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A. Wasserstein metrics in continuous sample
space

In this section, we briefly review the duality structures of
Wasserstein-p in continuous sample space. More details
are provided in (Villani, 2009). When p = 1, a particular
duality structure is shown. When p = 2, a metric tensor
property will be discussed. These properties will be used
intensively throughout the paper.

Given a sample space Ω ⊂ Rd, the Wasserstein-p metric
introduces a distance between probability density functions
ρ0, ρ1 ∈ P(Ω) by

Wp(ρ
0, ρ1)p = inf

π

∫
Ω×Ω

c(x, y)π(x, y)dxdy,

where the infimum is taken over all joint measures π ≥ 0
with marginals∫

Ω

π(x, y)dx = ρ0(y),

∫
Ω

π(x, y)dy = ρ1(x).

Here c(x, y) is a homogenous degree p function. E.g.,
c(x, y) = ‖x− y‖p with ‖ · ‖ the Euclidean norm.

The Dual problem of the linear programming has the form

Wp(ρ
0, ρ1)p

= sup
Φ0,Φ1∈C(Ω)

{∫
Ω

Φ1(x)ρ1(x)− Φ0(x)ρ0(x)dx :

Φ1(y)− Φ0(x) ≤ c(x, y)
}
,

where Φ0, Φ1 : Ω→ R are the Lagrangian multiplier vari-
ables for the constraint of linear programming involving
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ρ0, ρ1. Here Φ0, Φ1 are the so-called Kantorovich dual
variables.

The Wasserstein metric exhibits special structures for p = 1
and p = 2. We discuss these in turn.

A.1. Wasserstein-1 metric

If p = 1, one can check that Φ1(x) = Φ0(x). Denote
f(x) = Φ1(x) the constraint condition for duality problem
has the form

f(x)− f(y) ≤ c(x, y), for any x, y ∈ Ω.

This gives the 1-Lipscthiz condition with respect to the norm
of metric c(x, y), i.e.

‖ grad f(x)‖c ≤ 1.

We can apply this condition into the dual problem. We then
derive the dual of dual problem as follows:

inf
m

{∫
Ω

‖m(x)‖dx : div(m) + ρ1 − ρ0 = 0
}

where m is the flux function, and div is the divergence oper-
ator depending on the ground metric c. Here the minimizer
of Wasserstein function satisfies

div(m(x)) = ρ0(x)− ρ1(x)

m(x)

‖m(x)‖c
= grad f(x), when ‖m(x)‖c > 0,

where div and grad are divergence and gradient operators
with respect to the ground metric c. As we can see, the
second formula in above system satisfies the Lipschitz-1
condition, i.e. the Eikonal equation

‖ grad f(x)‖c = ‖ m(x)

‖m(x)‖c
‖c = 1.

Following the direction of flux function m(x) by the direc-
tion of grad f(x), one transports ρ0 to ρ1. The transport
direction follows the characteristic of Eikonal equation, i.e.
the geodesic curve in (Ω, d).
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A.2. Wasserstein-2 metric

If p = 2, one can relate the duality formula of Φ1, Φ0 with
the solution of Hamilton-Jacobi equation by the Hopf-Lax
formula (Villani, 2009). In other words, Φ0(x), Φ1(x) are
the solution of Hamilton-Jacobi equation at times t = 0,
t = 1:

∂tΦ(t, x) +
1

2
‖ grad Φ(t, x)‖2c = 0.

The minimizer of optimal transport has a form
∂tρ(t, x) + div

(
ρ(t, x) grad Φ(t, x)

)
= 0

∂tΦ(t, x) +
1

2
‖ grad Φ(t, x)‖2c = 0

with the time zero and one density solution ρ(0, x) = ρ0(x),
ρ(1, x) = ρ1(x). We notice the fact that the characteristic of
continuity equation and Hamilton-Jacobi equation is again
the geodesics in pixel space Ω.

