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Abstract
Designing an incentive compatible auction that
maximizes expected revenue is an intricate task.
The single-item case was resolved in a seminal
piece of work by Myerson in 1981. Even af-
ter 30-40 years of intense research the problem
remains unsolved for seemingly simple multi-
bidder, multi-item settings. In this work, we initi-
ate the exploration of the use of tools from deep
learning for the automated design of optimal auc-
tions. We model an auction as a multi-layer neural
network, frame optimal auction design as a con-
strained learning problem, and show how it can
be solved using standard pipelines. We prove gen-
eralization bounds and present extensive experi-
ments, recovering essentially all known analytical
solutions for multi-item settings, and obtaining
novel mechanisms for settings in which the opti-
mal mechanism is unknown.

1. Introduction
Optimal auction design is one of the cornerstones of eco-
nomic theory. It is of great practical importance, as auctions
are used across industries and by the public sector to or-
ganize the sale of their products and services. Concrete
examples are the US FCC Incentive Auction, the sponsored
search auctions conducted by web search engines such as
Google, or the auctions run on platforms such as eBay.
In the standard independent private valuations model, each
bidder has a valuation function over subsets of items, drawn
independently from not necessarily identical distributions.
It is assumed that the auctioneer knows the distributions and
can (and will) use this information in designing the auction.
A major difficulty in designing auctions is that valuations
are private and bidders need to be incentivized to report
their valuations truthfully. The goal is to learn an incentive
compatible auction that maximizes revenue.
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In a seminal piece of work, Myerson resolved the optimal
auction design problem when there is a single item for sale
(Myerson, 1981). Quite astonishingly, even after 30-40
years of intense research, the problem is not completely
resolved even for a simple setting with two bidders and two
items. While there have been some elegant partial charac-
terization results (Manelli & Vincent, 2006; Pavlov, 2011;
Haghpanah & Hartline, 2015; Giannakopoulos & Koutsou-
pias, 2015; Daskalakis et al., 2017; Yao, 2017), and an
impressive sequence of recent algorithmic results (Cai et al.,
2012b;a; 2013; Hart & Nisan, 2017; Babaioff et al., 2014;
Yao, 2015; Cai & Zhao, 2017; Chawla et al., 2010), most
of them apply to the weaker notion of Bayesian incentive
compatibility (BIC). Our focus is on designing auctions that
satisfy dominant-strategy incentive compatibility (DSIC),
which is the more robust and desirable notion of incentive
compatibility.

A recent, concurrent line of work started to bring in tools
from machine learning and computational learning theory to
design auctions from samples of bidder valuations. Much of
the effort here has focused on analyzing the sample complex-
ity of designing revenue-maximizing auctions (see e.g. Cole
& Roughgarden (2014); Mohri & Medina (2016)). A hand-
ful of works has leveraged machine learning to optimize dif-
ferent aspects of mechanisms (Lahaie, 2011; Dütting et al.,
2014; Narasimhan et al., 2016), but none of these offers the
generality and flexibility of our approach. There have also
been computational approaches to auction design, under the
agenda of automated mechanism design (Conitzer & Sand-
holm, 2002; 2004; Sandholm & Likhodedov, 2015), but
these are limited to specialized classes of auctions known to
be incentive compatible.

Our contribution. In this work we provide the first, general
purpose, end-to-end approach for solving the multi-item auc-
tion design problem. We use multi-layer neural networks
to encode auction mechanisms, with bidder valuations be-
ing the input and allocation and payment decisions being
the output. We then train the networks using samples from
the value distributions, so as to maximize expected revenue
subject to constraints for incentive compatibility.

To be able to tackle this problem using standard pipelines,
we restate the incentive compatibility constraint as requiring
the expected ex post regret for the auction to be zero. We
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adopt the Augmented Lagrangian Method to solve the result-
ing constrained optimization problem, where in each itera-
tion we push gradients through the regret term, by solving
an inner optimization problem to find the optimal misreport
for each bidder and valuation profile.

We describe network architectures for bidders with additive,
unit-demand, and combinatorial valuations, and present ex-
tensive experiments that show that:

(a) Our approach is capable of recovering essentially all
analytical solutions for multi-item settings that have been
obtained over the past 30-40 years by finding auctions with
almost optimal revenue and vanishingly small regret that
match the allocation and payment rules of the theoretically
optimal auctions to surprising accuracy.

(b) Our approach finds high-revenue auctions with negligi-
bly small regret in settings in which the optimal auction is
unknown, matching or outperforming state-of-the-art com-
putational results (Sandholm & Likhodedov, 2015).

(c) Whereas the largest setting presently studied in the an-
alytical literature is one with 2 bidders and 2 items, our
approach learns auctions for larger settings, such as a 5 bid-
der, 10 items setting, where optimal auctions have been hard
to design, and finds low regret auctions that yield higher
revenue than strong baselines.

