Improved Convergence for /., and /; Regression via Iteratively Reweighted
Least Squares

Alina Ene “! Adrian Vladu ™!

Abstract

The iteratively reweighted least squares method
(IRLS) is a popular technique used in practice for
solving regression problems. Various versions of
this method have been proposed, but their theoret-
ical analyses failed to capture the good practical
performance.

In this paper we propose a simple and natural
version of IRLS for solving /., and ¢; regres-
sion, which provably converges to a (1 + ¢)-
approximate solution in O(m/? log(1/e)/e2/3 +
logm/e?) iterations, where m is the number of
rows of the input matrix. Interestingly, this run-
ning time is independent of the conditioning of
the input, and the dominant term of the running
time depends sublinearly in e ~!, which is atypical
for the optimization of non-smooth functions.

This improves upon the more complex algorithms
of Chin et al. (ITCS ’12), and Christiano et al.
(STOC *11) by a factor of at least 1/£2, and yields
a truly efficient natural algorithm for the slime
mold dynamics (Straszak-Vishnoi, SODA 16,
ITCS 16, ITCS *17).

1. Introduction

Regression problems are fundamental primitives in scientific
computing. Among these, {.- and ¢;-regression are their
hardest instantiations, since through standard reductions
they can be shown to be equivalent to linear programming.

While the series of works on these topics is truly extensive
and diverse, the simpler methods have pervaded into the
realm of practical applications. Among these, an extremely
popular scheme known for its simplicity is the iteratively
re-weighted least squares (IRLS) method. The idea behind
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it is to reduce optimization problems to iteratively solving
a series of weighted ¢5-minimization problems, where the
weights are adaptively chosen in such a way that the result-
ing solutions from the sequence of least-squares problems
converge to the sought optimal point. In particular, due to
its relevance in signal processing, ¢ regression is a very im-
portant application of IRLS (Candes et al., |2006; (Chartrand
& Yin, [2008).

Despite the fact that various versions of this method have
been studied ever since the 60°s (Lawson, |1961; |Osborne,
1985) theoretical understanding of their convergence has
lacked. Recent works have attempted to fill this gap, and
offer provable guarantees (Daubechies et al.,[2010; Straszakl
& Vishnoi, 2016ajbic), some of them inspired from the inter-
pretation of this method as a dynamical system. In particular,
we note the Physarum dynamics, which have been studied
in a completely different context (Ito et al.||201 1} Johannson
& Zou, 2012;(Tero et al., [2007; [Bonifaci et al., [2012; Bec-
chetti et al.,[2013) in order to justify an experiment which
revealed that a unicellular organism, the slime mold, could
solve the shortest path problem in a maze (Nakagaki et al.}
2000). The fact that these dynamics are essentially just a
version of the IRLS method was observed in (Straszak &
'Vishnoi, [2016a).

Returning to the more classical world of algorithm design
and analysis, it is worth observing that existing analyses of
IRLS methods fall into one of the following two categories:
(1) they show convergence only when the problem is properly
initialized, or (ii) the guaranteed running time is prohibitive
in the sense that it is highly dependent on how the input is
conditioned, or it has a high polynomial dependency on the
desired solution accuracy.

In this paper, we focus on analyzing simple versions of
IRLS which overcome both aforementioned obstacles. In
particular, our methods always converge to 1 + ¢ multi-
plicative approximation for the objectives ming. az=s |||,
p € {1,00},in O(m1/3/%/3 +1/&2) iterations'|of solving
a weighted least squares problem, where m is the dimension
of the sought vector x.

'We use O notation to suppress polylogarithmic factors in
m/e.
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Inspiration for our methods is heavily drawn from the work
of (Christiano et al.,|2011), which offered a ground-breaking
result by showing that in undirected graphs, a (1 + ¢)-
approximate maximum flow can be found in O(m!/3 /£11/3)
iterations (subsequently the € dependence was improved to
1/£%/3, see (Chin et al., 2013)) of solving a weighted least
squares problem — which in conjunction with efficient Lapla-
cian system solvers, broke a longstanding barrier for fast
graph algorithms. While these algorithms generalize to ar-
bitrary ¢; and /., regression problems, they are somewhat
involved, in particular due to the fact that they are the prod-
uct of combining the multiplicative weights update method
with a regularization technique, and a second potential func-
tionP]

Instead, our method attempts to directly solve the non-
smooth objective while tracking a single potential function.
The number of iterations looks surprising, since the dom-
inant term is O(m'/3/2/3), whenever ¢ > m~1/4, while
classical techniques for optimizing non-smooth functions
require a number of iterations that depends on the product
between the function’s parameters (such as Lipschitz con-
stant of the gradient or radius of the domain), and 1/¢ in the
best case, when accelerated methods are used; see (Nesterov,
2005) for more details.

