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Abstract
We consider the problem of nonparametric re-
gression in the high-dimensional setting in which
P � N . We study the use of overlapping group
structures to improve prediction and variable se-
lection. These structures arise commonly when
analyzing DNA microarray data, where genes can
naturally be grouped according to genetic path-
ways. We incorporate overlapping group structure
into a Bayesian additive regression trees model us-
ing a prior constructed so that, if a variable from
some group is used to construct a split, this in-
creases the probability that subsequent splits will
use predictors from the same group. We refer to
our model as an overlapping group Bayesian addi-
tive regression trees (OG-BART) model, and our
prior on the splits an overlapping group Dirichlet
(OG-Dirichlet) prior. Like the sparse group lasso,
our prior encourages sparsity both within and be-
tween groups. We study the correlation structure
of the prior, illustrate the proposed methodology
on simulated data, and apply the methodology
to gene expression data to learn which genetic
pathways are predictive of breast cancer tumor
metastasis.

1. Introduction
Modern datasets often have numbers of predictors which
greatly exceed the number of observations. This complicates
traditional tasks, such as identifying important predictors or
forming predictions. To make headway on such problems,
it is essential that the data exhibit some additional structure.
Among such structures is the sparsity structure, in which
the response depends on a small number of predictors (Zou
& Hastie, 2005; Candes & Tao, 2007). When external data
sources are available one can leverage this additional infor-
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mation to help learn these structures. For example, when
covariates are associated to known graphical structures, such
as gene regulatory networks, one can use this information
to aid variable selection (Tibshirani & Taylor, 2011; Li &
Zhang, 2010; Chang et al., 2016).

In this paper, we focus on incorporation of grouping infor-
mation to learn sparse structures. Many tools for utilizing
grouping structures have been developed for linear mod-
els; the canonical example is the group lasso (Yuan & Lin,
2006), which builds a penalty using the grouping structure as
λ
∑G
g=1

√
Pg‖βg‖2 where βg denotes a collection of regres-

sion coefficients belonging to group g, ‖x‖2 = (
∑
i x

2
i )

1/2

is the `2 norm, and Pg is the number of predictors in group g.
This approach is easily generalized, leading to, e.g., grouped
SCAD estimators (Wang et al., 2007). Selection can be done
at two separate levels: selection of groups and selection of
predictors-within-groups. The group lasso gives selection at
the group level, while the sparse group lasso gives selection
at both levels simultaneously (Simon et al., 2013). Groups
in general can be overlapping (with a predictor belonging to
potentially more than one group) or non-overlapping (with
a predictor belonging to at-most one group). Overlapping
group structures have also been extensively studied in the
context of linear models, leading to tools such as the overlap-
ping group lasso (or SCAD) (Jacob et al., 2009). Bayesian
approaches, which incorporate grouping information into
an informative prior to select both groups and predictors-
within-groups, also abound (Rockova & Lesaffre, 2014; Xu
& Ghosh, 2015; Stingo & Vannucci, 2011).

There has been less attention paid to nonparametric regres-
sion models in the literature. In the context of genomic
data, flexible models are of interest due to the fact that
genetic effects are potentially nonlinear and may possess
complex interaction structures (Basu et al., 2018). We take
a Bayesian nonparametric approach to incorporating group-
ing information by embedding the grouping information
into a suitably-specified prior over the trees in a Bayesian
additive regression trees (BART) ensemble. The BART
framework, which gives a Bayesian variant of the popular
random forests (Breiman, 2001) and boosting (Freund et al.,
1999) algorithms, has become increasingly popular in recent
years due to its ease-of-use and high performance as a gen-
eral purpose prediction tool. BART has become particularly
popular in causal inference settings, where it consistently
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performs well for both prediction and uncertainty quantifi-
cation in the Atlantic Causal Inference Conference’s annual
data challenge (Dorie et al., 2017). Variants of BART have
recently been developed for survival analysis (Sparapani
et al., 2016), loglinear models (Murray, 2017), functional
data analysis (Starling et al., 2018), and interaction detection
(Du & Linero, 2019), among many other applications.