We also prove a novel generalization bound, which implies
that, with high probability, for our architectures high rev-
enue and low regret on the training data translates into high
revenue and low regret on freshly sampled valuations.

Discussion. By focusing on expected ex post regret we
adopt a quantifiable relaxation of dominant-strategy incen-
tive compatibility, first introduced in (Dütting et al., 2014).
Our experiments suggest that this relaxation is an effective
tool for approximating the optimal DSIC auctions.

While not strictly limited to neural networks our approach
benefits from the expressive power of neural networks and
the ability to enforce complex constraints in the training
problem using the standard pipeline. A key advantage of our
method over state-of-the-art automated mechanism design
approaches (such as (Sandholm & Likhodedov, 2015)) is
that we optimize over a broader class of not necessarily
incentive compatible mechanisms, and are only constrained
by the expressivity of the neural network architecture.

While the original work on automated auction design framed
the problem as a linear program (LP) (Conitzer & Sandholm,
2002; 2004), follow-up works have acknowledged that this
approach has severe scalablility issues as it requires a num-
ber of constraints and variables that is exponential in the
number of agents and items (Guo & Conitzer, 2010). We
find that even for small setting with 2 bidders and 3 items
(and a discretization of the value into 5 bins per item) the

LP takes 69 hours to complete since the LP needs to handle
≈ 105 decision variables and ≈ 4 × 106 constraints. For
the same setting, our approach found an auction with lower
regret in just over 9 hours (see Table 1).

Further related work. Prior sample complexity results
are available for the design of optimal single-item auctions
(Cole & Roughgarden, 2014; Mohri & Medina, 2016; Huang
et al., 2015), single bidder, multi-item auctions (Dughmi
et al., 2014), general single-parameter settings (Morgen-
stern & Roughgarden, 2015), combinatorial auctions (Bal-
can et al., 2016; Morgenstern & Roughgarden, 2016; Syrgka-
nis, 2017), and allocation mechanisms (both with and with-
out money) (Narasimhan & Parkes, 2016). Several other
research groups have recently picked up deep nets and in-
ference tools and applied them to economic problems, dif-
ferent from the one we consider here. These include the
use of neural networks to predict behavior of human par-
ticipants in strategic scenarios (Hartford et al., 2016), an
automated equilibrium analysis of mechanisms (Thompson
et al., 2017), deep nets for causal inference (Hartford et al.,
2017; Louizos et al., 2017), and deep reinforcement learning
for solving combinatorial games (Raghu et al., 2018).1

2. Auction Design as a Learning Problem
Auction design basics. We consider a setting with a set of
n bidders N = {1, . . . , n} and m items M = {1, . . . ,m}.
Each bidder i has a valuation function vi : 2M → R≥0,
where vi(S) denotes how much the bidder values the subset
of items S ⊆ M . In the simplest case, a bidder may have
additive valuations, where she has a value for individual
items in M , and her value for a subset of items S ⊆ M :
vi(S) =

∑
j∈S vi({j}). Bidder i’s valuation function is

drawn independently from a distribution Fi over possible
valuation functions Vi. We write v = (v1, . . . , vn) for a
profile of valuations, and denote V =

∏n
i=1 Vi.

The auctioneer knows the distributions F = (F1, . . . , Fn),
but does not know the bidders’ realized valuation v. The
bidders report their valuations (perhaps untruthfully), and
an auction decides on an allocation of items to the bidders
and charges a payment to them. We denote an auction (g, p)
as a pair of allocation rules gi : V → 2M and payment rules
pi : V → R≥0 (these rules can be randomized). Given bids
b = (b1, . . . , bn) ∈ V , the auction computes an allocation
g(b) and payments p(b).

A bidder with valuation vi receives a utility ui(vi, b) =
vi(gi(b)) − pi(b) for report of bid profile b. Bidders are

1There has also been follow-up work to the present paper that
extends our approach to budget constrained bidders (Feng et al.,
2018) and to the facility location problem (Golowich et al., 2018),
and that develops specialized architectures for single bidder set-
tings that satisfy IC (Shen et al., 2019).
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strategic and seek to maximize their utility, and may re-
port bids that are different from their valuations. Let v−i
denote the valuation profile v = (v1, . . . , vn) without ele-
ment vi, similarly for b−i, and let V−i =

∏
j 6=i Vj denote

the possible valuation profiles of bidders other than bidder
i. An auction is dominant strategy incentive compatible
(DSIC), if each bidder’s utility is maximized by reporting
truthfully no matter what the other bidders report. In other
words, ui(vi, (vi, b−i)) ≥ ui(vi, (bi, b−i)) for every bidder
i, every valuation vi ∈ Vi, every bid bi ∈ Vi, and all bids
b−i ∈ V−i from others. An auction is (ex post) individually
rational (IR) if each bidder receives a non-zero utility, i.e.
ui(vi, (vi, b−i)) ≥ 0 ∀i ∈ N , vi ∈ Vi, and b−i ∈ V−i .

