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Abstract
In high dimensions, most machine learning meth-
ods are brittle to even a small fraction of struc-
tured outliers. To address this, we introduce a new
meta-algorithm that can take in a base learner
such as least squares or stochastic gradient de-
scent, and harden the learner to be resistant to
outliers. Our method, SEVER, possesses strong
theoretical guarantees yet is also highly scalable—
beyond running the base learner itself, it only
requires computing the top singular vector of a
certain n× d matrix. We apply SEVER on a drug
design dataset and a spam classification dataset,
and find that in both cases it has substantially
greater robustness than several baselines.

1. Introduction
Learning in the presence of outliers is a ubiquitous challenge
in machine learning; nevertheless, most machine learning
methods are very sensitive to outliers in high dimensions.
The focus of this work is on designing algorithms that are
outlier robust while remaining competitive in terms of accu-
racy and running time.

We highlight two motivating applications. The first is bio-
logical data (e.g., gene expression data), where mislabeling
or measurement errors can create systematic outliers (Rosen-
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berg et al., 2002; Li et al., 2008) requiring painstaking man-
ual effort to remove (Paschou et al., 2010). Detecting out-
liers in such settings is often important either because the
outlier observations are of interest themselves or because
they might contaminate the downstream statistical analysis.
The second motivation is machine learning security, where
outliers can be introduced through data poisoning attacks
(Barreno et al., 2010) where an adversary inserts fake data
into the training set (e.g., by creating a fake user account).
Recent work shows that for high-dimensional datasets, even
a small fraction of outliers can substantially degrade the
learned model (Biggio et al., 2012; Newell et al., 2014; Koh
& Liang, 2017; Steinhardt et al., 2017; Koh et al., 2018).

Crucially, in both the biological and security settings above,
the outliers are not “random” but are instead highly corre-
lated, and could have a complex internal structure that is
difficult to model. This leads us to the following concep-
tual question underlying the present work: Can we design
training algorithms that are robust to the presence of an ε-
fraction of arbitrary (and potentially adversarial) outliers?

Estimation in the presence of outliers is a prototypical goal
in robust statistics and has been systematically studied since
the pioneering work of Tukey Tukey (1960). Popular meth-
ods include RANSAC (Fischler & Bolles, 1981), minimum
covariance determinant (Rousseeuw & Driessen, 1999), re-
moval based on k-nearest neighbors (Breunig et al., 2000),
and Huberizing the loss (Owen, 2007) (see Hodge & Austin
(2004) for a comprehensive survey). However, these classi-
cal methods either break down in high dimensions, or only
handle “benign” outliers that are obviously different from
the rest of the data (see Section 1.1 for futher discussion).

Motivated by this, recent work in theoretical computer sci-
ence has developed efficient robust estimators for classi-
cal problems such as linear classification (Klivans et al.,
2009; Awasthi et al., 2014), mean and covariance estima-
tion (Diakonikolas et al., 2016a; Lai et al., 2016), clustering
(Charikar et al., 2017), and regression (Bhatia et al., 2015;
2017; Balakrishnan et al., 2017). Nevertheless, the promise
of practical high-dimensional robust estimation is yet to be
realized; indeed, the aforementioned results generally suffer
from one of two shortcomings–either they use sophisticated
convex optimization algorithms that do not scale to large
datasets, or they are tailored to specific problems of interest
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or specific distributional assumptions on the data, and hence
do not have good accuracy on real data.

In this work, we address these shortcomings. We propose
an algorithm, SEVER, that is:

• Robust: it can handle arbitrary outliers with only a
small increase in error, even in high dimensions.

• General: it can be applied to most common learning
problems including regression and classification, and
handles non-convex models such as neural networks.

• Practical: the algorithm can be implemented with
standard machine learning libraries.

At a high level, our algorithm (depicted in Figure 1 and de-
scribed in detail in Section 2.1) is a simple “plug-in” outlier
detector–first, run whatever learning procedure would be
run normally (e.g., least squares in the case of linear regres-
sion). Then, consider the matrix of gradients at the optimal
parameters, and compute the top singular vector of this ma-
trix. Finally, remove any points whose projection onto this
singular vector is too large (and re-train if necessary).

Despite its simplicity, our algorithm possesses strong theo-
retical guarantees: As long as the real (non-outlying) data is
not too heavy-tailed, SEVER is provably robust to outliers–
see Section 2 for detailed statements of the theory. At the
same time, we show that our algorithm works very well
in practice and outperforms a number of natural baseline
outlier detectors. In line with our original motivating bio-
logical and security applications, we implement our method
on two tasks–a linear regression task for predicting protein
activity levels (Olier et al., 2018), and a spam classification
task based on emails from the Enron corporation (Metsis
et al., 2006). Even with a small fraction of outliers, base-
line methods perform poorly on these datasets; for instance,
on the Enron spam dataset with a 1% fraction of outliers,
baseline errors range from 13.4% to 20.5%, while SEVER
incurs only 7.3% error (in comparison, the error is 3% in the
absence of outliers). Similarly, on the drug design dataset,
with 10% corruptions, SEVER achieved 1.42 mean-squared
error test error, compared to 1.51-2.33 for the baselines, and
1.23 error on the uncorrupted dataset.