Previous analyses of the BART prior have suggested that a
promising strategy for performing variable selection is to
place a sparsity-inducing prior on the splitting probability
vector s = (s1, . . . , sP ), such that predictor j is selected
to construct a split a-priori with probability sj . This en-
codes sparsity into the model because, if s is (nearly) sparse,
then relatively few predictors in the model will be used to
build splits in the ensemble. Linero (2018) used a sparsity-
inducing Dirichlet prior on s to construct a prior over the tree
ensemble which splits on a small number of predictors, and
showed that this approach can be used to perform automatic
relevance determination (Neal, 1995) in high dimensional
settings. The theoretical properties of this approach were
studied by Linero & Yang (2018), who established posterior
concentration of the resulting BART posterior distribution
at within a logarithmic factor of the oracle minimax rate in
the high dimensional setting with logP growing nearly as
fast as N , even when the smoothness index α of the regres-
sion function and number of relevant predictors D are both
unknown (similar results are also obtained by Rockova &
van der Pas, 2017). Moreover, they show that BART has the
attractive theoretical property of automatically adapting to
low order interactions in the data.

Leveraging this strategy, we propose an overlapping group
BART model (OG-BART) which naturally incorporates the
grouping information into the model using what we refer
to as an overlapping group (OG) Dirichlet prior. The OG-
Dirichlet prior handles the overlapping and non-overlapping
structures in a convenient, unified, setting. This prior has
several close relatives in the literature, although we are not
aware of any models with precisely the same structure. In
the special case of non-overlapping groups, this reduces to
a Dirichlet-tree distribution described by Minka (1999) and
Dennis (1991), which is conjugate to multinomial sampling.
In the overlapping setting, the OG-Dirichlet distribution
is similar in structure to latent Dirichlet allocation (LDA)
models (Blei et al., 2003) in which the individual groups
correspond to “topics” and predictors as “words”, but differs
in that much of the within-topic sparsity is determined by
the grouping information.

A use case of interest for grouped variable selection is to
help select relevant genes, or pathways of genes, when ana-
lyzing gene expression data. In this case, one can build over-
lapping groups from the genetic pathways obtained from,
for example, the KEGG database (Kanehisa & Goto, 2000).

We illustrate our methodology first on simulated data in
which the response depends non-linearly on the predictors,
and demonstrate consistent gains when a correctly-specified
grouping structure is known, while simultaneously having
no loss in performance when an incorrect grouping structure
is applied. We then apply our methodology to the breast
cancer dataset compiled by Van De Vijver et al. (2002) to
identify genes and pathways of genes whose expression
levels are predictive of breast cancer tumor metastasis.

In Section 2, we describe the Bayesian additive regression
trees framework and review how to obtain sparsity by plac-
ing a prior on the splitting proportions of the ensemble.
In Section 3, we introduce our overlapping group Dirich-
let prior, study the correlation structure in the asymptotic
regime where the number of groups and predictors diverges,
and discuss specification of hyperparameters. In Section 4,
we illustrate the benefits of incorporating the grouping infor-
mation in both the overlapping and non-overlapping settings,
particularly focusing on the gains as the signal-to-noise ratio
decreases. In Section 5 we apply our methodology to ana-
lyze the breast cancer dataset of Van De Vijver et al. (2002).
We conclude in Section 6 with a discussion.

2. Review of BART Under Sparsity
2.1. Model and Notation

Let D = {Xi, Yi}Ni=1 consist of N iid replicates of a pre-
dictor vector Xi ∈ [0, 1]P and a response Yi ∈ R. For the
moment, we focus on the nonparametric regression model
Yi = f(Xi) + εi where εi

iid∼ Normal(0, σ2). Additionally,
we assume that the coordinates of Xi = (Xi1, . . . , XiP )
are associated to some number of G of groups. The group-
ing structure can be represented by a sparse binary matrix
M ∈ RG×P such thatMgj = 1 if predictor j lies in group g
and Mgj = 0 otherwise. We assume that the each predictor
is associated to at least one group, i.e.,

∑
gMgj ≥ 1, with

the non-overlapping setting corresponding to
∑
gMgj = 1

for all j. We assume that M is known a-priori.

A decision tree consists of a binary tree T , with leaf nodes
L and branch nodes B, such that each branch node b ∈ B
is associated to a decision rule of the form [xj(b) ≤ Cb], as
well as a left and right child node. Each leaf node ` ∈ L
is associated to a prediction µ`. For each branch b, if x is
associated to b then it is further associated to the left or right
child according as x satisfies the decision rule or not. We
denote the collection of all leaf node parameters asM. The
tree T then naturally corresponds to a partition of [0, 1]P

and to a stepwise-constant function g(·; T ,M) such that
g(x; T ,M) = µ` whenever x is associated to `.

