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Abstract
In this paper, we describe a novel approach to
imitation learning that infers latent policies di-
rectly from state observations. We introduce a
method that characterizes the causal effects of la-
tent actions on observations while simultaneously
predicting their likelihood. We then outline an
action alignment procedure that leverages a small
amount of environment interactions to determine
a mapping between the latent and real-world ac-
tions. We show that this corrected labeling can
be used for imitating the observed behavior, even
though no expert actions are given. We evalu-
ate our approach within classic control environ-
ments and a platform game and demonstrate that
it performs better than standard approaches. Code
for this work is available at https://github.
com/ashedwards/ILPO.

1. Introduction
Humans often learn from and develop experiences through
mimicry. Notably, we are capable of mirroring behavior
through only the observation of state trajectories without
direct access to the underlying actions (e.g., the exact kine-
matic forces) and intentions that yielded them (Rizzolatti &
Sinigaglia, 2010). In order to be general, artificial agents
should also be equipped with the ability to quickly solve
problems after observing the solution; however, imitation
learning approaches typically require both observations and
actions to learn policies along with extensive interaction
with the environment.

A recent approach for overcoming these issues is to learn
an initial self-supervised model for how to imitate by col-
lecting experiences within the environment and then using
this learned model to infer policies from expert observa-
tions (Pathak et al., 2018; Torabi et al., 2018a). However,
unguided exploration can be risky in many real-world sce-
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narios and costly to obtain. Thus, we need a mechanism for
learning policies from observation alone without requiring
access to expert actions and with only a few interactions
within the environment.

In order to tackle this challenge, we hypothesize that pre-
dictable, though unknown, causes may describe the classes
of transitions that we observe. These causes could be natural
phenomena in the world, or the consequences of the actions
that the agent takes. This work aims to demonstrate how an
agent can predict and then imitate these latent causes, even
though the ground truth environmental actions are unknown.

We follow a two-step approach, where the agent first learns
a policy offline in a latent space that best describes the
observed transitions. Then it takes a limited number of
steps in the environment to ground this latent policy to the
true action labels. We liken this to learning to play a video
game by observing a friend play first, and then attempting
to play it ourselves. By observing, we can learn the goal
of the game and the types of actions we should be taking,
but some interaction may be required to learn the correct
mapping of controls on the joystick.

We first make the assumption that the transitions between
states can be described through a discrete set of latent ac-
tions. We then learn a forward dynamics model that, given
a state and latent action, predicts the next state and prior,
supervised only by {state, next state} pairs. We use this
model to greedily select the latent action that leads to the
most probable next state. Because these latent actions are
initially mislabeled, we use a few interactions with the envi-
ronment to learn a relabeling that outputs the probability of
the true action.

We evaluate our approach in four environments: classic
control with cartpole, acrobot, and mountain car, and a
recent platform game by OpenAI, CoinRun (Cobbe et al.,
2018). We show that our approach is able to perform as well
as the expert after just a few steps of interacting with the
environment, and performs better than a recent approach
for imitating from observations, Behavioral Cloning from
Observation (Torabi et al., 2018a).

https://github.com/ashedwards/ILPO
https://github.com/ashedwards/ILPO
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2. Related work
Imitation learning approaches aim to train artificial and real-
world agents to imitate expert behavior by providing a set
of expert demonstrations. This approach has an extensive
breadth of applications, ranging from early successes in
autonomous driving (Pomerleau, 1989), to applications in
robotics (Schaal, 1997; Chernova & Thomaz, 2014) and
software agents (e.g. (Silver et al., 2016; Nair et al., 2017)).
However, traditional approaches typically assume that the
expert’s actions are known. This often requires the data to
be specifically recorded for the purpose of imitation learning
and drastically reduces the amount of data that is readily
available. Recent approaches that do not require expert
actions typically must first learn behaviors in the agent’s
environment through extensive interactions. Our approach
first learns latent behaviors from the demonstration data
only, followed by only a few necessary interactions with
the environment. We now describe classic approaches to
imitation learning along with more modern approaches.

