
Appendix

The appendix is organized as follows. In Section A, we describe additional preliminaries required for our
technical arguments. In Section B, we analyze our main algorithm, Sever. In Section C, we specialize our
analysis to the important case of Generalized Linear Models (GLMs). In Section D, we describe a variant
of our algorithm which performs robust filtering on each iteration of projected gradient descent, and works
under more general assumptions. In Section E, we describe concrete applications of Sever – in particular,
how it can be used to robustly optimize in the settings of linear regression, logistic regression, and support
vector machines. Finally, in Section F, we provide additional plots from our experimental evaluations.

A Preliminaries

In this section, we formally introduce our setting for robust stochastic optimization.

Notation. For n ∈ Z+, we will denote [n]
def
= {1, . . . , n}. For a vector v, we will let ‖v‖2 denote its

Euclidean norm. For any r ≥ 0 and any x ∈ Rd, let B(x, r) be the `2 ball of radius r around x. If M is
a matrix, we will let ‖M‖2 denote its spectral norm and ‖M‖F denote its Frobenius norm. We will write
X ∼u S to denote that X is drawn from the empirical distribution defined by S. We will sometimes use the
notation ES , instead of EX∼S , for the corresponding expectation. We will also use the same convention for
the covariance, i.e. we let CovS denote the covariance over the empirical distribution.

Setting. We consider a stochastic optimization setting with outliers. Let H ⊆ Rd be a space of parameters.
We observe n functions f1, . . . , fn : H → R and we are interested in (approximately) minimizing some target
function f : H → R, related to the fi’s. We will assume for simplicity that the fi’s are differentiable with
gradient ∇fi. (Our results can be easily extended for the case that only a sub-gradient is available.)

In most concrete applications we will consider, there is some true underlying distribution p∗ over functions

f : H → R, and our goal is to find a parameter vector w∗ ∈ H minimizing f(w)
def
= Ef∼p∗ [f(w)]. Unlike the

classical realizable setting, where we assume that f1, . . . , fn ∼ p∗, we allow for an ε-fraction of the points
to be arbitrary outliers. This is captured in the following definition (Definition 2.1) that we restate for
convenience:

Definition A.1 (ε-corruption model). Given ε > 0 and a distribution p∗ over functions f : H → R, data is
generated as follows: first, n clean samples f1, . . . , fn are drawn from p∗. Then, an adversary is allowed to
inspect the samples and replace any εn of them with arbitrary samples. The resulting set of points is then
given to the algorithm.

In addition, some of our bounds will make use of the following quantities:

• The `2-radius r of the domain H: r = maxw∈H ‖w‖2.

• The strong convexity parameter ξ of f , if it exists. This is the maximal ξ such that f(w) ≥ f(w0) +
〈w − w0,∇f(w0)〉+ ξ

2‖w − w0‖22 for all w,w0 ∈ H.

• The strong smoothness parameter β of f , if it exists. This is the minimal β such that f(w) ≤
f(w0) + 〈w − w0,∇f(w0)〉+ β

2 ‖w − w0‖22 for all w,w0 ∈ H.

• The Lipschitz constant L of f , if it exists. This is the minimal L such that f(w)−f(w0) ≤ L‖w−w0‖2
for all w,w0 ∈ H.
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B General Analysis of Sever

This section is dedicated to the analysis of Algorithm 1, where we do not make convexity assumptions about
the underlying functions f1, . . . , fn. In this case, we can show that our algorithm finds an approximate critical
point of f . When we specialize to convex functions, this immediately implies that we find an approximate
minimal point of f .

Our proof proceeds in two parts. First, we define a set of deterministic conditions under which our
algorithm finds an approximate minimal point of f . We then show that, under mild assumptions on our
functions, this set of deterministic conditions holds with high probability after polynomially many samples.

For completeness, we recall the definitions of a γ-approximate critical point and a γ-approximate learner:

Definition 2.2 (γ-approximate critical point). Given a function f : H → R, a γ-approximate critical point
of f , is a point w ∈ H so that for all unit vectors v where w + δv ∈ H for arbitrarily small positive δ, we
have that v · ∇f(w) ≥ −γ.

Definition 2.3 (γ-approximate learner). A learning algorithm L is called γ-approximate if, for any functions
f1, . . . , fn : H → R each bounded below on a closed domain H, the output w = L(f1:n) of L is a γ-
approximate critical point of f(x) := 1

n

∑n
i=1 fi(x).

Deterministic Regularity Conditions We first explicitly demonstrate a set of deterministic conditions
on the (uncorrupted) data points. Our deterministic regularity conditions are as follows:

Assumption B.1. Fix 0 < ε < 1/2. There exists an unknown set Igood ⊆ [n] with |Igood| ≥ (1 − ε)n of
“good” functions {fi}i∈Igood and parameters σ0, σ1 ∈ R+ such that:∥∥∥EIgood [(∇fi(w)−∇f(w)

)(
∇fi(w)−∇f(w)

)T ]∥∥∥
2
≤ (σ0 + σ1‖w∗ − w‖2)2, for all w ∈ H , (1)

and

‖∇f̂(w)−∇f(w)‖2 ≤ (σ0 + σ1‖w∗ − w‖2)
√
ε, for all w ∈ H, where f̂

def
=

1

|Igood|
∑

i∈Igood

fi . (2)

In Section B.1, we prove the following theorem, which shows that under Assumption B.1 our algorithm
succeeds:

Theorem B.2. Suppose that the functions f1, . . . , fn, f : H → R are bounded below, and that Assump-

tion B.1 is satisfied, where σ
def
= σ0 + σ1‖w∗ − w‖2. Then Sever applied to f1, . . . , fn, σ returns a point

w ∈ H that, with probability at least 9/10, is a (γ +O(σ
√
ε))-approximate critical point of f .

Observe that the above theorem holds quite generally; in particular, it holds for non-convex functions.
As a corollary of this theorem, in Section B.2 we show that this immediately implies that Sever robustly
minimizes convex functions, if Assumption B.1 holds:

Corollary B.3. For functions f1, . . . , fn : H → R, suppose that Assumption B.1 holds and that H is convex.
Then, with probability at least 9/10, for some universal constant ε0, if ε < ε0, the output of Sever satisfies
the following:

(i) If f is convex, the algorithm finds a w ∈ H such that f(w)− f(w∗) = O((σ0r + σ1r
2)
√
ε+ γr).

(ii) If f is ξ-strongly convex, the algorithm finds a w ∈ H such that

f(w)− f(w∗) = O

(
ε

ξ
(σ0 + σ1r)

2 +
γ2

ξ

)
.

In the strongly convex case and when σ1 > 0, we can remove the dependence on σ1 and r in the above
by repeatedly applying Sever with decreasing r:
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Corollary B.4. For functions f1, . . . , fn : H → R, suppose that Assumption B.1 holds, that H is convex
and that f is ξ-strongly convex for ξ ≥ Cσ1

√
ε for some absolute constant C. Then, with probability at least

9/10, for some universal constant ε0, if ε < ε0, we can find a ŵ with

f(ŵ)− f(w∗) = O

(
εσ2

0 + γ2

ξ

)
.

and

‖ŵ − w∗‖2 = O

(√
εσ0 + γ

ξ

)
using at most O(log(rξ/(γ + σ0

√
ε))) calls to Sever.

To concretely use Theorem B.2, Corollary B.3, and Corollary B.4, in Section B.4 we show that the
Assumption B.1 is satisfied with high probability under mild conditions on the distribution over the functions,
after drawing polynomially many samples:

Proposition B.5. Let H ⊂ Rd be a closed bounded set with diameter at most r. Let p∗ be a distribution over
functions f : H → R with f = Ef∼p∗ [f ] so that f − f is L-Lipschitz and β-smooth almost surely. Assume
furthermore that for each w ∈ H and unit vector v that Ef∼p∗ [(v · (∇f(w)− f(w)))2] ≤ σ2/2. Then for

n = Ω

(
dL2 log(rβL/σ2ε)

σ2ε

)
,

an ε-corrupted set of points f1, . . . , fn with high probability satisfy Assumption B.1.