1.1. Comparison to Prior Work

As mentioned above, the myriad classical approaches to
robust estimation perform poorly in high dimensions or
against worst-case outliers. For instance, RANSAC (Fis-
chler & Bolles, 1981) randomly subsamples points such that
no outliers remain with decent probability; since we need at
least d points to fit a d-dimensional model, this requires at
most O(1/d) outliers. k-nearest neighbors (Breunig et al.,
2000) similarly suffers from the curse of dimensionality
when d is large. The minimum covariance determinant
(Rousseeuw & Driessen, 1999) only applies when the num-

ber of data points n exceeds 2d, which does not hold for
the datasets we consider (it also has other issues such as
computational intractability). A final natural method is to
limit the effect of points with large loss (via e.g. Huber-
ization (Owen, 2007)), but as Koh et al. (2018) show (and
we experimentally confirm), correlated outliers often have
lower loss than the real data under the learned model.

These issues have motivated work on high-dimensional ro-
bust statistics going back to Tukey (Tukey, 1975). However,
it was not until much later that efficient algorithms with fa-
vorable properties were first proposed. (Klivans et al., 2009)
gave the first efficient algorithms for robustly classification
under the assumption that the distribution of the good data
is isotropic and log-concave. Subsequently, (Awasthi et al.,
2014) obtained an improved and nearly optimal robust algo-
rithm for this problem. Two concurrent works (Diakonikolas
et al., 2016a; Lai et al., 2016) gave the first efficient robust
estimators for several other tasks including mean and covari-
ance estimation. There has since been considerable study of
algorithmic robust estimation in high dimensions, including
learning graphical models (Diakonikolas et al., 2016b), un-
derstanding computation-robustness tradeoffs (Diakoniko-
las et al., 2017d; 2018), establishing connections to PAC
learning (Diakonikolas et al., 2017c), tolerating more noise
by outputting a list of hypotheses (Charikar et al., 2017;
Meister & Valiant, 2018; Diakonikolas et al., 2017b), robust
estimation of discrete structures (Steinhardt, 2017; Qiao &
Valiant, 2018; Steinhardt et al., 2018), and robust estimation
via sum-of-squares (Kothari & Steurer, 2017; Hopkins & Li,
2017; Kothari & Steinhardt, 2017).

Despite this progress, these recent theoretical papers typi-
cally focus on designing specialized algorithms for specific
settings (such as mean estimation or linear classification
for specific families of distributions) rather than on design-
ing general algorithms. The only exception is (Charikar
et al., 2017), which provides a robust meta-algorithm for
stochastic convex optimization in a similar setting to ours.
However, that algorithm (i) requires solving a large semidefi-
nite program and (ii) incurs a significant loss in performance
relative to standard training even in the absence of outliers.
On the other hand, (Diakonikolas et al., 2017a) provide a
practical implementation of the robust mean and covariance
estimation algorithms of (Diakonikolas et al., 2016a), but
do not consider more general learning tasks.

A number of papers (Nasrabadi et al., 2011; Nguyen & Tran,
2013; Bhatia et al., 2015; 2017) have proposed efficient
algorithms for a type of robust linear regression. However,
these works consider a restrictive corruption model that
only allows adversarial corruptions to the responses (but
not the covariates). On the other hand, (Balakrishnan et al.,
2017) studies (sparse) linear regression and, more broadly,
generalized linear models (GLMs) under a robustness model
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Figure 1. Illustration of the SEVER pipeline. We first use any machine learning algorithm to fit a model to the data. Then, we extract
gradients for each data point at the learned parameters, and take the singular value decomposition of the gradients. We use this to compute
an outlier score for each data point. If we detect outliers, we remove them and re-run the learning algorithm; otherwise, we output the
learned parameters.

similar to ours. The main issues with this algorithm are that
(i) it requires running the ellipsoid method (hence does
not scale) and (ii) it crucially assumes Gaussianity of the
covariates, which is unlikely to hold in practice.

In a related direction, Steinhardt et al. (2017) provide a
method for analyzing outlier detectors in the context of lin-
ear classification, either certifying robustness or generating
an attack if the learner is not robust. The outlier detector
they analyze is brittle in high dimensions, motivating the
need for the robust algorithms presented in the current work.
Later work by the same authors showed how to bypass a
number of common outlier detection methods (Koh et al.,
2018). We use these recent strong attacks as part of our
evaluation and show that our algorithm is more robust.

Concurrent Works. (Prasad et al., 2018) independently
obtained a robust algorithm for stochastic convex optimiza-
tion by combining gradient descent with robust mean estima-
tion. For the case of linear regression, (Diakonikolas et al.,
2019) provide efficient robust algorithms with near-optimal
error guarantees under various distributional assumptions
and establish matching computational-robustness tradeoffs.