Interestingly, a line of work that yielded results very similar
in spirit to ours is that of approximately solving positive
linear and semidefinite programs (Young, |2001; |Allen-Zhu
& Orecchia, 2015; |Allen-Zhu et al., 2016), where the goal
was to produce a first order optimization method that can be
implemented in a number of iterations independent of the
conditioning of the input. Improving the ¢ dependence to
0(1/&?) is an important open problem in this subfield.

We believe that understanding the connection between these
results can pave the way for designing new efficient opti-
mization primitives.

2To be more specific, Christiano et al. solve the approximate
maximum flow problem, which is a specific instance of £, regres-
sion. Chin et al. build on this work to solve ¢ regression with
block structure; the block structure is relevant for their specific
applications, but is a direct extension of the method, so solving
vanilla ¢; regression is still the main problem tackled there.

3We emphasize that using off-the-shelf methods, without fur-
ther assumptions on the input, the number of iterations of any
standard optimization method would be Q(y/m) even for the very
special instances where the affine constraint corresponds to a flow
satisfying a given demand in unweighted graphs, and in general
will depend on how the input matrix is conditioned, since this
conditioning determines the magnitude of the subgradients or the
diameter of the domain we are optimizing over. The breakthrough
of Christiano et al. was the first work that managed to reduce this
dependence for maximum flow, which is a specific instance of the
{~ regression problem.

1.1. Main Theorem

We state the main theorem of this paper. It follows from the
correctness proofs described in Sections [3.1]and and
the convergence proofs from Lemmas and[A.g]
Theorem 1.1. There exist algorithms {~,-MINIMIZATION
and ¢1-MINIMIZATION such that, on input (A, b,e, M),
where A € R™"™™ is a matrix, b € R" is a vector which
lies in the span of A’s columns, € is an accuracy parameter,
and M is a target value:

1. /o-MINIMIZATION returns a solution x such that
Az = b, and ||z|lc < (1 4 €)M, or certifies that
minac:Aw:b ||33Hoo > (1 — E)M.

2. /1-MINIMIZATION returns a solution x such that
Az = b, and ||z|1 < (1 + €)M, or certifies that
ming. az—s ||z||1 > (1 — ) M.

Furthermore both algorithms finish in

m'/3log(1/e)  logm
O( -2/3 T2 >

iterations, each of which can be implemented in the time
required to solve a linear system of the form ADATqb = b,
where D € R™*™ js an arbitrary nonnegative diagonal
martrix.

While our theorem statements are concerned with approxi-
mately solving a decision problem which requires a guess
M on the value of the objective, it follows from standard
techniques that this can be used to find a good approxima-
tion to the optimal solution without paying more than a O(1)
overhead in the number of iterations. For completeness, we
provide the details in Section D!

1.2. Relation to Previous IRLS Methods and
Slime-Mold Dynamics

A popular method for solving ¢; minimization is the iter-
atively re-weighted least squares method (IRLS). This is
essentially based on the observation that whenever * =
argmina,—p ||||1, one also has that this is the minimizer
of the least squares problem arg ming. g,—p(1/x*, w2>E]
Hence one approach that has been employed ever since
the 60’s (Lawson, [1961;|0Osborne, |1985;|Daubechies et al.,
2010) is to iteratively adjust the weighting of the coordinates
and re-solve the least squares problem, until  converges
to a stationary point. This is rigorously described by the
iteration

1
(t+1) _ : 2
r argﬂl_nb<|m(t)|7m > ’

*Throughout the paper we use the convention that 0/0 = 0.
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We abuse notation by applying scalar operations to vectors,
with the meaning that they are applied element-wise.