The remaining subsections are dedicated to the proofs of Theorem B.2, Corollary B.3, Corollary B.4, and
Proposition B.5.

B.1 Proof of Theorem B.2

Throughout this proof we let Igood be as in Assumption B.1. We require the following two lemmata. Roughly
speaking, the first states that on average, we remove more corrupted points than uncorrupted points, and
the second states that at termination, and if we have not removed too many points, then we have reached a
point at which the empirical gradient is close to the true gradient. Formally:

Lemma B.6. If the samples satisfy (1) of Assumption B.1, and if |S| ≥ 2n/3 then if S′ is the output of
Filter(S, τ, σ), we have that

E[|Igood ∩ (S\S′)|] ≤ E[|([n]\Igood) ∩ (S\S′)|].

Lemma B.7. If the samples satisfy Assumption B.1, Filter(S, τ, σ) = S, and n− |S| ≤ 11εn, then∥∥∥∥∥∇f(w)− 1

|Igood|
∑
i∈S
∇fi(w)

∥∥∥∥∥
2

≤ O(σ
√
ε)

Before we prove these lemmata, we show how together they imply Theorem B.2.

Proof of Theorem B.2 assuming Lemma B.6 and Lemma B.7. First, we note that the algorithm
must terminate in at most n iterations. This is easy to see as each iteration of the main loop except
for the last must decrease the size of S by at least 1.

It thus suffices to prove correctness. Note that Lemma B.6 says that each iteration will on average
throw out as many elements not in Igood from S as elements in Igood. In particular, this means that
|([n]\Igood) ∩ S| + |Igood\S| is a supermartingale. Since its initial size is at most εn, with probability at
least 9/10, it never exceeds 10εn, and therefore at the end of the algorithm, we must have that n − |S| ≤
εn+ |Igood\S| ≤ 11εn. This will allow us to apply Lemma B.7 to complete the proof, using the fact that w
is a γ-approximate critical point of 1

|Igood|
∑
i∈S ∇fi(w).
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Thus it suffices to prove these two lemmata. We first prove Lemma B.6:

Proof of Lemma B.6. Let Sgood = S ∩ Igood and Sbad = S\Igood. We wish to show that the expected
number of elements thrown out of Sbad is at least the expected number thrown out of Sgood. We note that
our result holds trivially if Filter(S, τ, σ) = S. Thus, we can assume that Ei∈S [τi] ≥ 12σ.

It is easy to see that the expected number of elements thrown out of Sbad is proportional to
∑
i∈Sbad

τi,
while the number removed from Sgood is proportional to

∑
i∈Sgood

τi (with the same proportionality). Hence,

it suffices to show that
∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi.

We first note that since Covi∈Igood [∇fi(w)] � σ2I, we have that

Covi∈Sgood
[v · ∇fi(w)]

(a)

≤ 3

2
Covi∈Igood [v · ∇fi(w)]

=
3

2
· v>Covi∈Igood [∇fi(w)]v ≤ 2σ2 ,

where (a) follows since |Sgood| ≥ 3
2Igood.

Let µgood = Ei∈Sgood
[v · ∇fi(w)] and µ = Ei∈S [v · ∇fi(w)]. Note that

Ei∈Sgood
[τi] = Covi∈Sgood

[v · ∇fi(w)] + (µ− µgood)2 ≤ 2σ + (µ− µgood)2 .

We now split into two cases.
Firstly, if (µ − µgood)2 ≥ 4σ2, we let µbad = Ei∈Sbad

[v · ∇fi(w)], and note that |µ − µbad||Sbad| =
|µ− µgood||Sgood|. We then have that

Ei∈Sbad
[τi] ≥ (µ− µbad)2

≥ (µ− µgood)2
(
|Sgood|
|Sbad|

)2

≥ 2

(
|Sgood|
|Sbad|

)
(µ− µgood)2

≥
(
|Sgood|
|Sbad|

)
Ei∈Sgood

[τi].

Hence,
∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi.

On the other hand, if (µ− µgood)2 ≤ 4σ2, then Ei∈Sgood
[τi] ≤ 6σ2 ≤ Ei∈S [τi]/2. Therefore

∑
i∈Sbad

τi ≥∑
i∈Sgood

τi once again. This completes our proof.

We now prove Lemma B.7.

Proof of Lemma B.7. We need to show that

δ :=

∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f(w))

∥∥∥∥∥
2

= O(nσ
√
ε).

We note that∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f(w))

∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈Igood

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

+O(n
√
σ2ε).
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First we analyze ∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f(w))

∥∥∥∥∥∥
2

.

This is the supremum over unit vectors v of∑
i∈(Igood\S)

v · (∇fi(w)−∇f(w)).

However, we note that ∑
i∈Igood

(v · (∇fi(w)−∇f(w)))2 = O(nσ2).

Since |Igood\S| = O(nε), we have by Cauchy-Schwarz that∑
i∈(Igood\S)

v · (∇fi(w)−∇f(w)) = O(
√

(nσ2)(nε)) = O(n
√
σ2ε),

as desired.
We note that since for any such v that∑

i∈S
(v · (∇fi(w)−∇f(w)))2 =

∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + δ2 = O(nσ2) + δ2

(or otherwise our filter would have removed elements) and since |S\Igood| = O(nε), and so we have similarly
that ∥∥∥∥∥∥

∑
i∈(S\Igood)

∇fi(w)−∇f(w)

∥∥∥∥∥∥
2

= O(nσ
√
ε+ δ

√
nε).

Combining with the above we have that

δ = O(σ
√
ε+ δ

√
ε/n),

and therefore, δ = O(σ
√
ε) as desired.

B.2 Proof of Corollary B.3

In this section, we show that the Sever algorithm finds an approximate global optimum for convex optimiza-
tion in various settings, under Assumption B.1. We do so by simply applying the guarantees of Theorem B.2
in a fairly black box manner.

Before we proceed with the proof of Corollary B.3, we record a simple lemma that allows us to translate
an approximate critical point guarantee to an approximate global optimum guarantee:

Lemma B.8. Let f : H → R be a convex function and let x 6= y ∈ H. Let v = y − x/‖y − x‖2 be the unit
vector in the direction of y − x. Suppose that for some δ that v · (∇f(x)) ≥ −δ and −v · (∇f(y)) ≥ −δ .
Then we have that:

1. |f(x)− f(y)| ≤ ‖x− y‖2δ.

2. If f is ξ-strongly convex, then |f(x)− f(y)| ≤ 2δ2/ξ and ‖x− y‖2 ≤ 2δ/ξ.

Proof. Let r = ‖x − y‖2 > 0 and g(t) = f(x + tv). We have that g(0) = f(x), g(r) = f(y) and that g is
convex (or ξ-strongly convex) with g′(0) ≥ −δ and g′(r) ≤ δ. By convexity, the derivative of g is increasing
on [0, r] and therefore |g′(t)| ≤ δ for all t ∈ [0, r]. This implies that

|f(x)− f(y)| = |g(r)− g(0)| =
∣∣∣∣∫ r

0

g′(t)dt

∣∣∣∣ ≤ rδ .
18



To show the second part of the lemma, we note that if g is ξ-strongly convex that g′′(t) ≥ ξ for all t. This
implies that g′(r) > g′(0) + ξr. Since g′(r) − g′(0) ≤ 2δ, we obtain that r ≤ 2δ/ξ, from which the second
statement follows.