The BART framework, introduced in the seminal work of
Chipman et al. (2010), models f as a sum of regression
trees. We write f ∼ BART to denote a BART prior on
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f , which is described by the following generative scheme.
Draws from the prior f ∼ BART can be represented as
f(x) =

∑T
t=1 g(x; Tt,Mt) where Tt is a random decision

tree andMt denotes the parameters associated to the leaf
nodes of Tt. According to this prior, the pairs (Tt,Mt) are
generated independently (conditional on hyperparameters)
as follows:

(i) Draw Tt from some distribution πT . This is usually a
branching process in which, sequentially at each depth
d, each node of depth d becomes a leaf node with
probability γ(1 + d)−β and becomes a branch node
otherwise, but other options exist (Lakshminarayanan
et al., 2014; Denison et al., 1998).

(ii) Conditional on Tt, draw the leaf parametersMt inde-
pendently as µt`

iid∼ πµ. For computational purposes,
πµ is usually a Normal(0, σ2

µ/T ) distribution, but can
vary depending on the structure of the response (Mur-
ray, 2017; Pratola et al., 2017; Linero et al., 2018).

We emphasize that this describes draws from the prior; sam-
pling from the posterior is typically carried out via Markov
chain Monte Carlo (Chipman et al., 2010). Additionally, in
view of Linero & Yang (2018), throughout this work we
will replace the decision trees in the ensemble with “soft”
decision trees (Irsoy et al., 2012) to improve predictive ac-
curacy when the underlying function is smooth. We assume
the splitting rule [xj(b) ≤ Cb] is sampled from the prior as
follows. First, the coordinate j(b) used in the splitting rule
is drawn according to a probability vector s = (s1, . . . , sP ).
Second, we setCb ∼ Uniform(Lj(b), Uj(b)) where (Lj , Uj)
define the minimal/maximal values of xj which can lead to
branch b.

More detailed descriptions of BART can be found in Kapel-
ner & Bleich (2016), Chipman et al. (2010), Chipman et al.
(2013), or Linero (2017). A benefit of the BART framework
is that there exist hyperparameter values which generalize
surprisingly well across problems. Unless otherwise stated,
we will use the default hyperparameter and hyperprior set-
tings described by Linero & Yang (2018).

2.2. Dirichlet Priors on Splitting Proportions

Our starting point for incorporating grouping structure into
the model is the observation that sparsity can be encoded
in s = (s1, . . . , sP ) (the prior probabilities of splitting on
each predictor). Without encoding any preference for spar-
sity in the model — say, by fixing sj = P−1 — Linero
(2018) showed that the BART prior encourages many pre-
dictors to be relevant, but to have only a small influence on
the response. In a large P asymptotic regime, this concen-
trates the prior on ensembles in which there are exactly as
many predictors as branches. We refer to this as the many

weak effects scenario, which is at odds with our desired
assumption of sparsity. To see how s can be used to encode
sparsity, if P = 4 and s = (1/2, 1/2, 0, 0), then the result-
ing f ∼ BART will depend on, at most, two predictors.
Exact sparsity, however, is not necessary, and we consider
the conditionally conjugate sparsity-inducing Dirichlet prior
s ∼ Dirichlet(α/P, . . . , α/P ). While s will not be exactly
sparse in this setting, this Dirichlet prior concentrates tightly
in neighborhoods of sparse vectors (Yang & Dunson, 2014),
which is sufficient to encourage exact sparsity in f(·).

Because of the conjugacy of the Dirichlet prior to multino-
mial sampling, this prior can be incorporated easily into ex-
isting Gibbs samplers by sampling from the full-conditional
of s, which (under our specific choice of πT ) is given by
s ∼ Dirichlet(α/P + c1, . . . , α/P + cP ) where cj denotes
the number of branch nodes in the ensemble which split on
coordinate j. Additionally, one can tune the prior to attain a
desired level of sparsity. It can be shown that, conditional
on the number of splitting rules B in the ensemble, the prior
on the number of predictors in the ensemble D is given
approximately by D − 1 ∼ Poisson(α

∑B−1
i=0 (α + i)−1)

(Linero, 2018).

Unfortunately, the Dirichlet prior is not suitable when we de-
sire positive correlations in the sj’s. As noted, for example,
by Blei & Lafferty (2006), the Dirichlet prior can encode
only negative correlations among the sj’s. This conflicts
with our desire to take advantage of grouping structure: if
predictor j is included in the model, and lies in the same
group as predictor k, we would like to increase rather than
decrease the probability of k being included in the model.