Subsequent works attempted to rigorously analyze this iter-
ation and prove convergence bounds. Oftentimes this relied
on specific structure, such as x being sparse (Daubechies
et al., 2010). A recent series of works drew inspiration from
convergence proofs for the slime-mold dynamics — a method
which essentially solves /1 minimization, based on a model
used to describe the evolution of a slime mold (Physarum
polycephalum) as it spreads through its environment in order
to optimize its access to food sources (Nakagaki et al., 2000;
Tero et al.,[2007). Based on the intuition that these dynam-
ics yield a method for solving the transportation problem,
Straszak and Vishnoi proved in a series of works (Straszak &
'Vishnoi, |2016azbic) that this is as a matter of fact equivalent
to the IRLS method, and provided a rigorous convergence
analysis for a damped version of it:

1
ot = arg min ( —————— x2 ) .
Az=b (m(t))2+772

Unfortunately their convergence proof shows that this
method is highly inefficient, and the time to convergence
has a high polynomial dependence in the desired accuracy,
and the structure of the linear constraint.

By comparison, what we describe in this work is an IRLS
method where the weights are updated according to a thresh-
olding rule. Given a guess M for the optimal value, we
perform an iteration equivalent to:

(t) ; ()
xX; C;
c§t+1) CZ('t) . 1#1/(175) < i / i

Sl B S Vs
2 ()7

1
(t+1) _ : 2
04 =g pin (i #*)

where 1 is a thresholding operator i.e. ¥ (u) = u, if u > b,
and 1,(u) = 1 otherwise. Intuitively, this increases the
weights ¢; only for the elements where the corresponding
component 72 /¢; of the quadratic objective contributes sig-
nificantly, therefore we want to favor increasing it even more
in the future by decreasing the weight 1/¢; we place on this
coordinate P

3 Another way to think of this is that, ignoring the thresholding
operator, the update would simply be CEH_U = (:L‘Et))2/cgt) -,
where v is some normalization factor. What thresholding achieves
here is to decide whether the contribution of a particular coordinate
to the energy of the system is sufficiently large compared to the
contributions of the entire vector .

2. Preliminaries
2.1. Basic Notation

Sets. We let R be the set of real numbers. For any natu-
ral number n, we write [n] := {1,...,n}. We denote by
A,, the m-dimensional simplex i.e. A,, = {p € R™ :
S, =1,p; > 0foralli}.

Vectors. We let 0,1 € R” denote the all zeros and all
ones vectors, respectively. When it is clear from the context,
we apply scalar operations to vectors with the interpretation
that they are applied coordinate-wise.

Matrices. We write matrices in bold. We use I to de-
note the identity matrix. Given a vector & we let D(x)
be the diagonal matrix whose entries are given by x. For
a symmetric matrix A, we let AT be its Moore-Penrose
pseudoinverse, ie. AAT = AT A = Iy 4). The pseu-
doinverse can be thought of as replacing all the nonzero
eigenvalues of A with their reciprocals.

Inner products. When it is convenient, we use (-, -) no-
tation to denote inner products. Given two vectors x, y of
equal dimensions, we let (z,y) = = " y.

Norms. Given a vector «, we denote the £, norm of x
by ||z||, = (3 2%)'/P. When the subscript is dropped, we
refer to the ¢5 norm. From this definition, we can also see
that ||z ||cc = max; |z]|.

2.2. Proof Technique

Let us first understand the idea behind our /., mini-
mization algorithm. The problem we aim to solve is
Ming. gz—p ||Z|co. Letting A, be the m-dimensional unit
simplex, we can write our objective equivalently as

. 2 . . 2
i fle%leo = min max (r, z%)

: 2
Joax (JE&EJ""” >) Jmax & (D),

where the second identity follows from Sion’s theo-
rem (Sion,|1958), which allows us to interchange min and
max. The quantity between the parentheses has a very nat-
ural interpretation, in the case of electrical networks: it is
precisely the electrical energy required to route a demand b
through an electrical network encoded in A. Furthermore,
we have an easy way to lower bound how this energy in-
creases whenever resistances are increased, which is a finer
quantitative version of Rayleigh’s monotonicity principle.
More precisely, we can easily certify a lower bound on the
increase in energy determined by increasing a single coor-
dinate of 7. Using this observation, which we make more
precise in Section we can identify a set of coordinates
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of 7 to increase, guaranteeing that if »’ is the new vector
with perturbed resistances, we have