In a DSIC auction, it is in the best interest of each bidder to
report truthfully, and so the revenue on valuation profile v is∑
i pi(v). Optimal auction design seeks to identify a DSIC

auction that maximizes expected revenue.

Formulation as a learning problem. We pose the prob-
lem of optimal auction design as a learning problem, where
in the place of a loss function that measures error against
a target label, we adopt the negated, expected revenue
on valuations drawn from F . We are given a parametric
class of auctions, (gw, pw) ∈ M, for parameters w ∈ Rd
(some d ∈ N), and a sample of bidder valuation profiles
S = {v(1), . . . , v(L)} drawn i.i.d. from F .2 The goal is to
find an auction that minimizes the negated, expected rev-
enue −

∑
i∈N p

w
i (v), among all auctions inM that satisfy

incentive compatibility.

In particular, we introduce constraints in the learning prob-
lem to ensure that the chosen auction satisfies incentive
compatibility. For this, we define the ex post regret for each
bidder to measure the extent to which an auction violates
incentive compatibility. Fixing the bids of others, the ex
post regret for a bidder is the maximum increase in her util-
ity, considering all possible non-truthful bids. We will be
interested in the expected ex post regret for bidder i:

rgt i(w) = E
[

max
v′i∈Vi

uwi (vi; (v′i, v−i))− uwi (vi; (vi, v−i))
]
,

where the expectation is over v ∼ F and uwi (vi, b) =
vi(g

w
i (b)) − pwi (b) for given model parameters w. We as-

sume that F has full support on the space of valuation pro-
files V , and recognizing that the regret is non-negative, an
auction satisfies DSIC if and only if rgt i(w) = 0,∀i ∈ N .

Given this, we re-formulate the learning problem as mini-
mizing the expected loss, i.e., the expected negated revenue
s.t. the expected ex post regret being 0 for each bidder:

min
w∈Rd

Ev∼F

[
−
∑
i∈N

pwi (v)

]
s.t. rgti(w) = 0, ∀i ∈ N.

2Note that there is no need to compute equilibrium inputs— we
sample true profiles, and seek to learn rules that are IC.

Given a sample S of L valuation profiles from F , we esti-
mate the empirical ex post regret for bidder i as:

r̂gt i(w) =

1

L

L∑
`=1

max
v′i∈Vi

uwi
(
v
(`)
i ;
(
v′i, v

(`)
−i
))
− uwi (v

(`)
i ; v(`)), (1)

and seek to minimize the empirical loss subject to the em-
pirical regret being zero for all bidders:

min
w∈Rd

− 1
L

∑L
`=1

∑n
i=1 p

w
i (v(`))

s.t. r̂gti(w) = 0, ∀i ∈ N. (2)

Individual Rationality. We will additionally require the
designed auction to satisfy IR, which can be ensured by re-
stricting our search space to a class of parametrized auctions
(gw, pw) that charge no bidder more than her expected utility
for an allocation. In Section 3, we will model the allocation
and payment rules as neural networks and incorporate the
IR requirement in the architecture.

Generalization bound. We bound the gap between the
expected regret and the empirical regret in terms of the
number of sampled valuations profiles. We show a similar
result for revenue. Our bounds hold for any auction chosen
from a finite capacity class, and imply that solving for (2)
with a large sample yields an auction with near-optimal
expected revenue and close-to-zero expected regret (we note
that in practice, we may not be able to solve (2) exactly).

We measure the capacity of an auction class using a
definition of covering numbers used in the ranking
literature (Rudin & Schapire, 2009). We define the
`∞,1 distance between auctions (g, p), (g′, p′) ∈ M as
maxv∈V

∑
i,j |gij(v) − g′ij(v)| +

∑
i |pi(v) − p′i(v)|. For

any ε > 0, let N∞(M, ε) be the minimum number of balls
of radius ε required to coverM under the `∞,1 distance.