2.3. BART for Classification

The BART framework can be extended to classification
by using the data augmentation strategy of Albert & Chib
(1993). If the response Yi is binary, we introduce a la-
tent variable Ri such that Yi = I(Ri > 0). The Ri’s
are then modeled as Ri = f(Xi) + εi where εi ∼
Normal(0, 1). This induces a probit model, where [Yi |
Xi] ∼ Bernoulli(πi) where πi = Φ(f(Xi)) and Φ(·) is the
distribution function of a standard Gaussian random vari-
able. This model can be fit by adding the data augmentation
step Ri ∼ Normal(f(Xi), 1) (truncated according to the
value of Yi), and subsequently using Ri as the response in
all other steps of the Markov chain Monte Carlo algorithm
described in the supplementary material.

3. Overlapping Group Priors
The overlapping group Dirichlet (OG-Dirichlet) prior is
a generalization of the Dirichlet prior which allows for
positive correlations among the sj’s when they lie in
the same group. Recall that M ∈ RG×P denotes a
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sparse binary matrix such that Mgj = 1 if predictor
j lies in group g. The OG-Dirichlet prior sets sj =∑G
g=1 πg ωgj where πg and ωgj are assigned indepen-

dent Dirichlet priors ωg ∼ Dirichlet(ψqg1, . . . , ψqgP ) and
π ∼ Dirichlet(αλ1, . . . , αλG). Equivalently, we can write
s = Wπ where column g of W is given by (ωg1, . . . , ωgP ).
This corresponds to the following generative procedure for
sampling splitting rules: first, sample a group g according
to π; second, sample a variable j within group g according
to (ωg1, . . . , ωgP ).

We take the coefficients {qgj} = Q ∈ RG×P and
λ = (λ1, . . . , λG) to be fixed a-priori such that

∑
g λg =∑

j qgj = 1. Additionally, we take the coefficient qgj to
be non-zero only when Mgj = 1, with the understanding
that (say) the third component of a Dirichlet(1/2, 1/2, 0)
random vector has a point-mass distribution at 0. Hence W
will have the same sparsity pattern as M .

The OG-Dirichlet prior allows for sparsity at two separate
levels. First, the model will be sparse at the between-group
level when the parameter α is small. Second, the model
will be sparse at the within-group level when the parameter
ψ is small. As we will see in the simulation studies of
Section 4, the biggest benefits of our model occur when
there is high between-group sparsity and low within-group
sparsity, although we find benefits regardless of the level of
within-group sparsity.

The OG-Dirichlet prior is similar in structure to the latent
Dirichlet allocation (LDA) model (Blei et al., 2003), with π
playing the role of a distribution over topics and the columns
of W playing the role of the distribution of words within
each topic. Unlike LDA, we have further information on the
structural sparsity of the matrix W . This connection with
LDA, combined with the generative scheme described for
sampling j described above, gives one strategy for updating
(W,π) in a Gibbs sampler: we introduce latent variables Zb
for each branch b such that Zb = g if b was selected to be
drawn according to group g. Conditional on the Zb’s, we
now can take advantage of the conjugacy of the Dirichlet dis-
tribution to update W and π. A description of one possible
Gibbs sampler is given in the supplementary material.

3.1. Correlation Structure of the Prior

The primary problem with the Dirichlet prior for our pur-
poses is that it does not allow for positive correlation
among components of s. Intuitively, we expect that the
OG-Dirichlet prior should bypass this by inducing correla-
tions between sj and sk if predictors j and k share groups.
Roughly speaking, this correlation is determined by the mag-
nitude of ψ and the proportion of groups which in which
predictors j and k overlap. To make this precise, it is useful
to consider an asymptotic regime in which the number of
groups G and the number of predictors P are both large,

which is highly typical in practice. As (G,P )→∞ we let
λg = λ̃g/G with λg fixed, but impose that each predictor
j lies in finitely many groups with qgj fixed. Under these
conditions, the following result holds for the correlation
structure (a proof is given in the supplementary material).

Proposition 3.1. Under the asymptotic regime described in
the previous paragraph, we have

Cor(sj , sk) ∼
ψq>j Λqk√

ψq>j Λqj + q>j Λ1 ·
√
ψq>k Λqk + q>k Λ1

,

where Λ = diag(λ̃1, λ̃2, . . .), qj = (q1j , q2j , . . .), and qk =
(q1k, q2k, . . .).

This result has several interesting consequences. First, we
see that the asymptotic correlation structure is free of α,
which determines the level of sparsity between groups, al-
though the relative weights of the groups λg do play a role.
Second, ψ is directly involved in the correlation, with the
maximal correlation determined by the angle between qj
and qk under the inner-product induced by Λ, which will
often simply be the identity matrix.