2. Framework and Algorithm
We will consider stochastic optimization tasks, where there
is some true distribution p∗ over functions f : H → R,
and our goal is to find a parameter vector w∗ ∈ H mini-
mizing f(w) def

= Ef∼p∗ [f(w)]. Here we assume H ⊆ Rd
is a space of possible parameters. As an example, we con-
sider linear regression, where f(w) = 1

2 (w · x − y)
2 for

(x, y) drawn from the data distribution; or support vector
machines, where f(w) = max{0, 1− y(w · x)}.

To help us learn the parameter vector w∗, we have access
to a training set of n functions f1:n

def
= {f1, . . . , fn}. (For

linear regression, we would have fi(w) = 1
2 (w · xi − yi)

2,
where (xi, yi) is an observed data point.) However, unlike
the classical (uncorrupted) setting where we assume that
f1, . . . , fn ∼ p∗, we allow for an ε-fraction of the points to

be arbitrary outliers:

Definition 2.1 (ε-contamination model). Given ε > 0 and a
distribution p∗ over functions f : H → R, data is generated
as follows: first, n clean samples f1, . . . , fn are drawn from
p∗. Then, an adversary is allowed to inspect the samples
and replace any εn of them with arbitrary samples. The
resulting set of points is then given to the algorithm. We
call such a set of samples ε-corrupted (with respect to p∗).

Our theoretical results hold in the ε-contamination model,
the adversary is allowed to both add and remove points.
Our experimental evaluation uses corrupted instances in
which the adversary is only allowed to add corrupted points.
Additive corruptions essentially correspond to Huber’s con-
tamination model (Huber, 1964) in robust statistics.

Finally, we will often assume access to a black-box learner,
which we denote by L, which takes in functions f1, . . . , fn
and outputs a parameter vector w ∈ H. We want to stipulate
that L approximately minimizes 1

n

∑n
i=1 fi(w). For this

purpose, we introduce the following definition:

Definition 2.2 (γ-approximate critical point). Given a func-
tion f : H → R, a γ-approximate critical point of f ,
is a point w ∈ H so that for all unit vectors v where
w + δv ∈ H for arbitrarily small positive δ, we have that
v · ∇f(w) ≥ −γ.

Essentially, the above definition means that the value of f
cannot be decreased much by changing the input w locally,
while staying within the domain. The condition enforces
that moving in any direction v either causes us to leave H
or causes f to decrease at a rate at most γ. It should be
noted that whenH = Rd, our above notion of approximate
critical point reduces to the standard notion of approximate
stationary point (i.e., a point where the magnitude of the
gradient is small). We now define a γ-approximate learner:

Definition 2.3 (γ-approximate learner). A learning algo-
rithm L is called γ-approximate if, for any functions
f1, . . . , fn : H → R each bounded below on a closed
domainH, the output w = L(f1:n) of L is a γ-approximate
critical point of f(x) := 1

n

∑n
i=1 fi(x).
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In other words, L always finds an approximate critical point
of the empirical learning objective. We note that most com-
mon learning algorithms (such as stochastic gradient de-
scent) satisfy the γ-approximate learner property.

2.1. Algorithm and Theory

As outlined in Figure 1, our algorithm works by post-
processing the gradients of a black-box learning algorithm.
The basic intuition is as follows: we want to ensure that the
outliers do not have a large effect on the learned parameters.
Intuitively, for the outliers to have such an effect, their cor-
responding gradients should be (i) large in magnitude and
(ii) systematically pointing in a specific direction. We can
detect this via singular value decomposition–if both (i) and
(ii) hold then the outliers should be responsible for a large
singular value in the matrix of gradients, which allows us to
detect and remove them. This is shown more formally via
the pseudocode in Algorithm 1.

Algorithm 1 SEVER(f1:n,L, σ)
1: Input: Sample functions f1, . . . , fn : H → R,

bounded below on a closed domainH, γ-approximate
learner L, and parameter σ ∈ R+.

2: Initialize S ← {1, . . . , n}.
3: repeat
4: w ← L({fi}i∈S).
5: Let ∇̂ = 1

|S|
∑
i∈S ∇fi(w).

6: Let G = [∇fi(w)− ∇̂]i∈S be the |S| × d matrix of
centered gradients.

7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via

τi =
(
(∇fi(w)− ∇̂) · v

)2
.

9: S′ ← S
10: S ← FILTER(S′, τ, σ) . Remove some i’s with the

largest scores τi from S; see Algorithm 2.
11: until S = S′.
12: Return w.

Algorithm 2 FILTER(S, τ, σ)

1: Input: Set S ⊆ [n], vector τ of outlier scores, and
parameter σ ∈ R+.

2: If
∑
i τi ≤ c · σ, for some constant c > 1, return S .

We only filter out points if the variance is larger than an
appropriately chosen threshold.

3: Draw T from the uniform distribution on [0,maxi τi].
4: Return {i ∈ S : τi < T}.