Theorem 1. For each bidder i, assume w.l.o.g. the
valuation function vi(S) ≤ 1, ∀S ⊆M . LetM be a class
of auctions that satisfy individual rationality. Fix δ ∈ (0, 1).
With probability at least 1− δ over draw of sample S of L
profiles from F , for any (gw, pw) ∈M,

Ev∼F

[
−
∑
i∈N

pwi (v)

]
≤ − 1

L

L∑
`=1

n∑
i=1

pwi (v(`))

+ 2n∆L + Cn

√
log(1/δ)

L

and
1

n

n∑
i=1

rgti(w) ≤ 1

n

n∑
i=1

r̂gti(w) + 2∆L + C ′
√

log(1/δ)

L
,

where ∆L = infε>0

{
ε
n + 2

√
2 log(N∞(M, ε/2))

L

}
and

C,C ′ are distribution-independent constants.
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See the appendix for the proof. If the term ∆L in the above
bound goes down to 0 as the sample size L increases, the
above bounds go to 0 as L→∞. In Theorem 2 in Section
3, we bound ∆L for the neural network architectures we
present in this paper.

3. Neural Network Architecture
We describe neural network architectures, which we refer
to as RegretNet, for modeling multi-item auctions. We
consider bidders with additive, unit-demand, and general
combinatorial valuations. The architectures contain two
logically distinct components: the allocation and payment
networks.

Additive valuations. A bidder has additive valuations if the
bidder’s value for a bundle of items S ⊆M is the sum of her
value for the individual items in S, i.e. vi(S) =

∑
j∈S vi(j).

In this case, the bidders report only their valuations for
individual items. The architecture for this setting models a
randomized allocation network gw : Rnm → [0, 1]nm and
a payment network pw : Rnm → Rn≥0, both of which are
modeled as feed-forward, fully-connected networks with
tanh activations. The input layer of the networks consists of
bids bij representing the valuation of bidder i for item j.

The allocation network outputs a vector of allocation prob-
abilities z1j = g1j(b), . . . , znj = gnj(b), for each item
j ∈ [m]. To ensure feasibility, i.e. that the probability of
an item being allocated is at most 1, the allocations are
computed using a softmax activation function, so that for
all items j,

∑n
i=1 zij ≤ 1. To accommodate the possibility

of an item not being assigned to any bidder, we include a
dummy node in the softmax computation which holds the
residual allocation probabilities. Bundling of items is pos-
sible because the output units allocating items to the same
bidder can be correlated. The payment network outputs a
payment for each bidder that denotes the amount the bidder
should pay in expectation, for this particular bid profile.

To ensure that the auction satisfies individual rationality,
i.e. does not charge a bidder more than her expected value
for the allocation, the network first computes a fractional
payment p̃i ∈ [0, 1] for each bidder i using a sigmoidal unit,
and outputs a payment pi = p̃i

∑m
j=1 zij bij , where zij’s

are outputs from the allocation network. An overview of the
architecture is shown in Figure 1, where the revenue and
regret are computed as functions of the parameters of the
allocation and payment networks.

Unit-demand valuations. A bidder has unit-demand valua-
tions when the bidder’s value for a bundle of items S ⊆M
is the maximum value she assigns to any one item in the
bundle, i.e. vi(S) = maxj∈S vi(j). The allocation net-
work for unit-demand bidders is the feed-forward network
shown in Figure 2. For revenue maximization in this set-

ting, it can be shown that it is sufficient to consider alloca-
tion rules that assign at most one item to each bidder.3 In
the case of randomized allocation rules, this would require
that the total allocation for each bidder is at most 1, i.e.∑
j zij ≤ 1, ∀i ∈ [n]. We would also require that no item

is over-allocated, i.e.
∑
i zij ≤ 1, ∀j ∈ [m]. Hence, we

design allocation networks for which the matrix of output
probabilities [zij ]

n
i,j=1 is doubly stochastic.4

In particular, we have the allocation network compute two
sets of scores sij’s and s′ij’s, with the first set of scores
normalized along the rows, and the second set of scores nor-
malized along the columns. Both normalizations can be per-
formed by passing these scores through softmax functions.
The allocation for bidder i and item j is then computed as
the minimum of the corresponding normalized scores:

zij = ϕDSij (s, s′) = min

{
esij∑n+1
k=1 e

skj

,
es

′
ij∑m+1

k=1 e
s′jk

}
,

where indices n+ 1 and m+ 1 denote dummy inputs that
correspond to an item not being allocated to any bidder, and
a bidder not being allocated any item respectively.

Lemma 1. ϕDS(s, s′) is doubly stochastic ∀ s, s′ ∈ Rnm.
For any doubly stochastic allocation z ∈ [0, 1]nm, ∃ s, s′ ∈
Rnm, for which z = ϕDS(s, s′).

The payment network is the same as in Figure 1.