2.1. Classic approaches

Arguably, the most straight-forward approach to imitation
learning is behavioral cloning (Pomerleau, 1989), which
treats imitation learning as a supervised learning problem.
More sophisticated methods achieve better performance by
reasoning about the state-transitions explicitly, but often re-
quire extensive information about the effects of the agent’s
actions on the environment. This information can come
either in the form of a full, often unknown, dynamics model,
or through numerous interactions with the environment. In-
verse Reinforcement Learning (IRL) achieves this by using
the demonstrated state-action pairs to explicitly derive the
expert’s intent in the form of a reward function (Ng & Rus-
sell, 2000; Abbeel & Ng, 2004).

2.2. Direct policy optimization methods

Recently, more direct approaches have been introduced that
aim to match the state-action visitation frequencies observed
by the agent to those seen in demonstrations. GAIL (Ho &
Ermon, 2016) learns to imitate policies from demonstrations
and uses adversarial training to distinguish if a state-action
pair comes from following the agent or expert’s policy while
simultaneously minimizing the difference between the two.
SAIL (Schroecker & Isbell, 2017) achieves a similar goal by
using temporal difference learning to estimate the gradient
of the normalized state-action visitation frequency directly.
However, while these approaches are efficient in the amount
of expert data necessary for training, they typically require
a substantial amount of interactions within the environment.

2.3. Learning from state observations

Increasingly, works have aspired to learn from observation
alone without utilizing expert actions. Imitation from Obser-
vation (Liu et al., 2017), for example, learns to imitate from
videos without actions and translates from one context to
another. However, this approach requires using learned fea-
tures to compute rewards for reinforcement learning, which
will thus require many environment samples to learn a pol-
icy. Similarly, time-contrastive networks (Sermanet et al.,
2017) and unsupervised perceptual rewards (Sermanet et al.,
2016) train robots to imitate from demonstrations of hu-
mans performing tasks, and recent work used audio to align
different YouTube videos to train an agent to learn Mon-
tezuma’s revenge and Pitfall (Aytar et al., 2018). But these
approaches also learn features for a reward signal that is later
used for reinforcement learning. Finally, both third-person
imitation learning (Stadie et al., 2017) and GAIfO (Torabi
et al., 2018b) extend GAIL for use with demonstration data
that lacks actions, but these approaches also utilize a reward
signal in a similar manner as GAIL. Therefore, while each
of these approaches learn policies from state observations,
they require an intermediary step of using a reward signal,
whereas we learn the policy directly without performing
reinforcement learning.

A recent approach aimed to learn from observations by first
learning how to imitate in a self-supervised manner, then
given a task, attempt it zero-shot (Pathak et al., 2018). How-
ever, this approach requires learning in the agent’s environ-
ment first rather than initially learning from the observations.
Another approach utilizes learned inverse dynamics to train
agents from observation (Torabi et al., 2018a). A problem
with such an approach is that learning a dynamics model
usually requires a substantial number of interactions with
the environment. Our work aims to first learn policies from
demonstrations offline, and then only use a few interactions
with the environment to learn the true action labels.

2.4. Multi-modal predictions

Our approach predicts forward dynamics given a state and la-
tent action. This is similar to recent works that have learned
action-conditional predictions for reinforcement learning
environments (Oh et al., 2015; Chiappa et al., 2017), but
those approaches utilize ground truth action labels. Rather,
our approach learns a latent multi-modal distribution over
future predictions. Other related works have utilized latent
information to make multi-modal predictions. For example,
BicycleGAN (Zhu et al., 2017) learns to predict a distribu-
tion over image-to-image translations, where the modes are
sampled given a latent vector. InfoGAN uses latent codes
for learning interpretable representations (Chen et al., 2016),
and InfoGAIL (Li et al., 2017) uses that approach to capture
latent factors of variation between different demonstrations.
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(a) Latent Policy Network

(b) Action Remapping Network

Figure 1: The latent policy network learns a latent policy, π(z|s), and a forward dynamics model, G. The action remapping
network learns π(a|st, z) to align the latent actions z with ground-truth actions a. We train embeddings, Ea and Ep,
concurrently with each network.

These works, however, do not attempt to learn direct pri-
ors over the modes, which is crucial in our formulation for
deriving policies.