Theoretical Guarantees. Our first theoretical result says
that as long as the data is not too heavy-tailed, SEVER will
find an approximate critical point of the true function f ,
even in the presence of outliers.

Theorem 2.1. Suppose that functions f1, . . . , fn, f : H →
R are bounded below on a closed domainH, and suppose
that they satisfy the following deterministic regularity condi-
tions: There exists a set Igood ⊆ [n] with |Igood| ≥ (1−ε)n
and σ > 0 such that CovIgood [∇fi(w)] � σ2I , w ∈ H,

and ‖∇f̂(w) − ∇f(w)‖2 ≤ σ
√
ε, w ∈ H, where f̂

def
=

(1/|Igood|)
∑
i∈Igood fi. Then our algorithm SEVER ap-

plied to f1, . . . , fn, σ returns a point w ∈ H that, with
probability at least 9/10, is a (γ +O(σ

√
ε))-approximate

critical point of f .

The key take-away from Theorem 2.1 is that the error guar-
antee has no dependence on the underlying dimension d. In
contrast, most natural algorithms incur an error that grows
with d, and hence have poor robustness in high dimensions.

In the supplementary material (Proposition B.5), we show
that under some mild niceness assumptions on p∗, the deter-
ministic regularity conditions are satisfied with high proba-
bility with polynomially many samples.

While Theorem 2.1 is very general and holds even for non-
convex loss functions, we might in general hope for more
than an approximate critical point. In particular, as a corol-
lary of Theorem 2.1, for convex problems we can guarantee
that we find an approximate global minimum.

Corollary 2.2. Suppose that f1, . . . , fn : H → R sat-
isfy the regularity conditions (i) and (ii), and that H is
convex with `2-radius r. Then, with probability at least
9/10, the output of SEVER satisfies the following: If
f is convex, the algorithm finds a w ∈ H such that
f(w)−f(w∗) = O((σ

√
ε+γ)r). If f is ξ-strongly convex,

the algorithm finds a w ∈ H such that f(w) − f(w∗) =
O
(
(εσ2 + γ2)/ξ

)
.

Practical Considerations. For our theory to hold, we
need to use the randomized filtering algorithm shown in
Algorithm 2 (which is essentially the robust mean estima-
tion algorithm of (Diakonikolas et al., 2017a)), and filter
until the stopping condition in line 1 of Algorithm 1 is sat-
isfied. However, in practice we found that the following
simpler algorithm worked well: in each iteration simply
remove the top p fraction of outliers according to the scores
τi, and instead of using a specific stopping condition, simply
repeat the filter for r iterations in total. This is the version
of SEVER that we use in our experiments in Section 3.

Concrete Applications. In the supplementary material
(Sections C and E), we provide several concrete applica-
tions of our general theorem, particularly involved with
optimization problems related to learning generalized linear
models. This includes hinge, logistic, and least-squares loss.
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2.2. Overview of SEVER and its Analysis

For simplicity of the exposition, we restrict ourselves to
the important special case where the functions involved are
convex. We have a probability distribution p∗ over convex
functions on some convex domain H ⊆ Rd and we wish
to minimize the function f = Ef∼p∗ [f ]. This problem is
well-understood in the absence of corruptions: Under mild
assumptions, if we take sufficiently many samples from p∗,
their average f̂ approximates f pointwise with high prob-
ability. Hence, we can use standard methods from convex
optimization to minimize f̂ , which will in turn minimize f .

In the robust setting, stochastic optimization becomes quite
challenging: Even for the most basic special cases of this
problem (e.g., mean estimation, linear regression) a single
adversarially corrupted sample can substantially change the
location of the minimum for f̂ . Moreover, naive outlier
removal methods can only tolerate a negligible fraction ε of
corruptions (corresponding to ε = O(d−1/2)).

A first idea to get around this obstacle is the following: con-
sider the standard (projected) gradient descent method used
to minimize f̂ . This algorithm would proceed by repeat-
edly computing the gradient of f̂ at appropriate points and
using it to update the current location. The issue is that
adversarial corruptions can completely compromise this al-
gorithm’s behavior, since they can substantially change the
gradient of f̂ at the chosen points. The key observation is
that approximating the gradient of f at a given point, given
access to an ε-corrupted set of samples, can be viewed as
a robust mean estimation problem. We can thus use the
robust mean estimation algorithm of (Diakonikolas et al.,
2017a), which succeeds under fairly mild assumptions about
the good samples. Assuming that the covariance matrix of
∇f(w), f ∼ p∗, is bounded, we can thus “simulate” gradi-
ent descent and approximately minimize f .

In summary, the first algorithmic idea is to use a robust
mean estimation routine as a black-box in order to robustly
estimate the gradient at each iteration of (projected) gradient
descent. This yields a simple robust method for stochas-
tic optimization with polynomial sample complexity and
running time in a very general setting.