Proof of Proposition 1. Combining the properties of
Wasserstein-1 and Wasserstein-2 metric, we obtain that the
Lipschitz-1 condition w.r.t. Wasserstein-2 metric gives the
following fact. The characteristic of characteristic in prob-
ability of probability space gives the geodesic in the pixel
space.

A.3. Wasserstein-2 gradient

In the last, we formally derive the Wasserstein-2 gradient
operator.

Consider Ω is a compact region with the set of smooth and
strictly positive densities:

P+(Ω) =
{
ρ ∈ C∞(Ω): ρ(x) > 0,

∫
Ω

ρ(x)dx = 1
}
.

Denote by F(Ω) := C∞(Ω) the set of smooth real valued
functions on Ω. The tangent space of P+(Ω) is given by

TρP+(Ω) =
{
σ ∈ F(Ω):

∫
Ω

σ(x)dx = 0
}
.

Given Φ ∈ F(Ω) and ρ ∈ P+(Ω), define

VΦ(x) := −∇ · (ρ(x)∇Φ(x)) ∈ TρP+(Ω).

Here the elliptic operator identifies the function Φ on Ω
modulo additive constants with the tangent vector VΦ in
P+(Ω):

F(Ω)/R→ TρP+(Ω), Φ 7→ VΦ.

Denote T ∗ρP+(Ω) = F(Ω)/R as the smooth cotangent
space of P+(Ω). Then the L2-Wasserstein metric tensor
on density space is defined as follows:

Definition 8 (Wasserstein-2 metric tensor). Define the in-
ner product on the tangent space of positive densities
gρ : TρP+(Ω)× TρP+(Ω)→ R by

gWρ (σ1, σ2) =

∫
Ω

∇Φ1(x) · ∇Φ2(x)ρ(x)dx,

where σ1 = VΦ1
, σ2 = VΦ2

with Φ1(x), Φ2(x) ∈ F(Ω)/R.

In (Lafferty, 1988), (P+(Ω), gρ) is named density manifold.
Following the Riemannian calculus, the gradient operator
with respect to the Wassestein-2 metric (Otto, 2001) has the
following form.

Proposition 9 (Wasserstein-2 gradient).

gradF(ρ)(x) = −∇ · (ρ∇ δ

δρ(x)
F(ρ)),

and

‖ gradF(ρ)‖W =

∫
‖∇ δ

δρ(x)
F(ρ)‖2ρ(x)dx.

This proposition is one of the motivation in Theorem 2. We
next present the Wasserstein-2 gradient operator defined in
a discrete sample space.

B. Wasserstein-2 gradient on discrete sample
space

We recall the definition of discrete probability simplex with
Wasserstein-2 Riemannian metric. Consider the discrete
pixel space I = {1, . . . , n}. The probability simplex on I
is the set

P(I) =
{

(p1, · · · , pn) ∈ Rn :

n∑
i=i

pi = 1, pi ≥ 0
}
.

Here p = (p1, . . . , pn) is a probability vector with coordi-
nates pi corresponding to the probabilities assigned to each
node i ∈ I . The probability simplex P(I) is a manifold
with boundary. We denote the interior by P+(I). This con-
sists of the strictly positive probability distributions, with
pi > 0 for all i ∈ I . To simplify the discussion, we will
focus on the interior P+(I).

We next define the Wasserstein-2 metric tensor on P+(I),
which also encodes the metric tensor of discrete states I .
We need to give a ground metric notion on sample space.
We do this in terms of a undirected graph with weighted
edges, G = (I, E, ω), where I is the vertex set, E ⊆

(
I
2

)
is the edge set, and ω = (ωij)i,j∈I ∈ Rn×n is a matrix of
edge weights satisfying

ωij =

{
ωji > 0, if (i, j) ∈ E
0, otherwise

.
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The set of neighbors (adjacent vertices) of i is denoted by
N(i) = {j ∈ V : (i, j) ∈ E}. The normalized volume

form on node i ∈ I is given by di =
∑

j∈N(i) ωij∑n
i=1

∑
i′∈N(i) ωii′

.

