h(w) :R/,,(w)+§|\w—h\|2- (6)
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Relying on a standard online-to-batch analysis, see e.g.
(Cesa-Bianchi et al., 2004; Hazan, 2016) and references
therein, it is easy to link the true error of such an algorithm
with the minimum of the regularized empirical risk, that is,
Rz, .n(wn(Zy,)). This fact is reported in the proposition
below and it will be often used in our subsequent statistical
analysis. We give a proof in App. F for completeness.

Proposition 1. Let Asm. 1 and Asm. 2 hold and let wy, be
the output of Alg. 1. Then, we have that
Ez,mpr [Ru(0n(Zn)) = Rz, w(wi(Zy))] < cnn
@)
2R%L?(log(n) + 1)
An '

Cn A =

We remark that at this level of the analysis, one may avoid
the logarithmic factor in the above bound, see e.g. (Shamir
& Zhang, 2013; Rakhlin et al., 2012; Lacoste-Julien et al.,
2012). However, in order to not complicate our presentation
and proofs, we avoid this refinement of the analysis.

In the next section we study the impact on the bias vector
on the statistical performance of the inner algorithm. Specif-
ically, we investigate circumstances under which there is an
advantage in perturbing the regularization in the objective
used by the algorithm with an appropriate ideal bias term
h, as opposed to fix h = 0. Throughout the paper, we refer
to the choice h = 0 as independent task learning (ITL), al-
though strictly speaking, when A is fixed in advanced, then,
SGD is applied on each task independently regardless of
the value of h. Then, in Sec. 5 we address the question of
estimating this appropriate bias from the data.

4. The Advantage of the Right Bias Term

In this section, we study the statistical performance of the
model wy, returned by Alg. 1, on average with respect to
the tasks sampled from the environment p, for different
choices of the bias vector h. To present our observations,
we require, for any 1 ~ p, that the corresponding true risk
admits minimizers and we denote by w,, the minimum norm
minimizer?. With these ingredients, we introduce the oracle

Ep =Epnp Rpu(wp),

representing the averaged minimum error over the environ-
ment of tasks, and, for a candidate bias h, we give a bound
on the quantity £(wy,) — £,. This gap coincides with the
averaged excess risk of algorithm Alg. 1 with bias h over
the environment of tasks, that is

En(Wn) —Ep = By Bz, pn [Ru (wh(Zn)) *Ru(wu)]-

This choice is made in order to simplify our presentation.
However, our analysis holds for different choices of a minimizer
w,,, which may potentially improve our bounds.

Hence, this quantity is an indicator of the performance of
the bias h with respect to our environment. In the rest of
this section, we study the above gap for a bias h which is
fixed and does not depend on the data. For this purpose, we
introduce the notation

1 2
Vari =3 Epmp lw, — h|| (8)
and we observe that
m=E,.,w, = argmin Var,QL. )

heRd
Theorem 2 (Excess Transfer Risk Bound for a Fixed Bias

h). Let Asm. 1 and Asm. 2 hold and let wy, be the output of
Alg. 1 with regularization parameter

RL  [2(log(n) + 1)

= 10
Vary, n 10
Then, the following bound holds
2(1 +1
En(wy) — &, < Vary, 2RL 2(log(n) +1). 11
n

Proof. For pi ~ p, consider the following decomposition

Ez,cun [Ru(@n(Zn)) — Ru(wy)] < A+B,  (12)
where A and B are respectively defined by
A:EZnNu” [Ru(u’;h(Zn)) —Rth(wh(Zn))] (13)

B =Bz, [Rzn(wn(Z0)) — Ru(w,)].