As such, our approach is more analogous to online cluster-
ing, as it predicts multiple expected next states and priors
over them. However, we do not have direct access to the
clusters or means. Other works have aimed to cluster demon-
strations, but these approaches have traditionally segmented
different types of trajectories, which represent distinct pref-
erences, rather than next-state predictions (Hausman et al.,
2017; Babes et al., 2011).

3. Approach
We now describe our approach, Imitating Latent Policies
from Observation (ILPO), where we train an agent to imitate
behaviors from expert state observations.

3.1. Problem formulation

We aim to use ILPO to solve problems specified through a
Markov Decision Process (MDP) <S,A,R, T> (Sutton &
Barto, 1998). Here, s ∈ S denotes the states in the environ-
ment, at ∈ A corresponds to actions, rt ∈ R are the rewards
the agent receives in each state, and T (st, at, st+1) is the
transition model, which we assume is unknown. Reinforce-
ment learning approaches aim to learn policies π(a|st) that
determine the probability of taking an action a in some state
st. We use imitation learning to directly learn the policy
and use the reward rt only for evaluation purposes.

We are given a set of expert demonstrations described
through noisy state observations {s∗1 . . . s∗n} ∈ D. In our
approach, we will use these observations to predict a multi-
modal forward dynamics model. As such, noise is necessary
for ensuring that state transitions are properly modeled.

Given two consecutive observations {st, st+1}, we define
z as a latent action that caused this transition to occur. As

such, the action spaces that we consider are discrete with de-
terministic transitions. Because our problems are specified
through MDPs, we assume that the number of actions, |A|,
is known. Hence, we can define {z1 . . . z|A|} ∈ Z latent
actions, where |Z| = |A| is used as an initial guess for the
number of latent actions. However, there may be more or
less types of transitions that appear in the demonstration
data. For example, if an agent has an action to move left
but always moves right, then the "left" transition will not
be observed. Or if the agent moves right and bumps into
a wall, this stationary transition may appear to be another
type of action. As such, we will empirically study the effect
of using latent actions when |Z| 6= |A|.

3.2. Behavioral cloning

Given expert states and actions {s1, a1 . . . sn, an}, be-
havioral cloning uses supervised learning to approximate
π(a|st). That is, given a state st, this approach predicts the
probability of taking each action, i.e., the policy. However,
imitation by observation approaches do not have access to
expert actions. To address this, behavioral cloning from ob-
servation (BCO) (Torabi et al., 2018a) first learns an inverse
dynamics model f(a|st, st+1) by first collecting samples in
the agent’s environment. Then, the approach uses this model
to label the expert observations and learn π(a|st). However
learning dynamics models online can require a large amount
of data, especially in high-dimensional problems.

We make the observation that we do not need to know action
labels to make an initial hypothesis of the policy. Rather,
our approach learns a latent policy πω(z|st) that estimates
the probability that a latent action z would be taken when
observing st. This process can be done offline and hence
more efficiently utilizes the demonstration data. We then
use a limited number of interactions with the environment to
learn an action-remapping network that efficiently associates
the true actions the agent can take with the latent policy
identified by our learned model.
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Algorithm 1 Imitating Latent Policies from Observation
1: function ILPO(s∗0, s∗1, . . . , s∗N )
2: Step 1: Learning latent policies
3: for k ← 0 . . . #Epochs do
4: for i← 0 . . . N − 1 do . (Omitting batching for clarity)
5: Train latent dynamics parameters θ ← θ −∇θ minz ‖Gθ(Epθ(s∗i ), z)− s∗i+1‖22
6: Train latent policy parameters ω ← ω −∇ω‖

∑
z πω(z|s∗i )Gθ(Epθ(s∗i ), z)− s∗i+1)‖22

7: Step 2: Action remapping
8: Observe state s0
9: for t← 0 . . . #Interactions do

10: Choose latent action zt ← arg maxz πω(z|Eaξ(st))
11: Take ε-greedy action at ← arg maxa πξ(a|zt, Eaξ(st))
12: Observe state st+1

13: Infer closest latent action zt = arg minz ‖Epθ(st+1)− Epθ(Gθ(Epθ(st), z))‖2
14: Train action remapping parameters ξ ← ξ +∇ξ log

πξ(at|zt,Eaξ(st))∑
a πξ(a|zt,Eaξ(st))

3.3. Step 1: Learning latent policies

In order to learn πω(z|st), we introduce a latent policy net-
work with two key components: a latent forward dynamics
model G that learns to predict ŝt+1, and a prior over z given
st, which gives us the latent policy, as shown in figure 1.