Proof of Corollary B.3. By applying the algorithm of Theorem B.2, we can find a point w that is a γ′
def
=

(γ +O(σ
√
ε))-approximate critical point of f , where σ

def
= σ0 + σ1‖w∗ − w‖2. That is, for any unit vector v

pointing towards the interior of H, we have that v · ∇f(w) ≥ −γ′.
To prove (i), we apply Lemma B.8 to f at w which gives that

|f(w)− f(w∗)| ≤ r · γ′.

To prove (ii), we apply Lemma B.8 to f at w which gives that

|f(w)− f(w∗)| ≤ 2γ′
2
/ξ.

Plugging in parameters appropriately then immediately gives the desired bound.

B.3 Proof of Corollary B.4

We apply Sever iteratively starting with a domain H1 = H and radius r1 = r. After each iteration, we
know the resulting point is close to w∗ will be able to reduce the search radius.

At step i, we have a domain of radius ri. As in the proof of Corollary B.3 above, we apply algorithm of

Theorem B.2, we can find a point wi that is a γ′i
def
= (γ + O(σ′i

√
ε))-approximate critical point of f , where

σ′i
def
= σ0 + σ1ri. Then using Lemma B.8, we obtain that ‖wi − w∗‖2 ≤ 2γ′i/ξ.
Now we can define Hi+1 as the intersection of H and the ball of radius ri+1 = 2γ′i/ξ around wi and

repeat using this domain. We have that ri+1 = 2γ′i/ξ = 2γ/ξ + O(σ0
√
ε/ξ + σ1

√
εri/ξ). Now if we choose

the constant C such that the constant in this O() is C/4, then using our assumption that ξ ≥ 2σ1
√
ε, we

obtain that
ri+1 ≤ 2γ/ξ + Cσ0

√
ε/4ξ + Cσ1

√
εri/4ξ ≤ 2γ/ξ + Cσ0

√
ε/4 + ri/4

Now if ri ≥ 8γ/ξ + 2Cσ0
√
ε/ξ, then we have ri+1 ≤ ri/2 and if ri ≤ 8γ/ξ + 2Cσ0

√
ε/ξ then we also have

ri+1 ≤ 8γ/ξ + 2Cσ0
√
ε/ξ . When ri is smaller than this we stop and output wi. Thus we stop in at most

O(log(r)− log(8γ/ξ + 2Cσ0
√
ε/ξ)) = O(log(rξ/(γ + σ0

√
ε)) iterations and have ri = O(γ/ξ +Cσ0

√
ε). But

then γ′i = γ +O(σ′i
√
ε)) ≤ γ + C(σ0 + σ1r

′
i)
√
ε/8 = O(γ + σ0

√
ε). Using Lemma B.8 we obtain that

|f(wi)− f(w∗)| ≤ 2γ′2i /ξ = O(γ2/ξ + σ2
0ε/ξ).

as required. The bound on ‖ŵ − w∗‖2 follows similarly.

Remark B.1. While we don’t give explicit bounds on the number of calls to the approximate learner needed
by Sever, such bounds can be straightforwardly obtained under appropriate assumptions on the fi (see,
e.g., the following subsection). Two remarks are in order. First, in this case we cannot take advantage of
assumptions that only hold at f but might not on the corrupted average f . Second, our algorithm can take
advantage of a closed form for the minimum. For example, for the case of linear regression considered in
Section E, fi is not Lipschitz with a small constant if xi is far from the mean, but there is a simple closed
form for the minimum of the least squares loss.

B.4 Proof of Proposition B.5

We let Igood be the set of uncorrupted functions fi. It is then the case that |Igood| ≥ (1− ε)n. We need to
show that for each w ∈ H that

Covi∈Igood [∇fi(w)] ≤ 3σ2I/4 (3)
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and ∥∥∥∥∥∥∇f(w)− 1

|Igood|
∑

i∈Igood

∇fi(w)

∥∥∥∥∥∥
2

≤ O(σ2
√
ε). (4)

We will proceed by a cover argument. First we claim that for each w ∈ H that (3) and (4) hold with high
probability. For Equation (3), it suffices to show that for each unit vector v in a cover N of size 2O(d) of the
sphere that

Ei∈Igood [(v · (∇fi(w)− f))2] ≤ 2σ2/3. (5)

However, we note that
Ep∗ [(v · (∇f(w)− f))2] ≤ σ2/2.

Since |v · (∇f(w) − f)| is always bounded by L, Equation (5) holds for each v, w with probability at least
1−exp(−Ω(nσ2/L2)) by a Chernoff bound (noting that the removal of an ε-fraction of points cannot increase
this by much). Similarly, to show Equation 4, it suffices to show that for each such v that

Ei∈Igood [(v · (∇fi(w)− f))] ≤ O(σ
√
ε). (6)

Noting that
Ep∗ [(v · (∇f(w)− f))] = 0

A Chernoff bound implies that with probability 1−exp(−Ω(nσ2ε/L2)) that the average over our original set
of f ’s of (v · (∇f(w)− f)) is O(σ

√
ε). Assuming that Equation (5) holds, removing an ε-fraction of these f ’s

cannot change this value by more than O(σ
√
ε). By union bounding over N and standard net arguments,

this implies that Equations (3) and (4) hold with probability 1− exp(Ω(d− nσ2ε/L2)) for any given w.
To show that our conditions hold for all w ∈ H, we note that by β-smoothness, if Equation (4) holds for

some w, it holds for all other w′ in a ball of radius
√
σ2ε/β (up to a constant multiplicative loss). Similarly,

if Equation (3) holds at some w, it holds with bound σ2I for all w′ in a ball of radius σ2/(2Lβ). Therefore,

if Equations (3) and (4) hold for all w in a min(
√
σ2ε/β, σ/(2Lβ))-cover of H, the assumptions of Theorem

B.2 will hold everywhere. Since we have such covers of size exp(O(d log(rβL/(σ2ε)))), by a union bound,
this holds with high probability if

n = Ω

(
dL2 log(rβL/σ2ε)

σ2ε

)
,

as claimed.

C Analysis of Sever for GLMs

A case of particular interest is that of Generalized Linear Models (GLMs):

Definition C.1. Let H ⊆ Rd and Y be an arbitrary set. Let Dxy be a distribution over H × Y. For
each Y ∈ Y, let σY : R → R be a convex function. The generalized linear model (GLM) over H × Y with
distribution Dxy and link functions σY is the function f : Rd → R defined by f(w) = EX,Y [fX,Y (w)], where

fX,Y (w) := σY (w ·X) .

A sample from this GLM is given by fX,Y (w) where (X,Y ) ∼ Dxy.

Our goal, as usual, is to approximately minimize f given ε-corrupted samples from Dxy. Throughout this
section we assume that H is contained in the ball of radius r around 0, i.e. H ⊆ B(0, r). Moreover, we will
let w∗ = arg minw∈H f(w) be a minimizer of f in H.

This case covers a number of interesting applications, including SVMs and logistic regression. Unfortu-
nately, the tools developed in Appendix B do not seem to be able to cover this case in a simple manner.

20



In particular, it is unclear how to demonstrate that Assumption B.1 holds after taking polynomially many
samples from a GLM. To rectify this, in this section, we demonstrate a different deterministic regularity
condition under which we show Sever succeeds, and we show that this condition holds after polynomially
many samples from a GLM. Specifically, we will show that Sever succeeds under the following deterministic
condition:

Assumption C.1. Fix 0 < ε < 1/2. There exists an unknown set Igood ⊆ [n] with |Igood| ≥ (1 − ε)n
of “good” functions {fi}i∈Igood and parameters σ0, σ2 ∈ R+ such that such that the following conditions
simultanously hold:

• Equation (1) holds with σ1 = 0 and the same σ0, and

• The following equations hold:

‖∇f̂(w∗)−∇f(w∗)‖2 ≤ σ0
√
ε , and (7)

|f̂(w)− f(w)| ≤ σ2
√
ε, for all w ∈ H , (8)

where f̂
def
= 1
|Igood|

∑
i∈Igood fi.