Combinatorial valuations. We also consider bidders with
general, combinatorial valuations. In the present work, we
develop this architecture only for small number of items.5

In this case, each bidder i reports a bid bi,S for every bundle
of items S ⊆ M (except the empty bundle, for which her
valuation is taken as zero). The allocation network has an
output zi,S ∈ [0, 1] for each bidder i and bundle S, denoting
the probability that the bidder is allocated the bundle. To
prevent the items from being over-allocated, we require that
the probability that an item appears in a bundle allocated
to some bidder is at most 1. We also require that the total
allocation to a bidder is at most 1:∑

i∈N

∑
S⊆M :j∈S

zi,S ≤ 1, ∀j ∈M ; (3)

∑
S⊆M

zi,S ≤ 1, ∀i ∈ N. (4)

3 This holds by a simple reduction argument: for any IC auction
that allocates multiple items, one can construct an IC auction with
the same revenue by retaining only the most-preferred item among
those allocated to the bidder.

4 A randomized allocation represented by a doubly-stochastic
matrix can be decomposed into a lottery over deterministic one-to-
one assignments (Birkhoff, 1946; von Neumann, 1953).

5With more items, combinatorial valuations can be suc-
cinctly represented using appropriate bidding languages; see, e.g.
(Boutilier & Hoos, 2001).
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each item. The rev and each rgti are defined as a function of the parameters of the allocation and payment networks w = (wg, wp).
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Figure 2: The allocation network for settings with (a) n unit-demand bidders and m items; and (b) 2 combinatorial bidders and 2 items.
In (a), s̄ij = esij/

∑n+1
k=1 e

skj and s̄′ij = es
′
ij/

∑m+1
k=1 es

′
jk . The payment networks for these settings are same as in Figure 1.

We refer to an allocation that satisfies constraints (3)–(4)
as being combinatorial feasible. To enforce these con-
straints, we will have the allocation network compute a
set of scores for each item and a set of scores for each
agent. Specifically, there is a group of bidder-wise scores
si,S ,∀S ⊆ M for each bidder i ∈ N , and a group
of item-wise scores s(j)i,S ,∀i ∈ N, S ⊆M for each item
j ∈ M . Each group of scores is normalized using a soft-
max function: s̄i,S = exp(si,S)/

∑
S′ exp(si,S′) and

s̄
(j)
i,S = exp(s

(j)
i,S)/

∑
i′,S′ exp(s

(j)
i′,S′). The allocation for

bidder i and bundle S ⊆ M is defined as the minimum
of the normalized bidder-wise score s̄i,S for i and the nor-
malized item-wise scores s̄(j)i,S for each j ∈ S:

zi,S = ϕCFi,S (s, s(1), . . . , s(m)) = min
{
s̄i,S , s̄

(j)
i,S : j ∈ S

}
.

Lemma 2. ϕCF (s, s(1), . . . , s(m)) is combinatorial feasi-
ble ∀ s, s(1), . . . , s(m) ∈ Rn2m . For any combinatorial fea-
sible allocation z ∈ [0, 1]n2

m

, ∃ s, s(1), . . . , s(m) ∈ Rn2m ,
for which z = ϕCF (s, s(1), . . . , s(m)).

Figure 2(b) shows the network architecture for a setting with
2 bidders and 2 items. For ease of exposition, we ignore the
empty bundle in our discussion. For each bidder i ∈ {1, 2},
the network computes three scores si,{1}, si,{2}, and si,{1,2},
one for each bundle that she can be assigned, and normalizes
them using a softmax function. The network also computes
four scores for item 1: s11,{1}, s

1
2,{1}, s

1
1,{1,2}, and s12,{1,2},

one for each assignment where item 1 is present, and
similarly, four scores for item 2: s21,{2}, s22,{2}, s21,{1,2}, and
s22,{1,2}. Each set of scores is then normalized by separate
softmax functions. The final allocation for each bidder i is:
zi,{1} = min{s̄i,{1}, s̄1i,{1}}, zi,{2} = min{s̄i,{2}, s̄2i,{2}},
and zi,{1,2} = min{s̄i,{1,2}, s̄1i,{1,2}, s̄2i,{1,2}}.

The payment network for combinatorial bidders has the
same structure as the one in Figure 1, computing a fractional
payment p̃i ∈ [0, 1] for each bidder i using a sigmoidal unit,
and outputting a payment pi = p̃i

∑
S⊆M zi,S bij , where

zi,S’s are the outputs from the allocation network.



Optimal Auctions through Deep Learning

Covering number bounds. We now bound the term ∆L

in the generalization bound in Theorem 1 for the neural
networks presented above.

Theorem 2. For RegretNet with R hidden layers, K nodes
per hidden layer, da parameters in the allocation network,
dp parameters in the payment network, and the vector of all
model parameters ‖w‖1 ≤W , the following are the bounds
on the term ∆L for different bidder valuation types:

(a) additive valuations:

∆L ≤ O
(√

R(da + dp) log(LW max{K,mn})/L
)
,

(b) unit-demand valuations:

∆L ≤ O
(√

R(da + dp) log(LW max{K,mn})/L
)
,

(c) combinatorial valuations:

∆L ≤ O
(√

R(da + dp) log(LW max{K,n 2m})/L
)
.