3.3.1. LATENT FORWARD DYNAMICS

We first describe how to learn a latent forward dynamics
model from expert state observations. Given an expert state
st and latent action z, our approach trains a generative model
Gθ(Ep(st), z) to predict the next state st+1, where Ep is
an embedding that is trained concurrently. Similar to recent
works that predict state dynamics (Edwards et al., 2018;
Goyal et al., 2018), our approach predicts the differences
between states ∆t = st+1 − st, rather than the absolute
next state, and computes st+1 = st + ∆t.

When learning to predict forward dynamics, a single pre-
diction, f(st+1|st), will not account for the different modes
of the distribution, i.e., the effects of each action, and will
thus predict the mean over all transitions. When using an
action-conditional model (Oh et al., 2015; Chiappa et al.,
2017), learning each mode is straightforward, as we can
simply make predictions based on the observed next state
after taking each action, f(st+1|st, a). However, in our ap-
proach, we do not know the ground truth actions that yielded
a transition. Instead, our approach trains a generative model
G to make predictions based on each of the latent actions
z ∈ Z, f(st+1|st, z).

To train G, we compute the loss as:

Lmin = min
z
‖∆t −Gθ(Ep(st), z)‖2. (1)

To allow predictions to converge to the different modes, we
only penalize the one closest to the true next observation,

st+1. Hence the generator must learn to predict the closest
mode within the multi-modal distribution. This approach
essentially allows each generator to learn transition clus-
ters for each type of transition that is represented through
∆t. If we penalized each of the next state predictions si-
multaneously, the generator would learn to always predict
the expected next state, rather than each distinct state ob-
served after taking a latent action z.

We use ∆t to better guide the generator to learn distinct
transitions. For example, if we have an agent moving in
discrete steps along the x-axis, then moving right would
yield positive transitions ∆ = 1 and moving left would yield
negative transitions ∆ = −1. Our approach aims to train
the generator to learn these different types of transitions.

Note that since G is learning to predict ∆t, we will need to
add each prediction to st in order to obtain a prediction for
st+1. For simplicity, in further discussion we will refer to G
directly as the predictions summed with the state input st.

3.3.2. LATENT POLICY LEARNING

Crucially, ILPO concurrently learns the latent policy
πω(z|Ep(st)). This represents the probability that given
a state st, a latent transition of the type z will be observed in
the expert data. We train this by computing the expectation
of the generated predictions under this distribution, i.e., the
expected next state, as:

ŝt+1 = Eπω[st+1|st] (2)

=
∑
z

πω(z|st)Gθ(Ep(st), z). (3)

We then minimize the loss as:

Lexp = ‖st+1 − ŝt+1‖2 (4)
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(a) Cartpole (b) Acrobot (c) Mountain car

Figure 2: Classic control imitation learning results. The trials were averaged over 50 runs for ILPO and the policy was
evaluated every 50 steps and averaged out of 10 policy runs. The reward used for training the expert and evaluation was +1
for every step that the pole was upright in cartpole, and a -1 step cost for acrobot and mountain car.

while holding the individual predictions fixed. This ap-
proach predicts the probability of each transition occurring.
In other terms, this determines the most likely transition
cluster.

With this loss, the latent policy is encouraged to make pre-
dictions that yield the most likely next state. For example, if
an agent always moves right, then we should expect, given
some state, for the next state to reflect the agent moving
right. Any other type of transition should have a low proba-
bility so that it is not depicted within the next state.

The network is trained using the combined loss:

Lpolicy = Lmin + Lexp. (5)

We outline the training procedure for this step in lines 3-6
in algorithm 1.