The graph structure G = (I, E, ω) induces a graph Lapla-
cian matrix function.
Definition 10 (Weighted Laplacian matrix). Given an undi-
rected weighted graph G = (I, E, ω), with I = {1, . . . , n},
the matrix function L(·) : Rn → Rn×n is defined by

L(p) = DTΛ(p)D, p = (pi)
n
i=1 ∈ Rn,

where

• D ∈ R|E|×n is the discrete gradient operator defined
by

D(i,j)∈E,k∈V =


√
ωij , if i = k, i > j

−√ωij , if j = k, i > j

0, otherwise
,

• −DT ∈ Rn×|E| is the oriented incidence matrix, and

• Λ(p) ∈ R|E|×|E| is a weight matrix depending on p,

Λ(p)(i,j)∈E,(k,l)∈E

=

{
1
2 ( 1
di
pi + 1

dj
pj), if (i, j) = (k, l) ∈ E

0, otherwise
.

The Laplacian matrix function L(p) is the discrete analog
of the weighted Laplacian operator −∇ · (ρ∇) from Defini-
tion 8.

We are now ready to present the Wasserstein-2 metric tensor.
Consider the tangent space of P+(I) at p,

TpP+(I) =
{

(σi)
n
i=1 ∈ Rn :

n∑
i=1

σi = 0
}
.

Denote the space of potential functions on I by F(I) = Rn,
and consider the quotient space

F(I)/R = {[Φ] | (Φi)ni=1 ∈ Rn},

where [Φ] = {(Φ1 + c, · · · ,Φn + c) : c ∈ R} are functions
defined up to addition of constants.

We introduce an identification map via the weighted Lapla-
cian matrix L(p) by

V : F(I)/R→ TpP+(I), VΦ = L(p)Φ.

We know that L(p) has only one simple zero eigenvalue
with eigenvector c(1, 1, · · · , 1), for any c ∈ R. This is true
since for (Φi)

n
i=1 ∈ Rn,

ΦTL(p)Φ = (DΦ)TΛ(p)(DΦ)

=
∑

(i,j)∈E

ωij(Φi − Φj)
2(

1

2
(

1

di
pi +

1

dj
pj)) = 0

implies Φi = Φj , (i, j) ∈ E. If the graph is connected,
as we assume, then (Φi)

n
i=1 is a constant vector. Thus

VΦ : F(I)/R → TpP+(I) is a well defined map, linear,
and one to one. I.e., F(I)/R ∼= T ∗pP+(I), where T ∗pP+(I)
is the cotangent space of P+(I). This identification induces
the following inner product on TpP+(I).
Definition 11 (Wasserstein-2 metric tensor). The inner
product gp : TpP+(I) × TpP+(I) → R takes any two
tangent vectors σ1 = VΦ1 and σ2 = VΦ2 ∈ TpP+(I) to

gp(σ1, σ2) = σT
1 Φ2 = σT

2 Φ1 = ΦT
1L(p)Φ2. (1)

In other words,

gp(σ1, σ2) := σ1
TL(p)†σ2, for any σ1, σ2 ∈ TpP+(I),

where L(p)† is the pseudo inverse of L(p).

Following the inner product equation 1, the Wasserstein-2
metric on images W : P+(I)× P+(I)→ R is defined by

W (p0, p1)2 := inf
p(t),Φ(t)

{∫ 1

0

Φ(t)TL(p(t))Φ(t)dt
}
.

(2)
Here the infimum is taken over pairs (p(t),Φ(t)) with p ∈
H1((0, 1),Rn) and Φ: [0, 1]→ Rn measurable, satisfying

d

dt
p(t)− L(p(t))Φ(t) = 0, p(0) = p0, p(1) = p1.

The Wasserstein-2 metric on graph introduces the following
gradient operator.
Theorem 12 (Wasserstein gradient on graphs). Given F ∈
C1(P+(I)), the gradient operator in Riemannian manifold
(P+(I), g) satisfies

gradF(p) = L(p)dρF(p),

where d is the Euclidean gradient operator.