In this section, we will show the following two statements. The first demonstrates that Assumption C.1
implies that Sever succeeds, and the second shows that Assumption C.1 holds after polynomially many
samples from a GLM. Formally:

Theorem C.2. For functions f1, . . . , fn : H → R, suppose that Assumption C.1 holds and that H is convex.
Then, for some universal constant ε0, if ε < ε0, there is an algorithm which, with probability at least 9/10,
finds a w ∈ H such that

f(w)− f(w∗) = r(γ +O(σ0
√
ε)) +O(σ2

√
ε) .

If the link functions are ξ-strongly convex, the algorithm finds a w ∈ H such that

f(w)− f(w∗) = 2
(γ +O(σ0

√
ε))2

ξ
+O(σ2

√
ε) .

Proposition C.3. Let H ⊆ Rd and let Y be an arbitrary set. Let f1, . . . , fn be obtained by picking fi i.i.d.
at random from a GLM f over H× Y with distribution Dxy and link functions σY , where

n = Ω

(
d log(dr/ε)

ε

)
.

Suppose moreover that the following conditions all hold:

1. EX∼Dxy [XXT ] � I,

2. |σ′Y (t)| ≤ 1 for all Y ∈ Y and t ∈ R, and

3. |σY (0)| ≤ 1 for all Y ∈ Y.

Then with probability at least 9/10 over the original set of samples, there is a set of (1 − ε)n of the fi that
satisfy Assumption C.1 on H with σ0 = 2, σ1 = 0 and σ2 = 1 + r.and σ2 = 1 + r.
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C.1 Proof of Theorem C.2

As before, since Sever either terminates or throws away at least one sample, clearly it cannot run for more
than n iterations. Thus the runtime bound is simple, and it suffices to show correctness.

We first prove the following lemma:

Lemma C.4. Let f1, . . . , fn satisfy Assumption C.1. Then with probability at least 9/10, Sever applied to

f1, . . . , fn, σ0 returns a point w ∈ H which is a (γ +O(σ0
√
ε))-approximate critical point of f̂ .

Proof. We claim that the empirical distribution over f1, . . . , fn satisfies Assumption B.1 for the function
f̂ with σ0 as stated and σ1 = 0, with the Igood in Assumption B.1 being the same as in the definition of
Assumption C.1. Clearly these functions satisfy (2) (since the LHS is zero), so it suffices to show that they
satisfy (1) Indeed, we have that for all w ∈ H,

EIgood [(∇fi(w)−∇f̂(w))(∇fi(w)−∇f̂(w))>] � EIgood [(∇fi(w)−∇f(w))(∇fi(w)−∇f(w))>] ,

so they satisfy (1), since the RHS is bounded by Assumption C.1. Thus this lemma follows from an application
of Theorem B.2.

With this critical lemma in place, we can now prove Theorem C.2:

Proof of Theorem C.2. Condition on the event that Lemma C.4 holds, and let w ∈ H be the output of Sever.
By Assumption C.1, we know that f̂(w∗) ≥ f(w∗) − σ2

√
ε, and moreover, w∗ is a γ + σ0

√
ε-approximate

critical point of f̂ .
Since each link function is convex, so is f̂ . Hence, by Lemma B.8, since w is a (γ+O(σ0

√
ε))-approximate

critical point of f̂ , we have f̂(w)− f̂(w∗) ≤ r(γ +O(σ0
√
ε)). By Assumption B.1, this immediately implies

that f(w)− f(w∗) ≤ r(γ +O(σ0
√
ε)) +O(σ2

√
ε), as claimed.

The bound for strongly convex functions follows from the exact argument, except using the statement in
Lemma B.8 pertaining to strongly convex functions.

C.2 Proof of Proposition C.3

Proof. We first note that ∇fX,Y (w) = Xσ′Y (w ·X). Thus, under Assumption C.1, we have for any v that

Ei[(v · (∇fi(w)−∇f(w)))2]� Ei[(v · ∇fi(w))2] + 1� Ei[(v ·Xi)
2] + 1 .

In particular, since this last expression is independent of w, we only need to check this single matrix bound.
We let our good set be the set of samples with |X| ≤ 80

√
d/ε that were not corrupted. We use Lemma

A.18 of [DKK+17]. This shows that with 90% probability that the non-good samples make up at most an
ε/2 + ε/160-fraction of the original samples, and that E[XXT ] over the good samples is at most 2I. This
proves that the spectral bound holds everywhere. Applying it to the ∇fX,Y (w∗), we find also with 90%
probability that the expectation over all samples of ∇fX,Y (w∗) is within

√
ε/3 of ∇f(w∗). Additionally,

throwing away the samples with |∇fX,Y (w∗)−∇f(w∗)| > 80
√
d/ε changes this by at most

√
ε/2. Finally,

it also implies that the variance of ∇fX,Y (w∗) is at most 3/2I, and therefore, throwing away any other

ε-fraction of the samples changes it by at most an additional
√

3ε/2.
We only need to show that |Ei good[fi(w)]− EX [fX(w)]| ≤

√
ε for all w ∈ H. For this we note that since

the fX and fi are all 1-Lipschitz, it suffices to show that |Ei good[fi(w)]− EX [fX(w)]| ≤ (1 + |w|)
√
ε/2 on

an ε/2-cover of H. For this it suffices to show that the bound will hold pointwise except with probability
exp(−Ω(d log(r/ε))). We will want to bound this using pointwise concentration and union bounds, but this
runs into technical problems since very large values of X · w can lead to large values of f , so we will need
to make use of the condition above that the average of XiX

T
i over our good samples is bounded by 2I. In

particular, this implies that the contribution to the average of fi(w) over the good i coming from samples
where |Xi · w| ≥ 10|w|/

√
ε is at most

√
ε(1 + |w|)/10. We consider the average of fi(w) over the remaining

i. Note that these values are uniform random samples from fX(w) conditioned on |X| ≤ 80
√
d/ε and
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|Xi ·w| < 10|w|/
√
ε. It will suffices to show that taking n samples from this distribution has average within

(1 + |w|)
√
ε/2 of the mean with high probability. However, since |fX(w)| ≤ O(1 + |X · w|), we have that

over this distribution |fX(w)| is always O(1 + |w|)/
√
ε, and has variance at most O(1 + |w|)2. Therefore,

by Bernstein’s Inequality, the probability that n random samples from fX(w) (with the above conditions on
X) differ from their mean by more than (1 + |w|)

√
ε/2 is

exp(−Ω(n2(1 + |w|)2ε/((1 + |w|)2 + n(1 + |w|)2))) = exp(−Ω(nε)).

Thus, for n at least a sufficiently large multiple of d log(dr/ε)/ε, this holds for all w in our cover of H with
high probability. This completes the proof.

D An Alternative Algorithm: Robust Filtering in Each Iteration

In this section, we describe another algorithm for robust stochastic optimization. This algorithm uses
standard robust mean estimation techniques to compute approximate gradients pointwise, which it then
feeds into a standard projective gradient descent algorithm. This algorithm in practice turns out to be
somewhat slower than the one employed in the rest of this paper, because it employs a filtering algorithm
at every step of the projective gradient descent, and does not remember which points were filtered between
iterations. On the other hand, we present this algorithm for two reasons. Firstly, because it is a conceptually
simpler interpretation of the main ideas of this paper, and secondly, because the algorithm works under
somewhat more general assumptions. In particular, this algorithm only requires that for each w ∈ H that
there is a corresponding good set of functions, rather than that there exists a single good set that works
simultaneously for all w.