Sr’(b) - gr(b)

2
L > M
[ =7l

- 9

2.1

for a fixed parameter M. In the case when no coordinates
of r can be increased, while preserving this property, this
yields a certificate that = is as a matter of fact (close to)
optimal, and thus we are done (Lemma [A.5). Hence our
goal becomes that of guaranteeing that ||r||; increases very
fast. Indeed, since the “electrical energy” increases at the
right rate relative to ||7||;, after the latter has increased
sufficiently, we can safely guarantee that £.(b)/||7|1 >
(1—¢€)M, since the increase in || 7||; cancels out most of the
initial error introduced by starting with a potentially poor
solution.

The ¢; minimization algorithm relies on squaring the objec-
tive, and then writing it equivalently as

. 2 . . 1 2

min ||z||{ = min | min ( —, @

z:Az=>b z:Axz=b \c€EA,, \ C
. . 1, .

= min [ min (—, x = min &;/.(b).

cEA,, \z:Az=b \ C ceEA,,

For the first identity we used the fact that ||z|? =
mingea (1/c, z?), achieved at ¢ = x/||z||1; see (Owen,
2007; |Sun & Zhang, 2012) for further use of this trick
The second identity follows from joint convexity w.r.t. ¢
and x, which can be verified by computing the Hessian
of the function in (x, ¢). So completely oppositely from
the previous case, the objective of our problem becomes
minimizing electrical energy with respect to a set of inverse
resistances, which we will call conductances. Note that in
this case the quantity that is invariant under scaling ¢ by a
constant is & /. - ||c||1. Therefore, equivalently, our goal
will be_tlo find the set of conductances ¢ > 0 for which
(&17e) /el = m Similarly to the /., case, in
this case we make progress by iteratively increasing conduc-
tances from ¢ to ¢’ in such a way that

sc}*(b) B T%b) 1

le—cl, =2 2.2)
Just as before, we can prove that unless the value of the
objective can not be made smaller than M, then ¢ can be in-
creased while enforcing this invariant (Lemma[A.7). Hence
we can prove fast convergence by arguing that ||¢||; in-
creases very fast.

SInterestingly, this can also be thought of as achieving tightness
for reverse Holder’s inequality whenever we are considering the
dual ‘norms’ £_1 and £y /5.

2.3. Approximate Solutions and Infeasibility
Certificates

/- minimization We consider the formulation

min ||z 23
min, @]l 23
for which we seek an approximate solution in the following
sense. Given a target value M, we aim to find one of the
following:

1. an approximate solution z in the sense that Az = b
and ||| < (14+¢)M,

2. an approximate infeasibility certificate r in the sense
that r € A,, and b' (AD(r)"'AT)Tb > (1 —
€)2M?.

We prove in Lemma [2.1|that the latter is indeed an infeasi-
bility certificate.

Lemma 2.1. Let x* be the solution to the problem de-
fined in Equation and let v € Ap,. Then ||z*||%, >
b" (AD(r)"1AT)Tb.

Proof. Using Lemma[A.2]we can write
b (AD(r) 'AT) b= min (r,z?) < (r, (z*)?)
z:Az=b
< [lrllllz* 1% = ll=* |13 .

which gives us what we needed. O

/1 minimization We consider the formulation

i 24
min [z, 24)
for which seek an approximate solution in the following

sense. Given a target value M, we seek one of the following:

1. an approximate infeasibility certificate ¢ € R"™ in the

b7 b
Y > _
sense that TAT &l (1 E)M,

2. an approximate feasibility certificate ¢ in the sense
that c € A, and b (AD(e)AT)"b < (1+¢)2 M2,
which yields an approximately feasible solution =
D(c)A" (AD(¢)A")Tb in the sense that Az = b
and |[z|; < (1+¢)M.

The fact that the former is an approximate infeasibil-
ity certificate follows from convex duality. Indeed, one
can see that the dual of the minimization problem is
MAX ([ AT |0 <1 qub, so exhibiting a solution as above
implies that the value of this objective is at least (1 — &) M.
A proof for the fact that the latter is indeed an approximate
feasibility certificate, and that it yields an approximately
feasible solution can be found in Lemma2.2]
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Lemma 2.2. Given ¢ € A,,, the vector * =
D(c)A" (AD(c)A")" b satisfies Az = b, and ||z||? <
b (AD(c)AT)*b.