We now describe SEVER (Algorithm 1) and the main insight
behind it. SEVER only calls our robust mean estimation
routine (which is essentially the filtering method of (Di-
akonikolas et al., 2017a) for outlier removal) each time the
algorithm reaches an approximate critical point of f̂ . There
are two main motivations for this approach: First, we empir-
ically observed that if we iteratively filter samples, keeping
the subset with the samples removed, then few iterations of
the filter remove points. Second, an iteration of the filter sub-
routine (Algorithm 2) is more expensive than an iteration of
gradient descent. Therefore, it is advantageous to run many

steps of gradient descent on the current set of corrupted sam-
ples between consecutive filtering steps. This idea is further
improved by using stochastic gradient descent, rather than
computing the average at each step.

An important feature of our analysis is that SEVER does
not use a robust mean estimation routine as a black box. In
contrast, we take advantage of the performance guarantees
of our filtering algorithm. The main idea is as follows:
Suppose that we have reached an approximate critical point
w of f̂ and at this step we apply our filtering algorithm. By
the performance guarantees of the latter algorithm we are in
one of two cases: either the filtering algorithm removes a
set of corrupted functions or it certifies that the gradient of
f̂ is “close” to the gradient of f at w. In the first case, we
make progress as we produce a “cleaner” set of functions.
In the second case, our certification implies that the point w
is also an approximate critical point of f and we are done.

3. Experiments
In this section we apply SEVER to regression and classifica-
tion problems. As our base learners, we used ridge regres-
sion and an SVM, respectively. We implemented the latter
as a quadratic program, using Gurobi (Gurobi Optimiza-
tion, Inc., 2016) as a backend solver and YALMIP (Löfberg,
2004) as the modeling language.

In both cases, we ran the base learner and then extracted gra-
dients for each data point at the learned parameters. We then
centered the gradients and ran MATLAB’s svds method
to compute the top singular vector v, and removed the top
p fraction of points i with the largest outlier score τi, com-
puted as the squared magnitude of the projection onto v
(see Algorithm 1). We repeated this for r iterations in total.
For classification, we centered the gradients (and removed
points) separately for each class, for improved performance.

We compared our method to six baseline methods. All but
one of these all have the same high-level form as SEVER (run
the base learner then filter top p fraction of points with the
largest score), but use a different definition of the score τi
for deciding which points to filter: noDefense: no points are
removed, l2: remove points where the covariate x has large
`2 distance from the mean, loss: remove points with large
loss (measured at the parameters output by the base learner),
gradient: remove points with large gradient (in `2-norm),
gradientCentered: remove points whose gradients are far
from the mean gradient in `2-norm, RANSAC: repeatedly
subsample points uniformly at random, and find the best
fit with the subsample. Then, choose the best fit amongst
this set of learners. Note that this method is not “filter-
based”.2 gradientCentered differs from our method in that

2In practice, heuristics must often be applied to choose the best
fit. In our experiments, we “cheat” slightly by in fact choosing
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it removes large gradients in terms of `2-norm, rather than
projection onto the top singular vector.

Both ridge regression and SVM have a single hyperparame-
ter (the regularization coefficient). We optimized this based
on the uncorrupted data and then kept it fixed throughout
our experiments. In addition, since the data do not already
have outliers, we added varying amounts of outliers (rang-
ing from 0.5% to 10% of the clean data); this process is
described in more detail below.

3.1. Ridge Regression

For ridge regression, we tested our method on a synthetic
Gaussian dataset as well as a drug discovery dataset. The
synthetic dataset consists of observations (xi, yi) where
xi ∈ R500 has independent standard Gaussian entries, and
yi = 〈xi, w∗〉+0.1zi, where zi is also Gaussian. We gener-
ated 5000 training and 100 test points. The drug discovery
dataset was obtained from the ChEMBL database and was
originally curated by Olier et al. (2018); it consists of 4084
data points in 410 dimensions; we split this into a training
and test set of 3084 and 1000 points, respectively.

Centering the data points decreased error noticeably on the
drug discovery dataset; scaling each coordinate to have vari-
ance 1 decreased error by a small amount on the synthetic
data. To center with outliers, we used the robust mean
estimation algorithm from (Diakonikolas et al., 2017a).

Adding outliers. We devised a method of generating out-
liers that fools all of the baselines while still inducing high
test error. At a high level, the outliers cause ridge re-
gression to output w = 0, so the model always predicts
y = 0. If (X, y) are the true data points and labels, this can
be achieved by setting each outlier point (Xbad, ybad) as
Xbad = 1

α·nbad
y>X and ybad = −β, where nbad is the

number of outliers we add, and α and β are hyperparam-
eters. If α = β, one can check that w = 0 is the unique
minimizer for ridge regression on the perturbed dataset. By
tuning α and β, we can then obtain attacks that fool all the
baselines while damaging the model (we tune α and β sepa-
rately to give an additional degree of freedom to the attack).
To increase the error, we also found it useful to perturb
each individual Xbad by a small amount of Gaussian noise.
We found that this method generated successful attacks as
long as the fraction of outliers was at least roughly 2% for
synthetic data, and roughly 5% for the drug discovery data.