In particular, we can make do with the following somewhat weaker assumption:

Assumption D.1. Fix 0 < ε < 1/2 and parameter σ ∈ R+. For each w ∈ H, there exists an unknown set
Igood= Igood(w) ⊆ [n] with |Igood| ≥ (1− ε)n of “good” functions {fi}i∈Igood such that:∥∥∥EIgood [(∇fi(w)−∇f(w)

)(
∇fi(w)−∇f(w)

)T ]∥∥∥
2
≤ (σ)2 , (9)

and

‖∇f̂(w)−∇f(w)‖2 ≤ σ
√
ε, where f̂

def
=

1

|Igood|
∑

i∈Igood

fi . (10)

We make essential use of the following result, which appears in both [DKK+17, SCV18]:

Theorem D.2. Let µ ∈ Rd and a collection of points xi ∈ Rd, i ∈ [n] and σ > 0. Suppose that there exists
Igood ⊆ [n] with |Igood| ≥ (1− ε)n satisfying the following:

1

|Igood|
∑

i∈Igood

(xi − µ)(xi − µ)> � σ2I and
∥∥ 1

|Igood|
∑

i∈Igood

(xi − µ)
∥∥
2
≤ σ
√
ε. (11)

Then, if ε < ε0 for some universal constant ε0, there is an efficient algorithm, Algorithm A, which outputs
an estimate µ̂ ∈ Rd such that ‖µ̂− µ‖2 = O(σ

√
ε).

Our general robust algorithm for stochastic optimization will make calls to Algorithm A in a black-box
manner, as well as to the projection operator onto H. We will measure the cost of our algorithm by the total
number of such calls.

Remark D.1. While it is not needed for the theoretical results established in this subsection, we note that the
robust mean estimation algorithm of [DKK+17] relies on an iterative outlier removal method only requiring
basic eigenvalue computations (SVD), while the [SCV18] algorithm employs semidefinite programming. In
our experiments, we use the algorithm in [DKK+17] and variants thereof.
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Using the above black-box, together with known results on convex optimization with errors, we obtain
the following meta-theorem:

Theorem D.3. For functions f1, . . . , fn : H → R, bounded below on a closed domain H, suppose that either
Assumption D.1 is satisfied with some parameters ε, σ > 0. Then there exists an efficient algorithm that
finds an O(σ

√
ε)-approximate critical point of f .

Proof. We note that by applying Algorithm A on {∇fi(w)}, we can find an approximation to ∇f(w) with
error O(σ

√
ε). We note that standard projective gradient descent algorithms can be made to run efficiently

even if the gradients given are only approximate, and this can be used to find our O(σ
√
ε)-approximate

critical point.

E Applications of the General Algorithm

In this section, we present three concrete applications of our general robust algorithm. In particular, we de-
scribe how to robustly optimize models for linear regression, support vector machines, and logistic regression,
in Sections E.1, E.2, E.3, respectively.

E.1 Linear Regression

In this section, we demonstrate how our results apply to linear regression. We are given pairs (Xi, Yi) ∈
Rd×R for i ∈ [n]. The Xi’s are drawn i.i.d. from a distribution Dx, and Yi = 〈w∗, Xi〉 + ei, for some
unknown w∗ ∈ Rd and the noise random variables ei’s are drawn i.i.d. from some distribution De. Given
(Xi, Yi) ∼ Dxy, the joint distribution induced by this process, let fi(w) = (Yi − 〈w,Xi〉)2. The goal is then
to find a ŵ approximately minimizing the objective function

f(w) = E(X,Y )∼Dxy
[(Y − 〈w,X〉)2] .

We work with the following assumptions:

Assumption E.1. Given the model for linear regression described above, assume the following conditions
for De and Dx:

• Ee∼De
[e] = 0;

• Vare∼De
[e] ≤ ξ;

• EX∼Dx [XXT ] � σ2I for some σ > 0;

• There is a constant C > 0, such that for all unit vectors v, EX∼Dx

[
〈v,X〉4

]
≤ Cσ4.

Our main result for linear regression is the following:

Theorem E.2. Let ε > 0, and let Dxy be a distribution over pairs (X,Y ) which satisfies the conditions of

Assumption E.1. Suppose we are given O
(
d5

ε2

)
ε-noisy samples from Dxy. Then in either of the following

two cases, there exists an algorithm that, with probability at least 9/10, produces a ŵ with the following
guarantees:

1. If EX∼Dx
[XXT ] � γI for γ = Ω(

√
ε), then f(ŵ) ≤ f(w∗) +O

(
(ξ+ε)ε
γ

)
and ‖ŵ −w∗‖2 = O

(√
ξε+ε
γ

)
.

2. If ‖w∗‖2 ≤ r, then f(ŵ) ≤ f(w∗) +O(((
√
ξ +
√
ε)r +

√
Cr2)

√
ε).

The proof will follow from two lemmas (proved in Section E.1.1 and E.1.2, respectively). First, we will
bound the covariance of the gradient, in Lemma E.3:
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Lemma E.3. Suppose Dxy satisfies the conditions of Assumption E.1. Then for all unit vectors v ∈ Rd, we
have

v>Cov(X,Y )∼Dxy
[∇fi(w, (X,Y ))] v ≤ 4σ2ξ + 4Cσ4‖w∗ − w‖22 .

With this in hand, we can prove Lemma E.4, giving us a polynomial sample complexity which is sufficient
to satisfy the conditions of Assumption B.1.

Lemma E.4. Suppose Dxy satisfies the conditions of Assumption E.1. Given O(d5/ε2) ε-noisy samples
from Dxy, then with probability at last 9/10, they satisfy Assumption B.1 with parameters σ0 = 30

√
ξ +
√
ε

and σ1 = 18
√
C + 1.

The proof concludes by applying Corollary B.4 or case (i) of Corollary B.3 for the first and second cases
respectively.

E.1.1 Proof of Lemma E.3

Note that for this setting we have that f(w, z) = f(w, x, y) = (y−〈w, x〉)2. We then have that ∇wf(w, z) =
−2(〈w∗ − w, x〉+ e)x. Our main claim is the following:

Claim E.5. We have that Cov[∇wf(w, z)] = 4EX∼D
[
〈w∗ − w, x〉2(xxT )

]
+ 4 Var[E]Σ− 4Σ(w∗ −w)(w∗ −

w)TΣ.

Proof. Let us use the notation A = ∇wf(w, z) and µ = E[A]. By definition, we have that Cov[A] =
E[AAT ]− µµT .

Note that µ = Ez[∇wf(w, z)] = Ez[(−2〈w∗ − w, x〉 + e)x] = −2Σ(w∗ − w), where we use the fact that
Ez[e] = 0 and e is independent of x. Therefore, µµT = 4Σ(w∗ − w)(w∗ − w)TΣ.

To calculate E[AAT ], note that A = ∇wf(w, z) = −2(〈w∗−w, x〉+e)x, and AT = −2(〈w∗−w, x〉+e)xT .
Therefore, AAT = 4(〈w∗ − w, x〉2 + e2 + 2〈w∗ − w, x〉e)(xxT ) and

Ez[AAT ] = 4Ex[〈w∗ − w, x〉2(xxT )] + 4 Var[e]Σ + 0 ,

where we again used the fact that the noise e is independent of x and its expectation is zero.
By gathering terms, we get that

Cov[∇wf(w, z)] = 4Ex[〈w∗ − w, x〉2(xxT )] + 4 Var[e]Σ− 4Σ(w∗ − w)(w∗ − w)TΣ .

This completes the proof.