The proof is given in the appendix. As the sample size
L→∞, the term ∆L → 0. The dependence of the above
result on the number of layers, nodes and parameters in the
network is similar to standard covering number bounds for
neural networks (Anthony & Bartlett, 2009). Note that the
logarithm in the bound for combinatorial valuations cancels
the exponential dependence on the number of items m.

4. Optimization and Training
We use the augmented Lagrangian method to solve the con-
strained training problem in (2) over the space of neural
autoworker parameters w. We first define the Lagrangian
function for the optimization problem, augmented with a
quadratic penalty term for violating the constraints:

Cρ(w;λ) = − 1

L

L∑
`=1

∑
i∈N

pwi (v(`))

+
∑
i∈N

λi r̂gt i(w) +
ρ

2

(∑
i∈N

r̂gt i(w)
)2

where λ ∈ Rn is a vector of Lagrange multipliers, and ρ > 0
is a fixed parameter that controls the weight on the quadratic
penalty. The solver alternates between the following updates
in each iteration on the model parameters and the Lagrange
multipliers: (a) wnew ∈ argminw Cρ(wold; λold) and (b)
λnewi = λoldi + ρ r̂gt i(w

new), ∀i ∈ N.

The solver is described in Algorithm 1. We divide the train-
ing sample S into mini-batches of size B, and perform sev-
eral passes over the training samples (with random shuffling
of the data after each pass). We denote the minibatch re-
ceived at iteration t by St = {u(1), . . . , u(B)}. The update
(a) on model parameters involves an unconstrained optimiza-
tion of Cρ over w and is performed using a gradient-based
optimizer. Let r̃gt i(w) denote the empirical regret in (1)

Algorithm 1 RegretNet Training

Input: Minibatches S1, . . . ,ST of size B
Parameters: ∀t, ρt > 0, γ > 0, η > 0, R ∈ N, K ∈ N
Initialize: w0 ∈ Rd, λ0 ∈ Rn
for t = 0 to T do

Receive minibatch St = {u(1), . . . , u(B)}
Initialize misreports v′(`)i ∈ Vi,∀` ∈ [B], i ∈ N
for r = 0 to R do
∀` ∈ [B], i ∈ N :

v′
(`)
i ← v′

(`)
i + γ∇v′i u

w
i

(
v
(`)
i ;
(
v′

(`)
i , v

(`)
−i
))

end for
Compute regret gradient: ∀` ∈ [B], i ∈ N :
gt`,i =

∇w
[
uwi
(
v
(`)
i ;
(
v′

(`)
i , v

(`)
−i
))
−uwi (v

(`)
i ; v(`))

] ∣∣∣
w=wt

Compute Lagrangian gradient using (5) and update wt:
wt+1 ← wt − η∇w Cρt(wt, λt)

Update Lagrange multipliers once in Q iterations:
if t is a multiple of Q
λt+1
i ← λti + ρt r̃gt i(w

t+1), ∀i ∈ N
else
λt+1 ← λt

end for

computed on mini-batch St. The gradient of Cρ w.r.t. w for
fixed λt is given by:

∇w Cρ(w; λt) = − 1

B

B∑
`=1

∑
i∈N
∇w pwi (v(`))

+
∑
i∈N

B∑
`=1

λti g`,i + ρ
∑
i∈N

B∑
`=1

r̃gt i(w) g`,i (5)

where

g`,i = ∇w
[

max
v′i∈Vi

uwi
(
v
(`)
i ;
(
v′i, v

(`)
−i
))
− uwi (v

(`)
i ; v(`))

]
.

Note that the terms r̃gti and g`,i in turn involve a “max”
over misreports for each bidder i and valuation profile `. We
solve the inner maximization over misreports using another
gradient based optimizer, and push the gradient through the
utility differences at the optimal misreports. In particular,
we maintain misreports v′(`)i for each i and valuation profile
`. For every update on the model parameters wt, perform R

gradient updates to compute the optimal misreports: v′(`)i =

v′
(`)
i + γ∇v′iu

w
i

(
v
(`)
i ;
(
v′

(`)
i , v

(`)
−i
))

, for some γ > 0. In our
experiments, we use the Adam optimizer (Kingma & Ba,
2014) for updates on model w and v′(`)i .

Since the optimization problem we seek to solve is non-
convex, the solver is not guaranteed to reach a globally
optimal solution. However, our method proves very effec-
tive in our experiments. The learned auctions incur very
low regret and closely match the structure of the optimal
auctions in settings where this is known.
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Dist. OPT rev rgt
(I) 0.550 0.554 < 0.001
(II) 2.137 2.137 < 0.001

(a)

Dist. rev rgt VVCA AMAbsym
(III) 0.878 < 0.001 0.860 0.862
(IV) 2.871 < 0.001 2.741 2.765
(V) 4.270 < 0.001 4.209 3.748

(b)

(c)
Figure 3: (a)-(b): Test revenue and regret for (a) single bidder, 2
items and (b) 2 bidder, 2 items settings. (c): Plot of test revenue
and regret as a function of training epochs for setting (I).

