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A. Proofs
Proof of claims on the toy problem from section 1.1.
These claims were already proved in (Tsipras et al., 2018).
We provide a proof here just for completeness.

Now, one computes

acc(havg) := P(X,Y ) (havg(X) = Y ) = P
(
Y wTX ≥ 0

)
= PY

(Y/(p− 1))
∑
j≥2

N (ηY, 1) ≥ 0


= P (N (η, 1/(p− 1)) ≥ 0) = P (N (0, 1/(p− 1)) ≥ −η)

= P (N (0, 1/(p− 1)) ≤ η) ≥ 1− e−(p−1)η2/2,

which is ≥ 1 − δ if η ≥
√

2 log(1/δ)/(p− 1). Likewise,
for ε ≥ η, it was shown in (Tsipras et al., 2018) that the
adversarial robustness accuracy of havg writes

accε(havg) := P(X,Y ) (Y havg(X + ∆x) ≥ 0 ∀‖∆x‖∞ ≤ ε)

= P(X,Y )

(
inf

‖∆x‖∞≤ε
Y wT (X + ∆x) ≥ 0

)
= P(X,Y )

(
Y wTX − ε‖Y w‖1 ≥ 0

)
= P(X,Y )

(
Y wTX − ε ≥ 0

)
= P(N (0, 1/(p− 1)) ≥ ε− η) ≤ e−(p−1)(ε−η)2/2.

Thus accε(havg) ≤ δ for ε ≥ η +
√

2 log(1/δ)/(p− 1),
which completes the proof.

Proof of Theorem 2. Let h : X → {1, . . . ,K} be a clas-
sifier, and for a fixed class label k ∈ {1, 2, . . . ,K}, de-
fine the set B(h, k) := {x ∈ X |h(x) 6= k}. Because
we only consider PX|Y -a.e continuous classifiers, each
B(h, k) is Borel. Conditioned on the event “y = k”,
the probability of B(h, k) is precisely the average error
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made by the classifier h on the class label k. That is,
acc(h|k) = 1−PX|k(B(h, k)). Now, the assumptions im-
ply by virtue of Lemma 1, that PX|k has the BLOWUP(c)
property. Thus, if ε ≥ σk

√
2 log(1/(PX|Y (B(h, k)) =

σk
√

2 log(1/ err(h|k) =: ε(h|k), then one has

accε(h|k) = 1− PX|k(B(h, k)εdgeo
)

≤ e
− 1

2σ2
k

(ε−σk
√

2 log(1/(PX|k(B(h,k)))2

= e
− 1

2σ2
k

(ε−σk
√

2 log(1/ err(h|k))2

= e
− 1

2σ2
k

(ε−ε(h|k))2

≤ e
− 1

2σ2
k

ε(h|k)2

= err(h|k), if ε ≥ 2ε(h|k).

On the other hand, it is clear that accε(h|k) ≤ acc(h|k) for
any ε ≥ 0 since B(h, k) ⊆ B(h, k)ε for any threat model.
This concludes the proof of part (A). For part (B), define
the random variable Z := d(X,B(h, k)) and note that

d(h|k) := EX|k[d(X,B(h, k))] =

∫ ∞
0

PX|k(Z ≥ ε)dε

=

∫ ε(h|k)

0

PX|k(Z ≥ ε)dε+

∫ ∞
ε(h|k)

PX|k(Z ≥ ε)dε

≤ ε(h|k) +

∫ ∞
ε(h|k)

PX|k(Z ≥ ε)dε, as PX|k(Z ≥ ε) ≤ 1

≤ ε(h|k) +

∫ ∞
ε(h|k)

e
− 1

2σ2
k

(ε−ε(h|k))2

dε, by inequality (10)

= ε(h|k) +
σk
√

2π

2

(∫ ∞
−∞

1

σk
√

2π
e
− 1

2σ2
k

ε2

dε

)
= ε(h|k) +

σk
√

2π

2
= σk

(√
log(1/ err(h|k)) +

√
π

2

)
,

which is the desired inequality.