Given the above claim, we can bound from above the spectral norm of the covariance matrix of the
gradients as follows: Specifically, for a unit vector v, the quantity vT Cov[∇wf(w, z)]v is bounded from
above by a constant times the following quantities:

• The first term is vT Ex[〈w∗ − w, x〉2(xxT )]v = Ex[〈w∗ − w, x〉2 · 〈v, x〉2)]. By Cauchy-Schwarz and our
4th moment bound, this is at most Cσ4‖w∗ − w‖22, where Σ � σ2I.

• The second term is at most the upper bound of the variance of the noise ξ times σ2.

• The third term is at most vTΣ(w∗ −w)(w∗ −w)TΣv, which by our bounded covariance assumption is
at most σ4‖w∗ − w‖22.

This gives the parameters in the meta-theorem.
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E.1.2 Proof of Lemma E.4

Let S be the set of uncorrupted samples and I be the subset of S with ‖X‖2 ≤ 2
√
d/ε1/4. We will take Igood

to be the subset of I that are not corrupted.
Firstly, we show that with probability at least 39/40, at most an ε/2-fraction of points in S have ‖X‖2 >

2
√
d/ε1/4, and so |Igood| ≥ (1−ε)|S|. Note that ED[‖X‖42] = ED[(

∑d
j=1X

2
j )2] ≤

∑d
j=1

∑d
k=1

√
ED[X2

j ]E[X2
k ] ≤

Cd2, since EDx
[XXT ] � I. Thus, by Markov’s inequality, PrD[‖X‖2 > 2

√
d(C/ε)1/4] = PrD[‖X‖42 >

16d2/ε] ≤ ε/16. By a Chernoff bound, since n ≥ 10ε2 this probability is at most ε/2 for the uncorrupted
samples with probability at least 39/40.

Next, we show that (1) holds with probability at least 39/40. To do this, we will apply Lemma E.3 to
Igood. Since S consists of independent samples, the variance over the randomness of S of |S|ES [e2] is at
most |S|ξ. By Chebyshev’s inequality, except with probability 1/99, we have that ES [e2] ≤ 99ξ and since
Igood ⊂ S, EIgood [e2] ≤ |S|ES [e2]/|I| ≤ 100ξ. This is condition (i) of Lemma E.3.

We note that I consists of Ω(d5/ε2) independent samples from D conditioned on ‖X‖2 < 2
√
d/ε1/4, a

distribution that we will call D′. Since the VC-dimension of all halfspaces in Rd is d+1, by the VC inequality,
we have that, except with probability 1/80, for any unit vector v and T ∈ R that |PrI [v·X > T ]−PrD′ [v·X >
T ]| ≤ ε/d2. Note that for unit vector v and positive integer m, E[(v.X)m] =

∫∞
0
m(v ·X)m−1 Pr[v ·X > T ]dT .

Thus we have that

EI [(v.X)m] =

∫ ∞
0

m(v ·X)m−1 Pr
I

[v ·X > T ]dT

≤
∫ 2d1/2(C/ε)1/4

0

m(v ·X)m−1(Pr
D′

[v ·X > T ] + ε/d2)dT

= ED′ [(v.X)m] + (2d1/2(C/ε)1/4)m(ε/d2)

≤ (1 + ε)ED[(v.X)m] + 2mCm/4(ε/d2)1−m/4 .

Applying this for m = 2 gives EI [XXT ] � (1 + ε + 4
√
Cε/d2)I � 2I and with m = 4 gives EI [(v.X)4] ≤

(1 + ε)C + 16C. Similar bounds apply to Igood, with an additional 1 + ε factor.
Thus, with probability at least 39/40, Igood satisfies the conditions of Lemma E.3 with ξ := 100ξ, σ2 := 2

and C := 5C. Hence, it satisfies (1) with σ0 = 20
√
ξ and σ1 = 18

√
C + 1.

For (2), note that ∇wfi(w) = (w · xi − yi)xi = ((w − w∗) · xi)xi − eixi. We will separately bound
‖EIgood [((w − w∗) ·X)X]− ED[((w − w∗) ·X)X]‖2 and ‖EIgood [eX]− ED[eX]‖2.

We will repeatedly make use of the following, which bounds how much removing points or probability
mass affects an expectation in terms of its variance:

Claim E.6. For a mixture of distributions P = (1 − δ)Q + δR for distributions P,Q,R and a real valued
function f , we have that |EX∼P [f(X)]− EX∼Q[f(X)]| ≤ 2

√
δ EX∼P [f(X)2]/(1− δ)

Proof. By Cauchy-Schwarz |EX∼R[f(X)]| ≤
√
EX∼R[f(X)2] ≤

√
EX∼P [f(X)2]/δ. Since EX∼P [f(X)] =

(1−δ)EX∼Q[f(X)]+δ EX∼R[f(X)], this implies that |EX∼P [f(X)]/(1−δ)−EX∼Q[f(X)]| ≤
√
δ EX∼P [f(X)2]/(1−

δ). However |EX∼P [f(X)]/(1− δ)− EX∼P [f(X)]| = (δ/(1− δ))|EX∼P [f(X)]| ≤
√
δ EX∼P [f(X)2]/(1− δ)

and the triangle inequality gives the result.

We can apply this to P = I and Q = Igood with δ = ε/2 and also to P = D and Q = D′ with δ = ε/16,

with error 2
√
δ/(1− δ) ≤ 2

√
ε in either case.

For the first of term we wanted to bound, we have ‖EIgood [((w−w∗) ·X)X]−ED[((w−w∗) ·X)X]‖2 =

‖(w−w∗)T
(
EIgood [XXT ]− ED[XXT ]

)
‖2 ≤ ‖w−w∗‖2‖EIgood [XXT ]−ED[XXT ]‖2. For any unit vector v,

the VC dimension argument above gave that |EI [(v ·X)2]−ED′ [(v ·X)2)]| ≤ 4
√
Cε/d2 and Claim E.6 both

gives that |EI [(v·X)2]−EIgood [(v·X)2)]| ≤ 2
√
εEI [(v.X)4] ≤ 10

√
Cε and that |ED[(v·X)2]−ED′ [(v·X)2)]| ≤

2
√
εED[(v.X)4] ≤ 2

√
Cε. By the triangle inequality, we have that |ED[(v ·X)2]−EIgood [(v ·X)2)]| ≤ 16

√
Cε.

Since this holds for all unit v and the matrices involved are symmetric, we have that ‖EIgood [XXT ] −
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ED[XXT ]‖2 ≤ 16
√
Cε. The overall first term is bounded by ‖EIgood [((w − w∗) · X)X] − ED[((w − w∗) ·

X)X]‖2 ≤ 16
√
Cε‖w − w∗‖2.

Now we want to bound the second term, ‖EIgood [eX]−ED[eX]‖2. Note that ED[eX] = ED[e]ED[X] = 0.
So we need to bound EIgood [eX]. First we bound the expectation and variance on D′ using Claim E.6. It

yields that, for any unit vector v, |ED′ [e(v ·X)]| ≤ 2
√
εED[e2(v ·X)2] ≤ 2

√
εξ.

Next we bound the expectation on I. Since I consists of independent samples from D′, the covariance
matrix over the randomness on I of |I|EI [eX − ED′ [eX]] is |I|ED′ [(eX − ED′ [eX])(eX − ED′ [eX])T ] ≤
|I|ED′ [XXT ] ≤ |I|(1 + ε)I and its expectation is 0. Thus the expectation over the randomness of I of
(|I|2‖EI [eX] − ED′ [eX]‖2)2 is Tr(|I|ED′ [(eX − ED′ [eX])(eX − ED′ [eX])T ]) ≤ |I|(1 + ε + 4ξε|I|)d. By
Markov’s inequality, except with probability 1/40, Pr[‖EI [eX]‖2 ≥ 2

√
ξε+ ε] ≤ d/|I|ε2. Since |I| ≥ 40d/ε2.