5. Experimental Results
We demonstrate that our approach can recover near-optimal
auctions for essentially all settings for which the optimal
solution is known and that it can find new auctions for
settings where there is no known analytical solution. We
present the complete set of experiments in the appendix and
include a representative subset of the results here.

Setup. We implemented our framework using the Tensor-
Flow deep learning library.6 We used the Glorot uniform
initialization (Glorot & Bengio, 2010) for all networks and
the tanh activation function at the hidden nodes. For all the
experiments, we used a sample of 640,000 valuation profiles
for training and a sample of 10,000 profiles for testing. The
augmented Lagrangian solver was run for a maximum of
80 epochs with a minibatch size of 128. The value of ρ in
augmented Lagrangian was set to 1.0 and incremented every
2 epochs. An update on wt was performed for every mini-
batch using the Adam optimizer with learning rate 0.001.
For each update on wt, we ran R = 25 misreport updates
steps with learning rate 0.1. At the end of 25 updates, the
optimized misreports for the current minibatch were cached
and used to initialize the misreports for the same minibatch
in the next epoch. An update on λt was performed once
in every 100 minibatches (i.e. Q = 100). Our experiments
were run on a compute cluster with NVDIA GPU cores.

Evaluation. In addition to the revenue of the learned
auction on a test set, we also evaluate the regret, aver-
aged across all bidders and test valuation profiles, rgt =
1
n

∑n
i=1 r̂gt i(f, p). Each r̂gt i has a ‘max’ of the utility func-

tion over bidder valuations v′i ∈ Vi (see (1)). We evaluate
these terms by running gradient ascent on v′i with a step-size
of 0.1 for 2000 iterations (we test 1000 different random
initial v′i and report the one achieves the largest regret).

Single bidder. Even in the simple setting of single bidder

6
https://github.com/saisrivatsan/deep-opt-auctions

auctions, there are analytical solutions only for special cases.
We give the first computational approach that can handle
the general design problem, and compare to the available
analytical results. We show that not only are we able to
learn auctions with near-optimal revenue, but we are also
able to learn allocation rules that resemble the theoretically
optimal rule with surprising accuracy.

(I) Single bidder with additive valuations over 2 items,
where the item values are drawn from U [0, 1]. The
optimal auction is given by Manelli & Vincent (2006).

(II) Single bidder with unit-demand valuations over 2 items,
where the item values are drawn from U [2, 3]. The
optimal mechanism is given by Pavlov (2011).

Figure 3(a) presents the revenue and regret of the final auc-
tions learned for settings (I) and (II) on the test set with
an architecture with two hidden layers and 100 nodes per
layer.7 The revenue of the learned auctions is very close to
the optimal revenue, with negligibly small regret. In some
cases the learned auctions achieve revenue slightly above
that of the optimal incentive compatible auction. This is
possible because of the small, non-zero regret that they in-
cur. The visualizations of the learned allocation rules in
Figure 4(a)-(b) show that our approach also closely recovers
the structure of the optimal auction. Figure 3(c) presents
a plot of revenue and regret as a function of the training
epochs. The solver adaptively tunes the Lagrange multiplier
on the regret, focusing on the revenue in the initial iterations
and on regret in later iterations.

Multiple bidders. We next compare to the state-of-the-art
computational results of Sandholm and Likhodedov (Sand-
holm & Likhodedov, 2015) for settings for which the opti-
mal auction is not known. These auctions are obtained by
searching over a parametrized class of incentive compatible
auctions. Unlike these prior methods, we do not need to
search over a specific class of incentive compatible auction,
and are limited only by the expressive power of the networks
used. We show that this leads to novel auction designs that
match or outperform the state-of-the-art mechanisms.

(III) 2 additive bidders and 2 items, where bidders draw
their value for each item from U [0, 1].

(IV) 2 bidders and 2 items, with v1,1, v1,2, v2,1, v2,2 ∼
U [1, 2], v1,{1,2} = v1,1 + v1,2 + C1 and v2,{1,2} =
v2,1 + v2,2 + C2, where C1, C2 ∼ U [−1, 1].

(V) 2 bidders and 2 items, with v1,1, v1,2 ∼ U [1, 2],
v2,1, v2,2 ∼ U [1, 5], v1,{1,2} = v1,1 + v1,2 + C1 and
v2,{1,2} = v2,1 + v2,2 + C2, where C1, C2 ∼ U [−1, 1].