In order to bound the term A, we use Prop. 1. Regarding
the term B, we exploit the definition of the ERM algorithm
and the fact that, since w,, does not depend on Z,,, then
Run(wy) =Ez, wum Rz, n(w,). Consequently, we can
upper bound the term B as

A
]EZW,N/L" [RZW,.,h(wh(Zn))_Ru,h(wu)] + §ku—hH2
A
=Ez,~pn [Rz, n(Wn(Z0)) =Rz, n(wp)] + §ku—hH2

A 2

< 2
(14)
The desired statement follows by combining the above

bounds on the two terms, taking the average with respect to
4~ p and optimizing over . |

Thm. 2 shows that the strength of the regularization that one
should use in the within-task algorithm Alg. 1 is inversely
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proportional to both the variance of the bias & and the num-
ber of points in the datasets. This is exactly in line with the
LTL aim: when solving each task is difficult, knowing a
priori a good bias can bring a substantial benefit over learn-
ing with no bias. To further investigate this point, in the
following corollary, we specialize Thm. 2 to two particular
choices of the bias h. The first choice we make is h = 0,
which coincides, as remarked earlier, with learning each
task independently, while the second choice considers an
ideal bias, namely, assuming that the transfer risk admits
minimizer, we set h = h,, € argming,cga &y (Wp).

Corollary 3 (Excess Transfer Risk Bound for ITL and the
Oracle). Let Asm. I and Asm. 2 hold.

1. Independent Task Learning. Let wg be the output of
Alg. 1 with bias h = 0 and regularization parameter
as in Eq. (10) with h = 0. Then,

2(1 +1
g"(wo)*gpﬁ\/aro 2RL %

2. The Oracle. Let wy,, be the output of Alg. I with bias
h = h,, and regularization parameter as in Eq. (10)
with h = m. Then,

2(1 1
£ (in,) — &, < Var 2R || 208 + 1)
n

Proof. The proof of the first statement follows directly from
the application of Thm. 2 with h = 0. The second statement
is a direct consequence of the definition of h,, implying
En(wn,)—E&p < &, (wWm)—E, and the application of Thm. 2
with 2~ = m on the second term. ]

From the previous bounds we can observe that, using the
bias h = h,, in the regularizer brings a substantial benefit
with respect to the unbiased case when the number of points
n in each dataset in not very large (hence learning each
task is quite difficult) and the variance of the weight tasks’
vectors sampled from the environment is much smaller than
their second moment, i.e. when

1 1
Varg, = B Epip [wy —m|* < 3 Epinp wu|® = Varg.
Driven by this observation, when the environment of tasks
satisfies the above characteristics, we would like to take
advantage of this tasks’ similarity. But, since in practice we
are not able to explicitly compute h,,, in the following we
propose an efficient online LTL approach to estimate the
bias directly from the observed sequence of datasets.

5. Estimating the Bias

In this section, we study the problem of designing an es-
timator for the bias vector that is computed incrementally
from a set of observed 7 tasks.

5.1. The Meta-Objective

Since direct optimization of the transfer risk is not feasible, a
standard strategy used in LTL consists in introducing a proxy
objective that is easier to handle, see e.g. (Maurer, 2005;
2009; Maurer et al., 2013; 2016; Denevi et al., 2018a;b). In
this paper, motivated by Prop. 1, according to which

]EZT,,N;L” [R;L(wh(z’n)” S

2R?L*(log(n) + 1)
An ’

Ez,~un [Rz,n(wn(Zn))] +

we substitute in the definition of the transfer risk the true
risk of the algorithm R, (wh(Zn)) with the minimum of
the regularized empirical risk

Lz, (h) = min Rz,.n(W) =Rz, n(wn(Zyn)).  (15)

This leads us to the following proxy for the transfer risk

En(h) =Epp Bz, mpn Lz, (h). (16)

Some remarks about this choice are in order. First, convexity
is usually a rare property in LTL. In our case, as described in
the following proposition, the definition of the function Lz,
as the partial minimum of a jointly convex function, ensures
convexity and other nice properties, such as differentiability
and a closed expression of its gradient.

Proposition 4 (Properties of L, ). The function Lz, in Eq.
(15) is convex and A-smooth over R%. Moreover, for any
h € RY, its gradient is given by the formula

VLz, (h) ==X wy(Z,) — h), (17)

where wp,(Z,,) is the ERM algorithm in Eq. (3). Finally,
when Asm. 1 and Asm. 2 hold, Lz, is LR-Lipschitz.