This happens with probability at least 1/40.
Next we bound the expectation on Igood which follows by a slight variation of Claim E.6. Let J =

I − Igood. Then, for any v, EJ [e(v · X)] ≤
√

EJ [e2]EJ [(v ·X)2] ≤
√

ES [e2]EI [(v ·X)2]|J |/
√
|S||I| ≤√

100ξ(1 + ε+ 4
√
Cε/d2)|J |/

√
|S||I| ≤ 20|J |

√
ξ/|S||I| by bounds we obtained earlier. Now ‖EIgood [eX]‖2 =

‖(|I|/|Igood|)EI [eX]− (|J |/|Igood|)EJ [eX]‖2 ≤ 20
√
ξε+ ε+ (1 + ε)

√
ξε/16 ≤ 30

√
ξε+ ε.

We can thus take σ0 = 30
√
ξ +
√
ε and σ1 = 18

√
C + 1 ≥ 16

√
C to get (2).

To get both (2) and (1) hold with σ0 = 30
√
ξ +
√
ε and σ1 = 18

√
C + 1). This happens with probability

at least 9/10 by a union bound on the probabilistic assumptions above.

E.2 Support Vector Machines

In this section, we demonstrate how our results apply to learning support vector machines (i.e., halfspaces
under hinge loss). In particular, we describe how SVMs fit into the GLM framework described in Section C.

We are given pairs (Xi, Yi) ∈ Rd×{±1} for i ∈ [n], which are drawn from some distribution Dxy. Let
L(w, (x, y)) = max{0, 1 − y(w · x)}, and fi(w) = L(w, (xi, yi)). The goal is to find a ŵ approximately
minimizing the objective function

f(w) = E(X,Y )∼Dxy
[L(w, (X,Y ))].

One technical point is that fi does not have a gradient everywhere – instead, we will be concerned with
the sub-gradients of the fi’s. All our results which operate on the gradients also work for sub-gradients. To
be precise, we will take the sub-gradient to be 0 when the gradient is undefined:

Definition E.1. Let ∇fi be the sub-gradient of fi(w) with respect to w, where ∇fi = −yixi if yi(w ·xi) < 1,
and 0 otherwise.

To get a bound on the error of hinge loss, we will need to assume the marginal distribution Dx is
anti-concentrated.

Definition E.2. A distribution is δ-anticoncentrated if at most an O(δ)-fraction of its probability mass is
within Euclidean distance δ of any hyperplane.

We work with the following assumptions:

Assumption E.7. Given the model for SVMs as described above, assume the following conditions for the
marginal distribution Dx:

• EX∼Dx
[XXT ] � I;

• Dx is ε1/4-anticoncentrated.

Our main result on SVMs is the following:

27



Theorem E.8. Let ε > 0, and let Dxy be a distribution over pairs (X,Y ), where the marginal distribution
Dx satisfies the conditions of Assumption E.7. Then there exists an algorithm that with probability 9/10,
given O(d log(d/ε)/ε) ε-noisy samples from Dxy, returns a ŵ such that for any w∗,

E(X,Y )∼Dxy
[L(ŵ, (X,Y ))] ≤ E(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ε1/4).

Our approach will be to fit this problem into the GLM framework developed in Section C. First, we will
restrict our search over w to H, a ball of radius r = ε−1/4. As we argue in Lemma E.9, this restriction
comes at a cost of at most O(ε1/4) in our algorithm’s loss. With this restriction, we will argue that the
problem satisfies the conditions of Proposition C.3. This allows us to argue that, with a polynomial number
of samples, we can obtain a set of fi’s satisfying the conditions of Assumption C.1. This will allow us to
apply Theorem C.2, concluding the proof.

We start by showing that, due to anticoncentration of D, there is a w′ ∈ H with loss close to w∗:

Lemma E.9. Let w′ be a rescaling of w∗, such that ‖w′‖2 ≤ ε−1/4 (i.e. w′ = min{1, ε−1/4/‖w∗‖2}w∗).
Then E(X,Y )∼Dxy

[L(w′, (X,Y ))] ≤ E(X,Y )∼Dxy
[L(w∗, (X,Y ))] +O(ε1/4).

Proof. If w′ = w∗, then E(X,Y )∼Dxy
[L(w′, (X,Y ))] = E(X,Y )∼Dxy

[L(w∗, (X,Y ))].
Otherwise, we break into case analysis, based on the value of (x, y):

• |w′ ·x| > 1: If y(w′ ·x) > 1, then L(w′, (x, y)) = L(w∗, (x, y)) = 0. If y(w′ ·x) < −1, then L(w′, (x, y)) =
1− y(w′ · x) ≤ 1− y(w∗ · x) = L(w∗, (x, y)). Both cases use the fact that ‖w′‖2 < ‖w∗‖2.

• |w′ · x| ≤ 1: In this case, we have that L(w′, (x, y)) ≤ 2. Since L(w∗, (x, y)) ≥ 0, we have that
L(w′, (x, y)) ≤ L(w∗, (x, y)) + 2.

Note that if |w′ · x| ≤ 1, then x is within 1/‖w′‖2 = ε1/4 of the hyperplane defined by the normal vector
w′. Since Dx is ε1/4-anticoncentrated, we have that PrX∼Dx

[|w′ · X| ≤ 1] ≤ ε1/4. Thus, we have that
E(X,Y )∼Dxy

[L(w′, (X,Y ))] ≤ E(X,Y )∼Dxy
[L(w∗, (X,Y )) + 2 · 1(|w′ ·X| ≤ 1)] ≤ E(X,Y )∼Dxy

[L(w∗, (X,Y ))] +

O(ε1/4).

Proof of Theorem E.8. We first show that this problem fits into the GLM framework, in particular, satisfying
the conditions of Proposition C.3. The link function is σy(t) = max{0, 1 − yt}, giving us the loss function
L(w, (x, y)) = σy(w · x). We let H be the set ‖w‖2 ≤ ε−1/4, giving us the parameter r = ε−1/4. Condition
1 is satisfied by Assumption E.7. For y ∈ {−1, 1}, σ′y(t) = 0 for yt ≥ 1 and σ′y(t) = −y for yt < 1. Thus
we have that |σ′1(t)| ≤ 1 for all t and y, satisfying Condition 2. Finally, one can observe that σy(0) = 1 for
all y, satisfying Condition 3. Thus we can apply Proposition C.3: if we take O(d log(dr/ε)/ε) ε-corrupted
samples, then they satisfy Assumption C.1 on H with σ0 = 2, σ1 = 0 and σ2 = 1 + ε−1/4, with probability
9/10.

Now we can apply the algorithm of Theorem C.2. Since the loss is convex, we get a vector ŵ with
f(ŵ)− f(w∗′) = O((σ0r+ σ1r

2 + σ2)
√
ε) = O((2ε−1/4 + ε−1/4)

√
ε) = O(ε1/4) where w∗′ is the minimizer of

f on H.
We thus have that f(ŵ) ≤ f(w∗′) +O(ε1/4) ≤ f(w′) +O(ε1/4) ≤ f(w∗) +O(ε1/4). The second inequality

follows because w∗′ is the minimizer of f on H, and the third inequality follows from Lemma E.9.

E.3 Logistic Regression

In this section, we demonstrate how our results apply to logistic regression. In particular, we describe how
logistic regression fits into the GLM framework described in Section C.

We are given pairs (Xi, Yi) ∈ Rd×{±1} for i ∈ [n], which are drawn from some distribution Dxy. Let
φ(t) = 1

1+exp(−t) . Logistic regression is the model where y = 1 with probability φ(w · x), and y = −1 with

probability φ(−w · x). We define the loss function to be the log-likelihood of y given x. More precisely, we
let fi(w, (xi, yi)) = L(w, (xi, yi)), which is defined as follows:

L(w, (x, y)) =
1 + y

2
ln

(
1

φ(w · x)

)
+

1− y
2

ln

(
1

φ(−w · x)

)
=

1

2
(− ln (φ(w · x)φ(−w · x))− y(w · x)) .
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The gradient of this function is ∇L(w, (x, y)) = 1
2 (φ(w · x) − φ(−w · x) − y)x. The goal is to find a ŵ

approximately minimizing the objective function

f(w) = E(X,Y )∼Dxy
[L(w, (X,Y ))].