Proof of Corollary 1. For flat geometry Xk = Rp; part
(A1) of Corollary 1 then follows from Theorem 2 and the
equivalence of `q norms, in particular

‖x‖2 ≤ p1/2−1/q‖x‖q, (19)

for all x ∈ Rp and for all q ∈ [1,∞]. Thus we have the

blowup inclusion B(h, k)εp
1/2−1/q

`2
⊆ B(h, k)ε`q . Part (B1)

is just the result restated for q = ∞. The proofs of parts
(A2) and (B2) trivially follow from the inequality (19).
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Remark 2. Note that the particular structure of the error
set B(h, k) did not play any part in the proof of Theorem
2 or of Corollary 1, beyond the requirement that the set be
Borel. This means that we can obtain and prove analogous
bounds for much broader class of losses. For example, it
is trivial to extend the theorem to targeted attacks, wherein
the attacker can aim to change an images label from k to a
particular k′.

Proof of Lemma 1. Let B be a Borel subset of X = (X , d)
with µ(B) > 0, and let µ|B be the restriction of µ onto B
defined by µ|B(A) := µ(A∩B)/µ(B) for every BorelA ⊆
X . Note that µ|B � µ with Radon-Nikodym derivative
dµ|B
dµ = 1

µ(B)1B . A direct computation then reveals that

kl(µ|B‖µ) =

∫
log

(
dµ|B
dµ

)
dµ|B

=

∫
B

log

(
1

µ(B)

)
dµ|B

= log(1/µ(B))µ|B(B) = log

(
1

µ(B)

)
.

On the other hand, if X is a random variable with law µ|B
and X ′ is a random variable with law µ|X\Bε , then the
definition of Bε ensures that d(X,X ′) ≥ ε µ-a.s, and so
by definition (7), one has W2(µ|B , µ|X\Bε) ≥ ε. Putting
things together yields

ε ≤W2(µ|B , µX\Bε) ≤W2(µ|B , µ) +W2(µ|X\Bε , µ)

≤
√

2c kl(µ|B‖µ) +
√

2c kl(µ|X\Bε‖µ)

≤
√

2c log(1/µ(B)) +
√

2c log(1/µ(X \Bε))

=
√

2c log(1/µ(B)) +
√

2c log(1/(1− µ(Bε)),

where the first inequality is the triangle inequality for
W2 and the second is the T2(c) property assumed in the
Lemma. Rearranging the above inequality gives√

2c log(1/(1− µ(Bε))) ≥ ε−
√

2c log(1/µ(B)),

Thus, if ε ≥
√

2c log(1/µ(B)), we can square both sides,
multiply by c/2 and apply the increasing function t 7→ et,
to get the claimed inequality.

B. Distributional No “Free Lunch” Theorem
As before, let h : X → Y be a classifier and ε ≥ 0 be a tol-
erance level. Let ãccε(h) denote the distributional robust-
ness accuracy of h at tolerance ε, that is the worst possible
classification accuracy at test time, when the conditional
distribution P is changed by at most ε in the Wasserstein-1
sense. More precisely,

ãccε(h) := inf
Q∈P(X×Y), W1(Q,P )≤ε

Q(h(x) = y), (20)

where the Wasserstein 1-distance W1(Q,P ) (see equation
(7) for definition) in the constraint is with respect to the
pseudo-metric d̃ on X × Y defined by

d̃((x′, y′), (x, y)) :=

{
d(x′, x), if y′ = y,

∞, else.

The choice of d̃ ensures that we only consider alternative
distributions that conserve the marginals πy; robustness is
only considered w.r.t to changes in the class-conditional
distributions PX|k.