We adopt the same experimental setup as in settings (I)-(II).
We compare the trained mechanism with the optimal auc-
tions from the VVCA and AMAbsym families of incentive

7Based on evaluations on a held-out set, we found the gains to
be negligible when we used more number of layers or nodes.

https://github.com/saisrivatsan/deep-opt-auctions
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(a)

(b)

Figure 4: Allocation rules learned for single-bidder, two items
settings: (a) I and (b) II. The solid regions describe the probability
that the bidder is allocated item 1 (left) and item 2 (right) for
different valuation inputs. The optimal auctions are described by
the regions separated by the dashed black lines, with the numbers
in black the optimal probability of allocation in the region.

(a)

Distribution rev rgt
Item-wise Bundled
Myerson Myerson

VI: 3× 10 5.541 < 0.002 5.310 5.009
VII: 5× 10 6.778 < 0.005 6.716 5.453

(b)

Figure 5: (a) Revenue and regret on validation set for auctions
learned for setting (VI) using different architectures. (b) Test
revenue and regret for setting (VI) - (VII).

compatible auctions from (Sandholm & Likhodedov, 2015).
Figure 3(b) summarizes our results. Our approach leads
to significant revenue improvements and tiny regret. Com-
paring with Figure 3(a), where the regret of (I) afforded a
revenue advantage over OPT of around 0.004 or 0.72%, it
seems highly unlikely that the tiny non-zero regret explains
the revenue advantages over these prior results

Scaling up. We also consider settings with up to 5 bidders
and 10 items. Due the exponential nature of the problem this
is several orders of magnitude more complex than what the
existing analytical literature can handle. For the settings that
we study running a separate Myerson auction for each item
is optimal in the limit of number of bidders (Palfrey, 1983).
This yields a very strong but still improvable benchmark.

(VI) 3 additive bidders and 10 items, where bidders draw
their value for each item from U [0, 1].

(VII) 5 additive bidders and 10 items, where bidders draw
their value for each item from U [0, 1].

Dist. Method rev rgt IR viol. Run-time

2× 3
RegretNet 1.291 < 0.001 0 ∼9 hrs

LP (D: 5 bins/value) 1.53 0.019 0.027 69 hrs

Table 1: Test revenue, regret and IR viol., run-time for RegretNet
and LP for a 2 bidder, 3 items setting with uniform valuations.

For setting (VI), we show in Figure 5(a) the revenue and
regret of the learned auction on a validation sample of 10000
profiles, obtained with different architectures. Here (R,K)
denotes an architecture with R hidden layers and K nodes
per layer. The (5, 100) architecture has the lowest regret
among all the 100-node networks for both settings above.
Figure 5(b) shows that the final learned auctions yield higher
revenue (with tiny regret) compared to the baselines.

Comparison to LP. We also compare the running time of
our algorithm with the LP approach proposed (Conitzer &
Sandholm, 2002; 2004). To be able to run the LP to comple-
tion, we consider a smaller setting with 2 additive bidders
and 3 items, with item values drawn from from U [0, 1]. The
LP is solved with the commercial solver Gurobi. We han-
dle continuous valuations by discretizing the value into 5
bins per item (resulting in ≈ 105 decision variables and
≈ 4 × 106 constraints) and then rounding a continuous
input valuation profile to the nearest discrete profile (for
evaluation). See the appendix for further discussion on LP.

The results are shown in Table 1. We also report the
violations in IR constraints incurred by the LP on the
test set; for L valuation profiles, this is measured by
1
Ln

∑L
`=1

∑
i∈N max{ui(v(`)), 0}. Due to the coarse dis-

cretization, the LP approach suffers significant IR violations
(and as a result yields higher revenue). We are not able
to run a LP for this setting in more than 1 week of com-
pute time for finer discretizations. In contrast, our approach
yields much lower regret and no IR violations (as the neural
networks satisfy IR by design), in just around 9 hours. In
fact, even for the larger settings (VI)–(VII), the running time
of our algorithm was less than 13 hours.

6. Conclusion
Neural networks have been deployed successfully for explo-
ration in other contexts, e.g., for the discovery of new drugs
(Gómez-Bombarelli et al., 2018). We believe that there is
ample opportunity for applying deep learning in the context
of economic design. We have demonstrated how standard
pipelines can re-discover and surpass the analytical and com-
putational progress in optimal auction design that has been
made over the past 30-40 years. While our approach can
easily solve problems that are orders of magnitudes more
complex than what could previously be solved with the stan-
dard LP-based approach, a natural next step would be to
scale this approach further up to industry scale. We envision
progress at scale will come through addressing the bench-
marking question (e.g. through standardized benchmarking
suites), and through innovations in the network architecture.
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