We work with the following assumptions:

Assumption E.10. Given the model for logistic regression as described above, assume the following con-
ditions for the marginal distribution Dx:

• EX∼Dx
[XXT ] � I;

• Dx is ε1/4
√

log(1/ε)-anticoncentrated.

We can get a similar result to that for hinge loss for logistic regression:

Theorem E.11. Let ε > 0, and let Dxy be a distribution over pairs (X,Y ), where the marginal distribution
Dx satisfies the conditions of Assumption E.10. Then there exists an algorithm that with probability 9/10,
given O(d log(d/ε)/ε) ε-noisy samples from Dxy, returns a ŵ such that for any w∗,

E(X,Y )∼Dxy
[L(ŵ, (X,Y ))] ≤ E(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ε1/4
√

log(1/ε)).

The approach is very similar to that of Theorem E.8, which we repeat here for clarity. First, we will
restrict our search over w to H, a ball of radius r = ε−1/4

√
log(1/ε). As we argue in Lemma E.12, this

restriction comes at a cost of at most O(ε1/4
√

log(1/ε)) in our algorithm’s loss. With this restriction, we
will argue that the problem satisfies the conditions of Proposition C.3. This allows us to argue that, with a
polynomial number of samples, we can obtain a set of fi’s satisfying the conditions of Assumption C.1. This
will allow us to apply Theorem C.2, concluding the proof.

We start by showing that, due to anticoncentration of D, there is a w′ ∈ H with loss close to w∗:

Lemma E.12. Let w′ be a rescaling of w∗, such that ‖w′‖2 ≤ ε−1/4
√

ln(1/ε) (i.e. w′ = min{1, ε−1/4
√

ln(1/ε)/‖w∗‖2}w∗).

Then E(X,Y )∼Dxy
[L(w′, (X,Y ))] ≤ E(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ε1/4
√

ln(1/ε)).

Proof. We need the following claim:

Claim E.13.
|t| ≤ − ln(φ(t)φ(−t)) ≤ |t|+ 3 exp(−|t|)

Proof. Recalling that φ = 1/(1 + exp(−t)), we have that − ln(φ(t)φ(−t)) = ln(exp(t) + exp(−t) + 2). Since
exp(t)+exp(−t)+2 ≥ exp(|t|), we have |t| ≤ − ln(φ(t)φ(−t)). On the other hand, ln(exp(t)+exp(−t)+2) =
|t|+ ln(1 + 2 exp(−|t|) + exp(−2|t|)) ≤ |t|+ ln(1 + 3 exp(−|t|)) ≤ |t|+ 3 exp(−|t|).

For any x ∈ Rd, we have that:

− ln(φ(w′ · x)φ(−w′ · x))− y(w′ · x)− 3 exp(−3|w′ · x|) ≤ |w′ · x| − y(w′ · x)

≤ |w∗ · x| − y(w∗ · x)

≤ − ln(φ(w∗ · x)φ(−w∗ · x))− y(w∗ · x)

The first and last inequality hold by Claim E.13. For the second inequality, we do a case analysis on y. When
y = sign(w′ ·x) = sign(w∗ ·x), then both sides of the inequality are 0. When y = −sign(w′ ·x) = −sign(w∗ ·x),
then the inequality becomes 2|w′ · x| ≤ 2|w∗ · x|, which holds since ‖w′‖2 ≤ ‖w∗‖2. We thus have that for
any y ∈ {±1}, L(w′, (x, y)) ≤ L(w∗, (x, y)) + 3

2 exp(−3|w′ · x|). If |w′ · x| ≤ 1
3 ln(1/ε), then L(w′, (x, y)) ≤

L(w∗, (x, y))+ 3
2 . If |w′ ·x| ≥ 1

3 ln(1/ε), then L(w′, (x, y)) ≤ L(w∗, (x, y))+ 3
2ε. Since ‖w′‖2 ≤ ε−1/4

√
ln(1/ε)

and Dx is ε1/4
√

ln(1/ε)-anticoncentrated, we have that PrDx
[|w′ ·x| ≤ 1

3 ln(1/ε)] ≤ O(ε1/4
√

ln(1/ε)). Thus,

E(X,Y )∼Dxy
[L(w′, (X,Y ))] ≤ E(X,Y )∼Dxy

[L(w∗, (X,Y ))] +O(ε1/4
√

ln(1/ε)), as desired.
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With this in hand, we can conclude with the proof of Theorem E.11.

Proof of Theorem E.11. We first show that this problem fits into the GLM framework, in particular, satis-
fying the conditions of Proposition C.3. The link function is σy(t) = 1

2 (− ln(φ(t)φ(−t))− yt), giving us the

loss function L(w, (x, y)) = σy(w · x). We let H be the set ‖w‖2 ≤ ε−1/4
√

ln(1/ε), giving us the parameter

r = ε−1/4
√

ln(1/ε). Condition 1 is satisfied by Assumption E.10. For y ∈ {−1, 1}, σ′y(t) = 1
2 (φ(t)−φ(−t)−y),

which gives that |σ′y(t)| ≤ 1 for all t and y, satisfying Condition 2. Finally, σy(0) = ln 2 < 1 for all y, satisfy-
ing Condition 3. Thus we can apply Proposition C.3: if we take O(d log(dr/ε)/ε) ε-corrupted samples, then
they satisfy Assumption C.1 on H with σ0 = 2, σ1 = 0 and σ2 = 1 + ε−1/4

√
ln(1/ε), with probability 9/10.

Now we can apply the algorithm of Theorem C.2. Since the loss is convex, we get a vector ŵ with
f(ŵ) − f(w∗′) = O((σ0r + σ1r

2 + σ2)
√
ε) = O((2ε−1/4

√
ln(1/ε) + ε−1/4

√
ln(1/ε))

√
ε) = O(ε1/4

√
ln(1/ε))

where w∗′ is the minimizer of f on H.
We thus have that f(ŵ) ≤ f(w∗′)+O(ε1/4

√
ln(1/ε)) ≤ f(w′)+O(ε1/4

√
ln(1/ε)) ≤ f(w∗)+O(ε1/4

√
ln(1/ε)).

The second inequality follows because w∗′ is the minimizer of f on H, and the third inequality follows from
Lemma E.12.

F Additional Experimental Results

In this section, we provide additional plots of our experimental results, comparing with all baselines consid-
ered.

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.50

1.00

1.50

Outlier Fraction epsilon

T
e
st

E
rr
o
r

Regression: Synthetic data

uncorrupted noDefense l2 loss
gradientCentered RANSAC Sever

0.00 0.02 0.04 0.06 0.08 0.10
1.00

1.20

1.40

1.60

1.80

2.00

Outlier Fraction epsilon

T
e
st

E
rr
o
r

Regression: Drug discovery data

0.00 0.02 0.04 0.06 0.08 0.10
1.00

1.20

1.40

1.60

1.80

2.00

Outlier Fraction epsilon

T
e
st

E
rr
o
r

Regression: Drug discovery data,
attack targeted against Sever

Figure 7: ε vs test error for baselines and Sever on synthetic data and the drug discovery dataset. The left
and middle figures show that Sever continues to maintain statistical accuracy against our attacks which are
able to defeat previous baselines. The right figure shows an attack with parameters chosen to increase the
test error Sever on the drug discovery dataset as much as possible. Despite this, Sever still has relatively
small test error.
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