3.4. Step 2: Action Remapping

In order to imitate from expert observations, the agent needs
to learn a mapping from the latent policy learned in the pre-
vious step to the true action space: πξ(at|z, Ea(st)), where
Ea is an embedding that is trained concurrently. As such, it
is invariantly necessary for the agent to explore the effect
of its own actions within its environment. However, un-
like BCO and other imitation from observation approaches,
ILPO only needs to learn a mapping from a to z rather than
a full dynamics model. The mapping πξ also depends on
the current state st because latent actions are not necessarily
invariant across states. The actions being predicted by each
generator might change in different parts of the state-space.
If an agent is flipped upside-down, for example, then the
action "move up" would then look like "move down".

Nevertheless, generalization capabilities of neural networks
should encourage a strong correlation between a and z. The

dynamics in two states are often more similar for the same
action than they are for two different ones, thus assigning the
latent actions to the same type of transition should allow the
network to generalize more easily. This intuition will allow
us to learn such a mapping from only a few interactions with
the environment, but is not a requirement for learning, and
the algorithm will be able to learn to imitate the expert’s
policy regardless.

3.4.1. COLLECTING EXPERIENCE

To obtain training data for the remapped policy πξ , we allow
the agent to interact with the environment to collect experi-
ences in the form of {st, at, st+1} triples. This interaction
can follow any policy, such as a random policy or one that
is updated in an online way. The only stipulation is that a
diverse section of the state space is explored to facilitate
generalization. We choose to iteratively refine the remapped
policy πξ and collect experiences by following this current
estimate, in addition to an ε-greedy exploration strategy.

3.4.2. ALIGNING ACTIONS

While collecting experiences {st, a, st+1} in the agent’s
environment, we proceed in two steps to train the remapped
policy. First, we identify the latent action that corresponds
to the environmental state transitions {st, st+1} and then
we use the environmental action a taken as a label to train
πξ(at|zt, Ea(st)) in a supervised manner.

To do this, given state st, our method uses the latent dynam-
ics model, G, trained in step 1, to predict each possible next
state ŝt+1 after taking a latent action z. Then it identifies
the latent action that corresponds to the predicted next state
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(a) Cartpole (b) Acrobot

Figure 3: Cartpole and Acrobot results for selecting |Z|. The trials were averaged over 5 runs for ILPO and the policy was
evaluated every 50 steps and averaged out of 10 policy runs. The reward used for training the expert and evaluation was +1
for every step that the pole was upright in cartpole, and a -1 step cost for acrobot.

that is the most similar to the observed next state st+1:

zt = arg min
z
‖st+1 −Gθ(Ep(st), z)‖2. (6)

To extend this approach to situations where euclidean dis-
tance is not meaningful (such as high-dimensional visual
domains), we may also measure distance in the space of
the embedding Ep learned in the previous step. In these
domains, the latent action is thus given by:

zt = arg min
z
‖Ep(st+1)− Ep (Gθ(Ep(st), z)) ‖2. (7)

Having obtained the latent actions zt most closely corre-
sponding to the environmental action at, we then train
π(at|z, st) as a straight forward classification problem using
a cross-entropy loss:

Lmap = log
πξ(at|zt, Ea(st))∑
a πξ(a|zt, Ea(st))

. (8)

3.4.3. IMITATING LATENT POLICIES FROM OBSERVATION

Combining the two steps into a full imitation learning algo-
rithm, given a state st, we use the latent policy outlined in
step 1 to identify the latent cause that is most likely to have
the effect that the expert intended, z∗ = arg maxz πω(z|st),
and subsequently identify the action that is most likely to
cause this effect, a∗ = arg maxa πξ(a|z∗, st). The agent
can then follow this policy to imitate the expert’s behav-
ior without having seen any expert actions. We outline the
training procedure for this step in lines 7-14 in algorithm 1.

4. Experiments and results
In this section, we discuss the experiments used to evaluate
ILPO. We aim to demonstrate that our approach is able to

imitate from state observations only and with little interac-
tions with the environment. In addition to this, we aim to
show that learning dynamics online through environment
interactions is less sample efficient than learning a latent pol-
icy first. In these experiments, we compare the environment
interactions in ILPO during the action remapping phase with
online data collection in BCO used for learning the inverse
dynamics model. These samples are obtained after follow-
ing the policies of each respective method, and we evaluate
each approach after the same number of interactions.