Special cases of this result give further insight. Consider the
non-overlapping scenario in which qj and qk have exactly
one non-zero entry. If the predictors do not share the same
group, the correlation is 0, so that predictors which do not
share groups are asymptotically uncorrelated. On the other
hand, if the predictors lie in the same group g then we have
an asymptotic correlation of

ψqgjqgk√
ψq2gj + qgj ·

√
ψq2gk + qgk

=
ψ√

ψ + q−1gj ·
√
ψ + q−1gk

.

In Section 3.2 we recommend, as a possible default, setting
qgj = (GjPg)

−1 where Gj is the number of groups predic-
tor j lies in and Pg is the (modified) size of group g. For
the non-overlapping setting, this gives ψ/(ψ + Pg) for the
correlation. When ψ is large relative to the group size, we
have a correlation of 1.

3.2. The Role of the Hyperparameters

The hyperparameters α and ψ, as well as the weights λ and
Q, play a large role in the determining the properties of
the OG-Dirichlet prior. The parameter α determines the
between-group sparsity level. As α → 0, the Dirichlet
distribution π ∼ Dirichlet(αλ1, . . . , αλG) degenerates to
a Categorical(λ1, . . . , λG) distribution, so that when α is
small we will only have one active group; conversely, as
α→∞, the distribution of π converges to a point mass at
(λ1, . . . , λG), so that the groups are selected according to
prior weights. The parameter ψ determines the within-group
sparsity, with ψ → 0 causing ωg = (ωg1, . . . , ωgP ) to



Grouped BART

converge to a Categorical(qg1, . . . , qgP ) distribution, and
ψ →∞ causing ωg → (qg1, . . . , qgP ).

By determining the within and between group sparsity levels,
α and ψ also determine the sensitivity to false positives
and negatives. For large α’s, we expect many groups to
be relevant, inflating the probability of falsely flagging a
group as relevant. Small values of α make it more difficult
for groups to enter, increasing the risk of false negatives.
Similarly, when ψ is large, selected groups will tend to have
all of their predictors included, inflating the risk of false
positives when only a small number of variables within a
relevant group are active. We elect to place exponential
priors on the parameters α and ψ to allow for the data to
determine reasonable values for these quantities. The impact
of the prior is assessed in Section 4.

There are many options for the choice of λ and Q, depend-
ing on what prior information is available about the role of
the groups. There are two situations we consider. First, it
may be the case that all groups are, a priori, thought to exert
an equal amount of influence on the response. In this case,
a reasonable choice is λ = (1/G, . . . , 1/G)>. Regardless
of the choice of Q, this results in predictors which are con-
tained in small groups having an inflated importance. For
example, if P = 1000, G = 10, and there exists a group
with only one predictor, then this expresses the opinion a-
priori that this predictor will account for, on average, 1/10th

of the splits in the ensemble.

Alternatively, we might wish for our prior to reflect the opin-
ion that all predictors in the ensemble account for, on aver-
age, 1/P th of the splits in the ensemble, i.e., E(W )E(π) =
(1/P )1. Additionally, we may feel that each group should
have prior importance proportional to its size. For each
predictor j let Gj denote the number of groups that j be-
longs to and, for each group g, let Pg =

∑
j∈g G

−1
j , where

we abuse notation and let j ∈ g denote that predictor j
is in group g. We then consider λg = Pg/P and, when
j ∈ g, we take qgj = (GjPg)

−1. For each j we then have
E(sj) =

∑
g λgqgj =

∑
g:j∈g

Pg

P
1

GjPg
= P−1 as desired.

It is difficult to strike a balance between penalizing the
groups and penalizing the individual predictors. Our experi-
ence is that, when λ andQ are chosen so thatE(sj) = P−1,
this results in the model favoring groups with many pre-
dictors. Alternatively, under the alternative weights with
λg = G−1, predictors which appear in many groups and/or
small groups are favored. These general trends were ob-
served by Obozinski et al. (2011), who studied a variety of
issues related to selection of weights for the overlapping
grouped lasso, and ultimately resolved this issue for the
breast cancer dataset by only considering groups with fewer
than 50 variables. In both our simulation study and for the
real data, we use the above specification with λg = Pg/P
and qgj = (GjPg)

−1, with the understanding that this will

tend to favor large groups.