The above statement is a known result in the optimization
community, see e.g. (Bauschke & Combettes, 2011, Prop.
12.29) and App. C for more details. In order to minimize
the proxy objective in Eq. (16), one standard choice done in
stochastic optimization, and also adopted in this work, is to
use first-order methods, requiring the computation of an
unbiased estimate of the gradient of the stochastic objective.
In our case, according to the above proposition, this step
would require computing the minimizer of the regularized
empirical problem in Eq. (15) exactly. A key observation
of our work is to show below that we can easily design
a “satisfactory” approximation (see the last paragraph
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in Sec. 5) of its gradient, just substituting the minimizer
wp(Zy,) in the expression of the gradient in Eq. (17) with
the last iterate wy, ™1 (Z,) of Alg. 1. An important
aspect to stress here is the fact that this strategy does not
require any additional computational effort. Formally, this
reasoning is linked to the concept of e-subgradient of a
function. We recall that, for a given convex, proper and
closed function f and for a given point i € Dom(f) in
its domain, u is an e-subgradient of f at h, if, for any h,
f(h) > f(h) + (u,h—h) — e

Proposition 5 (An e-Subgradient for
wp,"t(Z,) be the last iterate of Alg. 1.
der Asm. I and Asm. 2, the vector

VLz, (h) = =X(w, " (Z,) — h) (18)

LZ”)° Let
Then, un-

is an e-subgradient of Lz, at point h, where € is such that
- 2R?L?(log(n) + 1).
- n
Moreover, introducing Ay (h) = VLyz, (h) —VLz, (h),
I < 4R?L?(log(n) + 1)
< N .

Ez,~un [€] (19)

Ez,~un ||Az, (h) (20)

The above result is a key tool in our analysis. The proof
requires some preliminaries on the e-subdifferential of a
function (see App. A) and introducing the dual formulation
of both the within-task learning problem and Alg. 1 (see
App. B and App. E, respectively). With these two ingredi-
ents, the proof of the statement is deduced in App. E.3 by
the application of a more general result reported in App. D,
describing how an e-minimizer of the dual of the within-
task learning problem can be exploited in order to build an
e-subgradient of the meta-objective function £z, . We stress
that this result could be applied to more general class of
algorithms, going beyond Alg. 1 considered here.

5.2. The Meta-Algorithm to Estimate the Bias h

In order to estimate the bias h from the data, we apply SGD
to the stochastic function é’n introduced in Eq. (16). More
precisely, in our setting, the sampling of a “meta-point”
corresponds to the incremental sampling of a dataset from
the environment®. We refer to Alg. 2 for more details. In
particular, we propose to take the estimator i obtained by
averaging the iterations returned by Alg. 2. An important
feature to stress here is the fact that the meta-algorithm uses
e-subgradients of the function £z which are computed as
described above. Specifically, for any ¢ € [T'], we define

VL0 (00) = AW (Z0) - 1), @1

3More precisely we first sample a distribution p from p and
then a dataset Z,, ~ pu".

Algorithm 2 Meta-Algorithm, SGD on & with e
Subgradients

Input v > 0 step size, A > 0 inner regularization param-
eter, p meta-distribution

Initialization A =0 e R?
For t=1toT
Receive py ~ p, Zr(f) ~

Run the inner algorithm Alg. 1 and approximate
the gradient V(Y ~ V() by Eq. (21)
Update A(+D) = p&) — 4v(®)
_ 1<
Return (h))T ! and hyp = T > ht
t=1

(n+1)
h(t)

current bias 7(*) and the dataset Z." . To simplify the presen-
tation, throughout this work, we use the short-hand notation

where w is the last iterate of Alg. 1 applied with the

Li() = Ly (), VO = VL (WD), VO = VL (b))

Some technical observations follows. First, we stress that
Alg. 2 processes one single instance at the time, without the
need to store previously encountered data points, neither
across the tasks nor within them. Second, the implementa-
tion of Alg. 2 does not require computing the meta-objective
Lz, , which would increase the computational effort of the
entire scheme. The rest of this section is devoted to the
statistical analysis of Alg. 2.

5.3. Statistical Analysis of the Meta-Algorithm

In the following theorem we study the statistical perfor-
mance of the bias h returned by Alg. 2. More precisely we
bound the excess transfer risk of the inner SGD algorithm
run with this biased term learned by the meta-algorithm.