We evaluate ILPO within classic control problems as well
as a more complex visual domain. We used OpenAI Base-
lines (Dhariwal et al., 2017) to obtain expert policies and
generate demonstrations for each environment. We compare
ILPO against this expert, a random policy, and Behavioral
Cloning (BC), which is given ground truth actions, averaged
over 50 trials, and Behavioral Cloning from Observation
(BCO). More details can be found in the appendix.

4.1. Classic control environments

We first evaluated our approach within classic control en-
vironments (Sutton & Barto, 1998). We used the standard
distance metric from equation 6 to compute the distances be-
tween observed and predicted next states for ILPO. We used
the same network structure and hyperparameters across both
domains, as described in the appendix. We used 50, 000 ex-
pert state observations to train ILPO and BCO, and the
corresponding actions to train Behavioral Cloning (BC).

Cartpole is an environment where an agent must learn to
balance a pole on a cart by applying forces of −1 and 1 on
it. The state space consists of 4 dimensions: {x, ẋ, θ, θ̇},
and the action space consists of the 2 forces. As such, ILPO
must predict 2 latent actions and generate predicted next
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Figure 4: CoinRun environment used in experiments. Coin-
Run consists of procedurally generated levels and the goal
is to get a single coin at the end of a platform. We used
an easy level (left) and hard level (middle and right) in our
experiments. The middle image is the agent’s state observa-
tion in the hard level and the image on the right is a zoomed
out version of the environment. This task is difficult because
the gap in the middle of the platform can not be recovered
from and there is a trap once the agent reaches the other side.
When training, the images also include a block showing x
and y velocities.

states with 4 dimensions.

Acrobot is an environment where an agent with 2 links
must learn to swing its end-effector up by applying a torque
of −1, 0, or 1 to its joint. The state space consists of 6
dimensions: {cos θ1, sin θ1, cos θ2, sin θ2, θ̇1, θ̇2}, and the
action space consists of the 3 forces. As such, ILPO must
predict 3 latent actions and generate a predicted next state
with 6 dimensions.

Mountain car is an environment where an agent on a single-
dimension track must learn to push a car up a mountain by
applying a force of−1, 0, or 1 to it. The state space consists
of 2 dimensions: {x, ·x}, and the action space consists of
the 3 forces. As such, ILPO must predict 3 latent actions
and generate a predicted next state with 2 dimensions.

4.1.1. RESULTS

Figure 2 (left) shows the imitation learning results in cart-
pole. ILPO learns the correct policy and is able achieve the
same performance as the expert and behavioral cloning in
less than 100 steps within the environment. Furthermore,
ILPO performs much better than BCO, as it does not need
to learn state-transitions while collecting experience, only a
mapping from latent to real actions.

Figure 2 (middle) shows the imitation learning results in ac-
robot. ILPO again learns the correct policy after a few steps
and is able achieve as good of performance as the expert
and behavioral cloning, again within 100 steps. While BCO
learns quickly, ILPO again performs better than it.

Finally, the results for mountain car are shown in Figure 2
(right). Neither ILPO nor BCO performed as well as the
expert. Nevertheless, it is clear that ILPO outperforms BCO.

We were also interested in evaluating the effect of using a

(a) CoinRun easy

(b) CoinRun hard

Figure 5: CoinRun imitation learning results. The trials
were averaged over 50 runs for ILPO and BCO the policy
was evaluated every 200 steps and averaged out of 10 policy
runs. The reward used for training the expert and evaluation
was +10 after reaching the coin.

different number of latent actions. These results are shown
in figure 3. We see that choosing |Z| = |A| is a good
initial guess for the size of Z, but the agent is also able
to learn from other sizes. |Z| = 1 performed poorly in
both acrobot and cartpole. This is because every action will
collapse to a single latent and the state predictions cannot
be disentangled.