4. Simulation Study
4.1. Non-overlapping Groups

We first evaluate the OG-BART model in the non-
overlapping setting. We simulated a non-overlapping group
structure in the following manner. We first simulated a prob-
ability vector V = (V1, . . . , VG) according to a truncated
stick breaking distribution in which Vk = V ′k

∏
j<k(1−V ′j )

where V ′5000 = 1 and V ′k
indep∼ Beta(0.01, 0.99k). Here, V

is a truncation of the two parameter Poisson-Dirichlet pro-
cess of Pitman & Yor (1997). This generative scheme results
in several large groups, but is “heavy tailed” in the sense
that there are also a large number of small groups, which
is typical when the groups correspond to genetic pathways.
Each predictor Xj then appeared in a given group k with
probability Vk. The same grouping structure was used in
all simulations, although which groups were relevant varied
depending on the simulation scenario.

We take f0(x) to be the function introduced by Friedman
(1991) given by f0(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 +
10x4+5x5. Rather than using the coordinates 1, . . . , 5, how-
ever, we select a group of size Pg ∈ {5, 50}. The Pg = 5
setting allows us to examine the situation in which every pre-
dictor in the group is relevant, so that the response exhibits
sparsity between groups but not sparsity within groups. The
Pg = 50 setting allows us to examine what happens when
there is sparsity both within and between groups. We then
set Yi = f(Xi) + σεi with εi

iid∼ Normal(0, 1). The pre-
dictors Xi were given marginal Uniform(0, 1) distributions
with a Gaussian copula to induce correlated within group.
We set Cor(Φ−1(Xij),Φ

−1(Xik)) = 0.63 if Xij and Xik

are in the same group, and 0 otherwise. We set λg = Pg/P
and qgj = 1/(GjPg) as described in Section 3.2. We con-
sidered a grid of σ on [1, 10] and the experiment was re-
peated 100 times for each σ on the grid.

We monitor the number of false positives (FP), the
number of false negatives (FN), and the integrated root
mean squared error (RMSE) ‖f0 − f̂‖2, where ‖g‖2 =
(
∫
g2 dF0)1/2 and F0 denotes the true distribution of the

Xi’s. Additionally, we monitor the F1 score, which we
define as F1 = 2TP

2TP+FN+FP where TP denotes the num-
ber of true positives. This quantity, which is the har-
monic mean of the precision TP /(TP + FP) and the recall
TP /(TP + FN), is a commonly used summary for how
well a variable selection procedure works (see, e.g., Nan &
Yang, 2014).

Competing methods: We primarily focus on the compari-
son between BART with the OG-Dirichlet prior (OG-BART)
and BART with the Dirichlet prior (SBART). In both cases,
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Figure 1. Results for the simulation of Section 4.1. The top panel
gives results when the relevant group contains Pg = 5 relevant
predictors, while the lower panel gives results when the relevant
group contains Pg = 50 predictors. “SB” denotes SBART, “OG-
Correct(a, b)” denotes OG-BART with the correct grouping struc-
ture and prior means a and b for α and ψ, and “OG-Wrong” de-
notes the use of the incorrect grouping structure.

we use soft decision trees in place of traditional decision
trees to improve performance. We narrow our focus be-
cause SBART has been shown to greatly outperform the
relevant competitors on this particular example (Linero &
Yang, 2018). We first allow OG-BART to either have a
correctly specified grouping structure or an incorrectly spec-
ified grouping structure. The incorrectly specified grouping
structure is generated randomly using the same procedure
used to generate the correct grouping structure. In each case,
we give the hyperparameters α,ψ independent exponential
priors, with means of either 1 or 10. For the SBART prior,
the sparsity parameter α is given an Exponential(1) prior.
Finally, for the purpose of comparing with another approach
which takes advantage of the grouping structure, we also
considered the overlapping grouped lasso (Jacob et al., 2009)
as implemented in the package grpregOverlap, but the
results are omitted due to generally poor performance. To
get a sense of the performance of the overlapping group

lasso on this simulation, see Section 4.2.

Results: Results for the simulation are given in Figure 1. To
aide visualization, splines were fit to the results of the simu-
lation. As before, we set λg = Pg/G and qgj = 1/(GjPg).
When Pg = 5, we see a very large benefit to using correct
grouping information, as the F1 score is close to 1 even
for small signal levels and the RMSE is small. Worse re-
sults are obtained when the grouping structure is incorrectly
specified but, conveniently, they are no worse than the usual
SBART model. When Pg = 50, the overall trends remain
the same for F1, FN, and RMSE, while FP exhibits slightly
different behavior. First, we see that the correctly specified
group prior, combined with the mean 10 exponential prior,
results in a larger number of false positives. This behavior
is quite curious, as a correct prior structure gives worse per-
formance on this metric. This occurs because larger values
of ψ discourage sparsity within group, which leads to the
selection of predictors which are in the active group but do
not influence the response. To confirm that this behavior
is to be expected when there is both sparsity within and
between groups, and is not a bug of our model, we study
this behavior in the context of the much simpler “normal
means” problem in the supplementary material.