Results. In Figure 2 we compare the test error of our
defense against the baselines as we increase the fraction ε of
added outliers. To avoid cluttering the figure, we only show

the best fit post-hoc by reporting the best error achieved by any
learner in this way. Despite strengthening RANSAC in this way,
we observe that it still has poor performance.

the performance of l2, loss, gradientCentered, RANSAC,
and SEVER; the performance of the remaining baselines is
qualitatively similar to the baselines in Figure 2.

For all filter methods, we iterate the defense r = 4 times,
each time removing the p = ε/2 fraction of points with
largest score. For consistency, for each defense and each
value of ε we ran the defense 3 times on fresh attack points
and display the median of the 3 test errors.

When the attack parameters α and β are tuned to defeat the
baselines (Figure 2 left and center), our defense substantially
outperforms the baselines as soon as we cross ε ≈ 1.5% for
synthetic data, and ε ≈ 5.5% for the drug discovery data. In
fact, most of the baselines do worse than not removing any
outliers at all (this is because they end up mostly removing
good data points, which causes the outliers to have a larger
effect). Even when α and β are instead tuned to defeat
SEVER, its resulting error remains small (Figure 2 right).

To understand why the baselines fail to detect the outliers, in
Figure 3 we show a representative sample of the histograms
of scores of the uncorrupted points overlaid with the scores
of the outliers, for both synthetic data and the drug discovery
dataset with ε = 0.1, after one run of the base learner. The
scores of the outliers lie well within the distribution of scores
of the uncorrupted points. Thus, it would be impossible for
the baselines to remove them without also removing a large
fraction of uncorrupted points.

Interestingly, for small ε all of the methods improve upon
the uncorrupted test error for the drug discovery data; this
appears to be due to a small number of natural outliers in
the data that all of the methods successfully remove.

3.2. Support Vector Machines

We describe our experimental results for SVMs; we tested
our method on a synthetic Gaussian dataset as well as a spam
classification task. Similarly to before, the synthetic data
consists of observations (xi, yi), where xi ∈ R500 has inde-
pendent standard Gaussian entries, and yi = sign(〈xi, w∗〉+
0.1zi), where zi is also Gaussian and w∗ is the true param-
eters (drawn at random from the unit sphere). The spam
dataset comes from the Enron corpus Metsis et al. (2006),
and consists of 4137 training points and 1035 test points
in 5116 dimensions. To generate attacks, we used the data
poisoning algorithm presented in Koh et al. (2018).

In contrast to ridge regression, we did not center and rescale
these datasets as it had a minimal effect on results.

In all experiments for this section, each method removed
the top p = n−+n+

min{n+,n−} ·
ε
r of highest-scoring points for

each of r = 2 iterations, where n+ and n− are the number
of positive and negative training points respectively. This
expression for p is chosen in order to account for class
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Figure 2. ε vs test error for baselines and SEVER on synthetic data and the drug discovery dataset.

Figure 3. A representative set of histograms of scores for baselines and SEVER on synthetic data and a drug discovery dataset. For the
baselines, the scores for the outliers (in red) are inside the bulk of the distribution of the scores of the true dataset (in blue) and thus hard
to detect, whereas the scores for the outliers assigned by SEVER are clearly within the tail of the distribution and easily detectable.

imbalance, which is extreme in the case of the Enron dataset
– if the attacker plants all the outliers in the smaller class,
then a smaller value of p would remove too few points, even
with a perfect detection method.

Synthetic results. We considered fractions of outliers
ranging from ε = 0.005 to ε = 0.03. By performing a
sweep across hyperparameters of the attack, we generated
56 distinct sets of attacks for each value of ε. In Figure 4, we
show results for the attack where the loss baselines does the
worst, as well as for the attack where our method does the
worst. When attacks are most effective against loss, SEVER
substantially outperforms it, nearly matching the test accu-
racy of 5.8% on the uncorrupted data, while loss performs
worse than 30% error at just a 1.5% fraction of injected out-
liers. Even when attacks are most effective against SEVER,
it still outperforms loss, achieving a test error of at most
9.05%. We note that other baselines behaved qualitatively
similarly to loss, results are displayed in the supplement.

Spam results. For results on Enron, we used the same
values of ε, and considered 96 distinct hyperparameters for
the attack. There was not a single attack that simultaneously
defeated all of the baselines, so in Figure 4 we show two
attacks that do well against different sets of baselines, as
well as the attack that performs best against our method.

At ε = 0.01, the worst performance of our method against
all attacks was 7.34%, in contrast to 13.43%− 20.48% for
the baselines (note that the accuracy is 3% in the absence of
outliers). However, at ε = 0.03, while we still outperform

the baselines, our error is relatively large—13.53%.