As we mentioned in section 3.1, ILPO requires stochastic
demonstrations. We found that although the agent was capa-
ble of performing well with deterministic demonstrations,
the performance decreased in this setting. See the appendix
for more discussion.

4.2. CoinRun

We also evaluated our approach in a more complex visual en-
vironment, CoinRun (Cobbe et al., 2018). This environment
consists of procedurally generated platform environments.
In particular, the background, player, enemies, platforms,
obstacles, and goal locations are all randomly instantiated.
The agent can take actions left, right, jump, and down, jump-
left, jump-right, and do-nothing. The game ends when the
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(a) State (b) Next state (c) ILPO predictions

Figure 6: Next state predictions computed by ILPO in the CoinRun easy task. The highlighted state represents the closest
next state obtained from equation 7.

agent reaches a single coin in the game. We used 1000
episodes of expert demonstrations to train ILPO and BCO.

In these experiments, we evaluated each approach within a
single easy and hard level, shown in figure 4. This environ-
ment is more difficult than classic control because it uses
images as inputs and contains more actions. As such, the
dynamics learning takes place over many more dimensions.
In particular, the state space consists of 128x128x3 pixels
and 7 actions. Thus, ILPO must predict 128x128x3 dimen-
sions for the next-state predictions. We found that ILPO
performed better when predicting |Z| = 5 latent actions.
This is likely because certain actions, such as moving left,
were used less frequently. We use the embedded distance
metric from equation 7 to compute the distances between
observed and predicted next states.

4.2.1. RESULTS

Figure 5 shows the results for imitation learning. In both
the easy and hard tasks, ILPO was not able to perform as
well as the expert, but performed significantly better than
BCO. As this environment is high-dimensional, it takes
more steps to learn the alignment policy than the previous
experiments. However, ILPO often learned to solve the
task almost immediately, but some random seeds led to bad
initialization that resulted in the agent not learning at all.
However, good initialization sometimes allows the agent
to learn good initial policies zero-shot (see videos in the
supplementary for an example). As such, we found that it
was possible for the agent to sometimes perform as well as
the expert. The results consist of all of the seeds averaged,
including those that yielded poor results.

Figure 6 shows the predictions made by the model. ILPO
is able to predict moving right and jumping. Because these
are the most likely modes in the data, the other generators
also predict different velocities. The distance metric is able
to correctly select the closest state.

In general, it can often be difficult to learn dynamics from
visual inputs. Unlike BCO, by learning a latent policy first,
ILPO is able to reduce the number of environment inter-
actions necessary to learn. BCO requires solving both an
inverse dynamics model and behavioral cloning each time

it collects a batch of experience. As such, this approach is
less efficient than ILPO and in many scenarios would be
difficult to perform in realistic environments.

5. Discussion and conclusion
In this paper, we introduced ILPO and described how agents
can learn to imitate latent policies from only expert state
observations and very few environment interactions. We
demonstrated that this approach recovered the expert behav-
ior in four different domains consisting of classic control and
vision based tasks. ILPO requires very few environment
interactions compared to BCO, a recent dynamics-based
imitation from observation approach. In many real world
scenarios, unguided exploration in the environment may
be very risky but expert observations can be readily made
available. Such a method of learning policies directly from
observation followed by a small number of action alignment
interactions with the environment can be very useful for
these types of problems.

There are many ways that this work can be extended. First,
future work could address two assumptions in the current
formulation of the problem: 1) that it requires that actions
are discrete and 2) assumes that the state transitions are de-
terministic. Second, the action remapping step can be made
even more efficient by enforcing stronger local consisten-
cies between latent actions and generated predictions across
different states. This will drastically reduce the number of
samples required to train the action remapping network by
decreasing variation between latent and real actions.

We believe this work will introduce opportunities for learn-
ing to observe not only from similar agents, but from other
agents with different embodiments whose actions are un-
known or do not have a known correspondence. Another
contribution would be to learn to transfer across environ-
ments.

Finally, our work is complimentary to many of the related
approaches discussed. Several algorithms utilize behavioral
cloning as a pre-training step for more sophisticated imita-
tion learning approaches. As such, we believe ILPO could
also be used for pre-training imitation by observation.
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