Theorem 6 (Excess Transfer Risk Bound for the Bias hy
Estimated by Alg. 2). Let Asm. 1 and Asm. 2 hold and let
hr be the output of Alg. 2 with step size

N A

2l 4(log(n) + 1) )) *1. )

n

Let wy,,, be the output of Alg. 1 with bias h = hr and
regularization parameter

2RL 1 1
r= 2B og(n) + 1 23)
Varp, n
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Then, the following bound holds

E [, (,)] — &, < Varm 4RL bg(n%
4(log(n) + 1)\ 1
+ |m|RL\/2(1 n ¥)T

where the expectation above is with respect to the sampling
of the datasets Zr(,,l)7 ey Z,(ET> from the environment p.

Proof. We consider the following decomposition
E [&q(w5,)] — €, < A+B+C, (24)

where
=E &, (hp) — En(m) (25)

Now, in order to bound the term A, noting that
A=E, Bz, ~pm [RH (wET (Zn)) _RZn,ET (wﬁT (Zn))] )

we use Prop. 1 with h = ET and, then, we take the average
on i ~ p. As regards the term C, we apply the inequality
given in Eq. (14) with h = m and we again average with
respect to i ~ p. Finally, the term B is the convergence rate
of Alg. 2 and its study requires analyzing the error that we
introduce in the meta-gradients by Prop. 5. The bound we
use for this term described in Prop. 22 (see App. G) with
h = m. The result now follows by combining the bounds
on the three terms and optimizing over . |

The bound stated in Thm. 6 with respect to the mean m
holds also for a generic bias vector A € R?. In particular,
the choice of h = 0 and the corresponding step-size ~y
describe the setting in which the meta-algorithm returns the
ITL estimator & = 0. In such a case, we recover the rate in
Cor. 3 for ITL (up to a contant 2).

In addition, the above bound is coherent with the state-of-
the-art LTL bounds given in other papers studying other
variants of Ivanov or Tikhonov regularized empirical risk
minimization algorithms, see e.g. (Maurer, 2005; 2009;
Maurer et al., 2013; 2016). Specifically, in our case, the
bound has the form

0(%%’“) +0(%), (26)

where Var,, reflects the advantage in exploiting the relat-
edness among the tasks sampled from the environment p.
More precisely, in Sec. 4 we noticed that, if the variance

of the weight vectors of the tasks sampled from our envi-
ronment is significantly smaller than their second moment,
running Alg. 1 with the ideal bias h = h,, on a future task
brings a significant improvement in comparison to the unbi-
ased case. One natural question arising at this point of the
presentation is whether, under the same conditions on the
environment, the same improvement is obtained by running
Alg. 1 with the bias vector h = hr returned by our online
meta-algorithm in Alg. 2. Looking at the bound in Thm. 6,
we can say that, when the number of training tasks 7" used to
estimate the bias A is sufficiently large, the above question
has a positive answer and our LTL approach is effective.

In order to have also a more precise benchmark for the
biased setting considered in this work, in App. H we have
repeated the statistical study described in the paper also for
the more expensive ERM algorithm described in Eq. (3). In
this case, we assume to have an oracle providing us with
this exact estimator, ignoring any computational costs. As
before, we have performed the analysis both for a fixed
bias and the one estimated from the data via Alg. 2 (in this
case, Alg. 2 is assumed to run with exact meta-gradients).
Looking at the results reported in App. H, we immediately
see that, up to constants and logarithmic factors, the LTL
bounds we have stated in the paper for the low-complexity
SGD family are equivalent to those in App. H for the more
expensive ERM family.

All the above facts justify the informal statement given
before Prop. 5 according to which the trick used to compute
the approximation of the meta-gradient by using the last
iterate of the inner algorithm, not only, does not require
additional effort, but it is also accurate enough from the
statistical view point, matching a state-of-the-art bound for
more expensive within-task algorithms based on ERM.

6. Experiments

In this section, we test the effectiveness of the LTL approach
proposed in this paper on synthetic and real data*. In all
experiments, the regularization parameter A\ and the step-
size v were tuned by validation, see App. I for more details.