Overall, OG-BART performs well, and can be safely used
even when the grouping structure is incorrectly specified.
In general, the method performs best when there is sparsity
between groups and density within groups. We also observe
that hyperpriors for α and ψ determine the tradeoff between
false positives and false negatives as described in Section 3.2.

4.2. Overlapping Groups

We next consider the setting in which predictors are mem-
bers of potentially many groups. We simulate V as be-
fore, but instead of having each predictor belong to a single
group we instead sample the number of groups Xj from a
Poisson(1) distribution. When predictor j belongs to no
groups, we take Xj to belong to a group of its own.

We draw the regression function f(x) from an SBART prior
f ∼ SBART with 50 trees, in which sj = 1/9 for a subset
of Xj’s in a group of size 46, and sj = 0 for all other
j’s. For each simulated dataset, we sampled f(x) from
the prior and generated Yi = f(Xi) + σεi. As before, we
set P = 1000 for the number of predictors and N = 250
for the number of observations. As in the nonoverlapping
setting, we monitor the F1, FN, FP, and RMSE statistics.
We varied σ on a grid from 0.1 to 1 evenly spaced on the
log scale and replicated the experiments 100 times.

Competing methods: In addition to SBART and OG-
BART, we also display results for the overlapping group
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Figure 2. Simulation results for the simulation of Section 4.2, with
the same conventions as Figure 1.

lasso (Jacob et al., 2009) with tuning parameters selected by
cross validation. We attempted to fit variants of the sparse
overlapping group lasso to allow for within-group sparsity,
but were unsuccessful with publicly available software for
the simulated data; for a comparison with the bi-level MCP
procedure of Breheny & Huang (2009), see Section 5.

Results: Results are given in Figure 2. Speaking roughly,
the trends are quite similar to what is observed in the pre-
vious simulation. When the group structure is correctly
specified, we see an improvement in F1, FN, and RMSE,
while when the group structure is not correctly specified we
do not pay any price. The overlapping group lasso performs
extremely poorly across all metrics, and was omitted from
the FN and FP plots due to dominating the figures. Part of
the reason for this poor performance is that the overlapping
group lasso does not perform within-group selection. We
again observe that larger values of E(α) and E(ψ) result in
larger false positive rates. This experiment also considers
substantially lower signal levels than the previous one, with
the F1 score decaying nearly to 0 for larger values of σ.

5. Application to Breast Cancer Data
We now illustrate the use of OG-BART on the gene expres-
sion dataset of Van De Vijver et al. (2002). This dataset
consists of gene expression data on 8, 141 genes and a total
of N = 295 breast cancer tumors, of which 217 were non-
metastatic and 78 were metastatic. We use a preprocessed
version of this dataset from Jacob et al. (2009) in which
groups are formed from a subset of the canonical pathways
of MSigDB (Subramanian et al., 2005), giving G = 637
pathways. The data is further subset by considering only
genes which are included in these pathways, giving a subset
of P = 3510 genes. We use the data augmentation strat-

egy described in Section 2.3 to fit a probit model to the
probability of a tumor being metastatic.

We fit the model using several different settings for the hy-
perparameters and hyperpriors for α and ψ, with the weights
λg = PG/P and qgj = (GjPg)

−1 described in Section 3.2.
We report results for the setting α ∼ Exp(1) and ψ = 1, as
this leads to sparser/more interpretable models. A compari-
son of the predictive performance across different hyperpa-
rameter settings suggests that somewhat larger values, say
α,ψ ∼ Exp(10), leads to better predictive performance, but
typically includes a larger number of predictors and groups.

Before proceeding, we remark that there is not overwhelm-
ing evidence for any particular gene being active, in the
sense that there are many disjoint sparse models which pre-
dict the response well. This is caused by the combination
of (a) a massive number of genes and pathways (many of
which are marginally correlated with the response) with (b) a
prior which encourages a high degree of within and between
group sparsity and (c) a small sample size. With that in mind,
the model flags the gene TK1 (thymidine kinase 1) as hav-
ing a relatively large probability (≈ 57%) of being included
in the model. Thymidine kinase serum levels are known
to be elevated in progressive breast cancers (Topolcan &
Holubec Jr, 2008). The model also suggests the relevance
of TXNRD1 (thioredoxin reductase 1, ≈ 25%), which is
also known to be associated with prognosis of breast can-
cer. Suppression of thioredoxin reductase enzymes has been
suggested as a promising avenue for anti-cancer treatments
(Cadenas et al., 2010).