Note that we can rewrite ãccε(h) = 1− ẽrrε(h),

ẽrrε(h) := sup
Q∈P(X×Y), W1(Q,P )≤ε

Q(X ∈ B(h, Y )), (21)

where is the distributional robustness test error and
B(h, y) := {x ∈ X |h(x) 6= y} as before. Of course, the
goal of a machine learning algorithm is to select a classifier
(perhaps from a restricted family) for which the average
adversarial accuracy accε(h) is maximized. This can be
seen as a two player game: the machine learner chooses
a strategy h, to which an adversary replies by choosing a
perturbed version Q ∈ P(X × Y) of the data distribution,
used to measure the bad event “h(X) 6= Y ”.

It turns out that the lower bounds on adversarial accuracy
obtained in Theorem 2 apply to distributional robustness as
well.

Corollary 2 (No “Free Lunch” for distributional robust-
ness). Theorem 2 holds for distributional robustness, i.e
with accε(h|k) replaced with ãccε(h|k).

Proof. See Appendix A.

Proof of Corollary 2. We will use a dual representation of
ãccε(h|k) to establish that ãccε(h|k) ≤ accε(h|k). That
is, distributional robustness is harder than adversarial ro-
bustness. In particular, this will allow us apply the lower
bounds on adversarial accuracy obtained in Theorem 2 to
distributional robustness as well!

So, for λ ≥ 0, consider the convex-conjugate of (x, y) 7→
1x∈B(h,y) with respect to the pseudo-metric d̃, namely
1λd̃x∈B(h,y) := sup

(x′,y′)∈X×Y
1x′∈B(h) − λd̃((x′, y′), (x, y)).

A straightforward computation gives

1λd̃x∈B(h,y) := sup
(x′,y′)∈X×Y

1x′∈B(h,y′) − λd̃((x′, y′), (x, y))

= max
B∈{B(h,y), X\B(h,y)}

sup
x′∈B

1x′∈B(h,y) − λd(x′, x)

= max(1− λd(x,B(h, y)),−λd(x,X \B(h, y)))

= (1− λd(x,B(h, y)))+.
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Now, since the transport cost function d̃ is nonnegative and
lower-semicontinuous, strong-duality holds (Villani, 2008;
Blanchet & Murthy, 2016) and one has

sup
W1(Q,P )≤ε

Q(h(X) 6= Y )

= inf
λ≥0

sup
Q

(Q(X ∈ B(h, Y )) + λ(ε−W1(Q,P )))

= inf
λ≥0

(
sup
Q

(Q(X ∈ B(h, Y ))− λW1(Q,P )) + λε

)
= inf
λ≥0

(E(x,y)∼P [1λd̃x∈B(h,y)] + λε)

= inf
λ≥0

(E(x,y)∼P [(1− λd(x,B(h, y)))+] + λε)

= P (X ∈ B(h, Y )λ
−1
∗ ),

where λ∗ = λ∗(h) ≥ 0 is the (unique!) value of λ at which
the infimum is attained and we have used the previous com-
putations and the handy formula

sup
Q

(Q(X ∈ B(h, Y ))− λW1(Q,P )) = EP [1λd̃X∈B(h,Y )],

which is a direct consequence of Remark 1 of (Blanchet &
Murthy, 2016). Furthermore, by Lemma 2 of (Blanchet &
Murthy, 2016), one has

ε ≤
∑
k

πk

∫
B(h,k)λ

−1
∗
d(x,B(h, k))dPX|k(x)

≤
∑
k

πkλ
−1
∗ PX|k(X ∈ B(h, k)λ

−1
∗ )

= λ−1
∗ P (X ∈ B(h, Y )λ

−1
∗ ) ≤ λ−1

∗ .

Thus λ−1
∗ ≥ ε and combining with the previous inequalities

gives

sup
Q∈P(X ), W1(Q,P )≤ε

Q(h(X) 6= Y ) ≥ P (X ∈ B(h, Y )λ
−1
∗ )

≥ P (X ∈ B(h, Y )ε).

Finally, noting that accε(h) = 1− P (X ∈ B(h, Y )ε), one
gets the claimed inequality ãccε(h) ≤ accε(h).