Proof. As in the definition of Riemannian gradient, we have

gradF(p) = (L(p)†)†dpF(p) = L(p)dpF(p),

which finishes the proof.

Proof of Proposition 5. Following the proof of Theorem 2,
we prove the proposition 5.

We last illustrate the Wasserstein metric tensor in unnor-
malized density space. The new metric tensor induces the
gradient operator in unnormalized density space.

In other words, consider

M+(I) =
{
µ = (µ1, · · · , µn) ∈ Rn : µi ≥ 0

}
.

The tangent space ofM+(I) at µ forms

TµM+(I) = Rn.
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Definition 13 (Unnormalized Wasserstein-2 metric tensor).
The inner product g̃µ : TµM+(I)× TµM+(I)→ R forms

g̃µ(σ1, σ2) := σ1
T
(
L(p)† +

1

α
11T

)
σ2,

for any σ1, σ2 ∈ TpP+(I).

It is clear that (M+(I), g̃) is a well defined metric in pos-
itive octant. In this case, the unnormalized Wasserstein-2
gradient is given by the following theorem.

Theorem 14 (Unnormalized Wasserstein-2 gradient on
graphs). Given F ∈ C1(M+(I)), the gradient operator in
Riemannian manifold (M+(I), g̃) satisfies

gradF(µ) =
(
L(µ) + α11T

)
dµF(µ).

In other words,

gradF(µ)i =
1

2

∑
j∈N(i)

ωij

( ∂

∂µi
F − ∂

∂µj
F
)

(
µi
di

+
µj
dj

)

+ α

n∑
i=1

∂

∂µi
F(µ).

Proof. Notice that

L(µ) = T


0

λsec(L(µ))
. . .

λmax(L(µ))

T−1 ,

where 0 < λsec(L(µ)) ≤ · · · ≤ λmax(L(µ)) are eigen-
values of L(ρ) arranged in ascending order, and T is its
corresponding eigenvector matrix. Here the zero eigenvalue
correspond to the eigenvector 1. Thus(

L(µ)† +
1

α
11T

)−1

= L(µ) + α11T .

Then

gradF(µ) =
(
L(µ)† +

1

α
11†
)−1

dµF(µ)

= L(µ)dµF(µ) + α11T dµF(µ),

which finishes the proof.

C. Detailed description of the experiments
We run experiments on the CIFAR-10 and CelebA (aligned,
cropped, 64× 64) datasets.

For the experiment measuring discriminator robustness to
noise, or hyperparameters for WGAN-GP is,

• DCGAN Architecture, with 3 convolutional layers, and
no batch-normalization in the discriminator.

• Adam optimizer, with learning rate 0.0003, and β1 =
0.5, and β2 = 0.9

• Batch size of 64, and noise vector of dimension 128.

For the WWGAN loss, we use the same hyperparameters
as WGAN-GP, and for the WWGAN, we set α = 1.0 and
β = 50.

For the noise model, we used RGB salt and pepper noise,
which first transforms the 3×N×N image to a 3N2 vector,
and provides a probability of changing any coordinate. Once
a change is decided, the coordinate value is set to 0.0 or 1.0
(the max pixel value) with equal probability.

Then the discriminator is evaluated on 64 noisy and clean
images. And we see that the discriminator trained with
WWGAN is more robust to noise.

We compare the WWGAN loss function with the WGAN-
GP loss For both losses, we use a DCGAN architecture,
removing the batch-normalization layer in the discriminator.
We also train with the Adam optimizer with learning rate
1e− 4 and β1 = 0.9, β2 = 0.

D. WWGAN generated images
Figures 1 and 2 below show sample images generated from
the WWGAN model trained with the settings described in
Appendix C.

Fake Images

Figure 1. CelebA cropped 64× 64 WWGAN generated images.
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Figure 2. CIFAR-10 WWGAN generated images.
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