To investigate this further, we looked at all 48 attacks and
found that while on 42 out of 48 attacks our error never
exceeded 7%, on 6 of the attacks (including the attack in
Figure 4) the error was substantially higher. Figure 5 shows
what is happening. The leftmost figure displays the scores
assigned by SEVER after the first iteration, where red bars in-
dicate outliers. While some outliers are assigned extremely
large scores and thus detected, several outliers are correctly
classified and thus have 0 gradient. However, once we re-
move the first set of outliers, some outliers which were
previously correctly classified now have large score, as dis-
played in the middle figure. Another iteration of this process
produces the rightmost figure, where almost all the remain-
ing outliers have large score and will thus be removed by
SEVER. This demonstrates that some outliers may be hid-
den until other outliers are removed, necessitating multiple
iterations.

Motivated by this, we re-ran our method against the 6 attacks
using r = 3 iterations instead of 2 (and decreasing p as per
the expression above). After this change, all 6 of the attacks
had error at most 7.4%.

4. Discussion
We have presented an algorithm that has both strong theoret-
ical robustness in the presence of outliers, and performs well
on real datasets. SEVER is based on the idea that learning
can often be cast as the problem of finding an approximate
stationary point of the loss, which can in turn be cast as a
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Figure 4. ε vs test error for baselines and SEVER, for SVM on synthetic and Enron data.

Figure 5. An illustration of why multiple rounds of filtering are necessary: inliers in one round may become outliers in subsequent rounds.

robust mean estimation problem, allowing us to leverage
existing techniques for efficient robust mean estimation.

There are a number of directions along which SEVER could
be improved: first, it could be extended to handle more gen-
eral assumptions on the data; second, it could be strength-
ened to achieve better error bounds in terms of the fraction
of outliers; finally, one could imagine automatically learn-
ing a feature representation in which SEVER performs well.
We discuss each of these ideas in detail below.

More general assumptions. The main underlying as-
sumption on which SEVER rests is that the top singular
value of the gradients of the data is small. While this ap-
peared to hold true on the datasets we considered, a common
occurence in practice is for there to be a few large singular
values, together with many small singular values. It would
be desirable to design a version of SEVER that can take ad-
vantage of such phenomena. Also, it would be worthwhile to
do a more detailed empirical analysis across a wide variety
of datasets investigating properties that can enable robust es-
timation (the notion of resilience in (Steinhardt et al., 2018)
could provide a template for finding such properties).

Stronger robustness to outliers. In theory, SEVER has
a O(
√
ε) dependence in error on the fraction ε of outliers

(see Theorem 2.1). While without stronger assumptions
this is likely not possible to improve, in practice we would
prefer to have a dependence closer to O(ε). Therefore, it
would also be useful to improve SEVER to have such an
O(ε)-dependence under stronger but realistic assumptions.
Unfortunately, all existing algorithms for robust mean es-
timation that achieve error better than O(

√
ε) either rely

on strong distributional assumptions such as Gaussianity
(Diakonikolas et al., 2016a; Lai et al., 2016), or else re-

quire expensive computation involving e.g. sum-of-squares
optimization (Hopkins & Li, 2017; Kothari & Steinhardt,
2017; Kothari & Steurer, 2017). Improving the robustness
of SEVER thus requires improvements on the robust mean
estimation algorithm that SEVER uses as a primitive.

Learning a favorable representation. We note that
SEVER performs best when the features have small covari-
ance and strong predictive power. One situation in particular
where this holds is when there are many approximately in-
dependent features that are predictive of the true signal.

It would be interesting to try to learn a representation
with such a property. This could be done, for instance,
by training a neural network with some cost function that
encourages independent features (some ideas along these
general lines are discussed in Bengio (2017)). An issue
is how to learn such a representation robustly; one idea is
learn a representation on a dataset that is known to be free
of outliers, and hope that the representation is useful on
other datasets in the same application domain.

Beyond these specific questions, we view the gen-
eral investigation of robust methods (both empirically and
theoretically) as an important step as machine learning
moves forwards. Indeed, as machine learning is applied in
increasingly many situations and in increasingly automated
ways, it is important to attend to robustness considerations
so that machine learning systems behave reliably and avoid
costly errors. While the bulk of recent work has highlighted
the vulnerabilities of machine learning (e.g. (Szegedy et al.,
2014; Li et al., 2016; Steinhardt et al., 2017; Eykholt et al.,
2018; Chen et al., 2017)), we are optimistic that practical
algorithms backed by principled theory can finally patch
these vulnerabilities and lead to truly reliable systems.



SEVER: A Robust Meta-Algorithm for Stochastic Optimization

Acknowledgements
The authors were supported by NSF Awards CCF-1652862,
CCF-1617730, CCF-1650733, CCF-1741137, CCF-
1553288, CCF-1453261, CCF-1565235, ONR N00014-12-
1-0999, Sloan Research Fellowships, a Google Faculty Re-
search Award, an NSF Graduate Research Fellowship, a
Fannie & John Hertz Foundation Fellowship, a Future of
Life Institute grant, and a USC startup grant.

References
Awasthi, P., Balcan, M. F., and Long, P. M. The power of

localization for efficiently learning linear separators with
noise. In Symposium on Theory of Computing (STOC),
pp. 449–458, 2014.