Synthetic Data. We considered two different settings, re-
gression with the absolute loss and binary classification with
the hinge loss. In both cases, we generated an environment
of tasks in which SGD with the right bias is expected to
bring a substantial benefit in comparison to the unbiased
case. Motivated by our observations in Sec. 4, we generated
linear tasks with weight vectors characterized by a variance
which is significantly smaller than their second moment.
Specifically, for each task p, we created a weight vector
w,, from a Gaussian distribution with mean m given by the

*Code available at
https://github.com/prolearner/onlinelLTL
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Figure 1. Synthetic Data. Test performance of different bias with
respect to an increasing number of tasks. (Top) Regression with
absolute loss. (Bottom) Classification with hinge loss. The results
are averaged over 10 independent runs (datasets generations).

vector in R? with all components equal to 4 and standard
deviation Var,, = 1. Each task corresponds to a dataset
(75, 9:)"q, ¥; € R? withn = 10 and d = 30. In the regres-
sion case, the inputs were uniformly sampled on the unit
sphere and the labels were generated as y = (z,w,,) + €,
with e sampled from a zero-mean Gaussian distribution,
with standard deviation chosen to have signal-to-noise ra-
tio equal to 10 for each task. In the classification case,
the inputs were uniformly sampled on the unit sphere, ex-
cluding those points with margin |(z, w,,)| smaller than 0.5
and the binary labels were generated as a logistic model,
Py =1) = (1+10 exp(—(a:,wﬁ))fl, In Fig. 1 we re-
port the performance of Alg. 1 with different choices of the
bias: & = hp (our LTL estimator resulting from Alg. 2),
h = 0 (ITL) and h = m, a reasonable approximation of
the oracle minimizing the transfer risk. The plots confirm
our theoretical findings: estimating the bias with our LTL
approach leads to a substantial benefits with respect to the
unbiased case, as the number of the observed training tasks
increases.

Real Data. We run experiments on the computer survey
data from (Lenk et al., 1996), in which 180 people (tasks)
rated the likelihood of purchasing one of 20 different per-
sonal computers (n = 8). The input represents 13 different
computer characteristics (price, CPU, RAM, etc.) while the
output is an integer rating from 0 to 10. Similarly to the
synthetic data experiments, we consider a regression setting
with the absolute loss and a classification setting. In the lat-
ter case each task is to predict whether the rating is above 5.
We compare the LTL bias with ITL. The results are reported
in Fig. 2. The figures above are in line with the results
obtained on synthetic experiments, indicating that the bias
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Figure 2. Real Data. Test performance of different bias with re-
spect to an increasing number of tasks. (Top) Lenk Dataset Re-
gression. (Bottom) Lenk Dataset Classification. The results are
averaged over 30 independent runs (datasets generations).

LTL framework proposed in this work is effective for this
dataset. Moreover, the results for regression are also in line
with what observed in the multitask setting with variance
regularization (McDonald et al., 2016). The classification
setting has not been used before and has been created ad-hoc
for our purpose. In this case we have an increased variance
probably due to the datasets being highly unbalanced. In
order to investigate the impact of passing through the data
only once in the different steps in our method, we conducted
additional experiments. The results, presented in App. J,
indicate that the single pass strategy is competitive with
respect to the more expensive ERM.

7. Conclusion and Future Work

We have studied the performance of Stochastic Gradient
Descent on the true risk regularized by the square euclidean
distance to a bias vector, over a class of tasks. Drawing
upon a learning-to-learn framework, we have shown that,
when the variance of the tasks is relatively small, the intro-
duction of an appropriate bias vector may bring a substantial
benefit in comparison to the standard unbiased version, cor-
responding to learning the tasks independently. Then, we
have proposed an efficient online meta-learning algorithm
to estimate this bias and we have theoretically shown that
the bias returned by our method can bring a comparable
benefit. In the future, it would be interesting to investigate
other kinds of relatedness among the tasks and to extend
our analysis to other classes of loss functions, as well as to
a Hilbert space setting. Finally, another valuable research
direction is to derive fully dependent bounds, in which the
hyperparameters are self-tuned during the learning process,
see e.g. (Zhuang et al., 2019).
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