We now use the posterior of OG-BART to analyze the in-
formation in the genetic pathways. We consider a pathway
g as active if Zb = g for some branch b in the ensemble.
The top two pathways selected by OG-BART both account
for six of the top ten genes selected in the model, includ-
ing TK1 and TXNRD1. As these two pathways overlap
considerably (overlap coefficient 85%), we discuss them
jointly. The marginal probability of at least one of these two
pathways being active was 62%. To get a sense of why these
pathways were selected, we give in Figure 3 a histogram of
the P -values obtained by a Wilcoxon signed rank test com-
paring the values of each predictor for Yi = 0 and Yi = 1.
We see that this pathway contains many genes which are
differentially expressed in metastatic tumors. Consequently,
the model favors the inclusion of this pathway.

Figure 3 also includes the third most commonly occurring
pathway in the ensemble. Interestingly, while there is no
strong evidence of any single gene being active, the model
still includes this pathway frequently. This pathway consists
primarily of genes coding for ribosomal proteins, which are
thought to play an important role in cancer development
(Goudarzi & Lindström, 2016). The P -values from the
Wilcoxon signed ranked tests show that many of the genes
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Figure 3. Histogram of P -values from Wilcoxon’s signed rank test
for each predictor in the first and second most frequently occur-
ring pathways (top), the third most frequently occurring pathway
(middle), and all remaining pathways (bottom).

in this pathway are marginally correlated with the response;
in fact, it has a larger frequency of P -values below 10−2

than the first two pathways. Due to correlation between the
genes in this pathway, however, it is difficult for any single
gene from this pathway to stand out when analyzed jointly
with the SBART model.

Next, we give a sanity check for OG-BART, and demon-
strate the need for methods which allow for non-linearities,
by assessing the predictive performance of the overlapping
group lasso, SBART, and OG-BART. Additionally, we con-
sider the bi-level MCP selection procedure (cMCP) of Bre-
heny & Huang (2009), which like OG-BART allows for se-
lection both within and between groups. We perform 5-fold
cross validation, replicated 5 times, and compute the heldout
deviance D = −2

∑N
i=1[Yi log π̂i + (1− Yi) log(1− π̂i)].

Following Jacob et al. (2009), we balance the data by
adding two replicates (three in total) for each metastatic
tumor (keeping all replicates in the same fold during cross-
validation). Results for each method are given in Table 1.
First, we see that the overlapping group lasso performs rela-
tively poorly, giving some evidence for the need for methods
which allow non-linearities; additionally, the fact that cMCP
outperforms the overlapping group lasso suggests that taking
performing group-level selection alone is insufficient to ob-
tain good performance. Second, we see that the OG-BART
performs somewhat better than SBART, with OG-BART
also outperforming SBART on all five splits.

Method Average Heldout Deviance

OG-BART 620
SBART 646 (0.005)
OG-Lasso 797 (< 0.0001)
cMCP 698 (0.014)

Table 1. Average deviance on held-out data computed using 5 repli-
cations of 5-fold cross validation; parentheses gives the P -value
obtained from a paired t-test comparing to OG-BART.

6. Discussion
In this paper, we incorporated grouping information into
nonparametric prediction and variable selection tasks using
the OG-Dirichlet prior with Bayesian additive regression
trees. While we have developed the methodology in a man-
ner specific to BART, we believe that these methods should
also be applicable to greedy decision-tree construction algo-
rithms such as boosting by using the prior as a penalization
term. Such extensions could provide large computational
benefits. Additionally, we have used Markov chain Monte
Carlo to fit our models; an attractive alternative, which
scales to large datasets, is the accelerated Bayesian addi-
tive regression trees framework recently proposed by He
et al. (2019), which allow for BART models to be fit in time
comparable to the popular xgboost package. Using such
modifications could allow for applications to much larger
data than we have considered here.

This paper has focused only on prior information in the
form of groups. Other forms of prior information will be
examined in later works. In the case of genetic pathways,
we have only taken into account whether a gene is in a
specific pathway or not. This is not the only information
available, however, as genetic pathways may also have a
graphical structure in which the genes correspond to vertices
of the graph. Use of network structure has been observed
to further improve the performance of variable selection
methods for linear models (Chang et al., 2016; Li & Li,
2008). While Dirichlet type priors are well-suited to the
grouping structures studied here, they are not well-suited to
encoding structures expressed by general undirected graphs.
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