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. Com-
putationally efficient robust sparse estimation in high
dimensions. In Proceedings of the 30th Conference on
Learning Theory, COLT 2017, pp. 169–212, 2017.

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D.
The security of machine learning. Machine Learning, 81
(2):121–148, 2010.

Bengio, Y. The consciousness prior. arXiv preprint
arXiv:1709.08568, 2017.

Bhatia, K., Jain, P., and Kar, P. Robust regression via hard
thresholding. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015, pp. 721–729, 2015.

Bhatia, K., Jain, P., Kamalaruban, P., and Kar, P. Consistent
robust regression. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pp. 2107–2116,
2017.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines. In International Con-
ference on Machine Learning (ICML), pp. 1467–1474,
2012.

Breunig, M. M., Kriegel, H., Ng, R. T., and Sander, J. Lof:
identifying density-based local outliers. In ACM sigmod
record, volume 29, pp. 93–104. ACM, 2000.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from
untrusted data. In Proceedings of STOC 2017, pp. 47–60,
2017.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In Proceedings
of FOCS’16, pp. 655–664, 2016a.

Diakonikolas, I., Kane, D. M., and Stewart, A. Robust
learning of fixed-structure bayesian networks. CoRR,
abs/1606.07384, 2016b.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimen-
sions) can be practical. In Proceedings of the 34th
International Conference on Machine Learning, ICML
2017, pp. 999–1008, 2017a. Full version available at
https://arxiv.org/abs/1703.00893.

Diakonikolas, I., Kane, D. M., and Stewart, A. List-
decodable robust mean estimation and learning mixtures
of spherical gaussians. CoRR, abs/1711.07211, 2017b.
URL http://arxiv.org/abs/1711.07211.

Diakonikolas, I., Kane, D. M., and Stewart, A. Learn-
ing geometric concepts with nasty noise. CoRR,
abs/1707.01242, 2017c. URL http://arxiv.org/
abs/1707.01242.

Diakonikolas, I., Kane, D. M., and Stewart, A. Statisti-
cal query lower bounds for robust estimation of high-
dimensional gaussians and gaussian mixtures. In 58th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, pp. 73–84, 2017d. Full version
available at http://arxiv.org/abs/1611.03473.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robustly learning a gaussian: Getting
optimal error, efficiently. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, pp. 2683–2702, 2018. Full version
available at https://arxiv.org/abs/1704.03866.

Diakonikolas, I., Kong, W., and Stewart, A. Efficient algo-
rithms and lower bounds for robust linear regression. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, pp. 2745–
2754, 2019.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A.,
Xiao, C., Prakash, A., Kohno, T., and Song, D. Robust
physical-world attacks on deep learning visual classifica-
tion. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Fischler, M. A. and Bolles, R. C. Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

http://arxiv.org/abs/1711.07211
http://arxiv.org/abs/1707.01242
http://arxiv.org/abs/1707.01242


SEVER: A Robust Meta-Algorithm for Stochastic Optimization

Gurobi Optimization, Inc. Gurobi optimizer reference man-
ual, 2016.

Hodge, V. and Austin, J. A survey of outlier detection
methodologies. Artificial intelligence review, 22(2):85–
126, 2004.

Hopkins, S. B. and Li, J. Mixture models, robustness, and
sum of squares proofs. CoRR, abs/1711.07454, 2017.
URL http://arxiv.org/abs/1711.07454.

Huber, P. J. Robust estimation of a location parameter. Ann.
Math. Statist., 35(1):73–101, 03 1964.

Klivans, A. R., Long, P. M., and Servedio, R. A. Learning
halfspaces with malicious noise. Journal of Machine
Learning Research (JMLR), 10:2715–2740, 2009.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning (ICML), 2017.

Koh, P. W., Steinhardt, J., and Liang, P. Stronger data
poisoning attacks break data sanitization defenses. arXiv
preprint arXiv:1811.00741, 2018.

Kothari, P. K. and Steinhardt, J. Better agnostic clustering
via relaxed tensor norms. CoRR, abs/1711.07465, 2017.
URL http://arxiv.org/abs/1711.07465.

Kothari, P. K. and Steurer, D. Outlier-robust moment-
estimation via sum-of-squares. CoRR, abs/1711.11581,
2017. URL http://arxiv.org/abs/1711.
11581.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In Proceedings of FOCS’16,
2016.

Li, B., Wang, Y., Singh, A., and Vorobeychik, Y. Data
poisoning attacks on factorization-based collaborative
filtering. In Advances in Neural Information Processing
Systems (NIPS), 2016.

Li, J., Absher, D., Tang, H., Southwick, A., Casto, A.,
Ramachandran, S., Cann, H., Barsh, G., Feldman, M.,
Cavalli-Sforza, L., and Myers, R. Worldwide human
relationships inferred from genome-wide patterns of vari-
ation. Science, 319:1100–1104, 2008.
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