Proof. The fact that Az = b follows directly by substitu-
tion, and using the fact that b € Im(A). Using LemmalA.2]
and the definition in (A.1]) we write

b'(AD(c)AT)"b
=b"(AD(c)A")"(AD(c)A")(AD(c)AT)"b
:icl ( (¢)AT(AD(c )AT)+b)2=Zm:%-w?-

i=1

We can use this identity inside the following upper bound,
which we obtain by applying Cauchy-Schwarz:

i=1

This yields our claim. O

3. The Algorithms

Having introduced the necessary notation, we can describe
our simple IRLS routine. We prove convergence in Sec-

tion[A}

3.1. The /., Minimization Algorithm

We first present the algorithm for the ¢, version of the
problem, since it is the most intuitive. The method attempts
to find a weighting of the columns of A4 i.e. a vector € R™
for which the corresponding least squares solution has a
small £, norm; more precisely ||z ||oo/||7|1 < (1+e)M
for some chosen target value M.

Then the weighting is updated via the following simple
thresholding rule. Elements for which the corresponding
coordinate of the least squares solution z; is below the
desired target value are left unchanged. The others are
scaled exactly by the amount by which the square of the
corresponding coordinate x; violates the desired threshold
ie z?/M?2.

Note that the iteration defined here simply attempts to con-
struct an infeasibility certificate for the problem defined in
Equation [2.3] Building the feasible solution involves main-
tains a solution obtained by uniformly averaging a subset
of the iterates = witnessed so far. These are used to return
the approximately feasible solution in case the algorithm
fails to quickly produce an (approximate) infeasibility cer-
tificate. The details referring to how and why we perform

Algorithm 1 /,,-MINIMIZATION(A, b, e, M)

1: Input: Matrix A € R™*™ vector b € R", accuracy ¢,
target value M.
2: Output: Vector  suchthat Az = b and ||z || < (1+
€)M, or approximate infeasibility certificate 7 € A,,
t=0,r0 = 1/m.
t'=0,st) =0.
while ||#(®)||, < 1/ do
z®) = argming. gp—p (r, 2).
// Equivalently,
2® =D(r)t AT (AD(r) A7) b.
7. if [z < m'/3 . M then
8: =t +1,st) =gt~ 4 g,
9: endif

AN A

10: if |[s®)] oo Jt' < (14 €)M then
11: return s() /¢,
12:  end if

o 1 if 2] < (1+ )M,
13: a;’ = (22

e otherwise.

14:  ifa® =1 then
15: return (%),
16:  end if
17: T(t+1) — lr-(t) . a(t).
18: t=t+ 1.

19: end while
20: return 7/||7||;.

this specific set of updates are explained in the convergence
proof. The steps involved in building this feasible solution
are written in blue. They can be ignored if the goal is simply
that of returning a yes/no answer.

Correctness. We notice that Algorithm|1|has two possible
outcomes. Either it returns a primal approximately feasible
vector (lines 11and 15), or returns a dual certificate (line 20).
In the former case, it is clear from the description of the
algorithm that the returned vector is indeed approximately
feasible: line 11 returns a uniform average of vectors sat-
isfying the linear constraint with small /., norm; line 20
returns the z(*) computed within the corresponding itera-
tion, whenever o) = T, i.e. [|[2®||o < (14 ¢)M.

Also, note that in case none of these stopping conditions is
triggered, the algorithm returns a dual certificate on line 20
after a finite number of iterations. Indeed, note that every
iteration where az(-t) =+ 1, at least one element of 7(*) gets
increased by a factor of at least (1 4 £)2, due to way a(?)
is defined. Since the algorithm stops when ||7®)||; = 1/e,
no element of  can be scaled more than O(log ;1. (m/€))
times, hence the total number of iterations is very roughly
upper bounded by O(mlog(m/e)/e). We will see in Sec-
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Algorithm 2 ¢, -MINIMIZATION(A, b, e, M)

1: Input: Matrix A € R™*™ vector b € R", accuracy ¢,
target value M.

2: Output: Vector « such that Az = b and ||z||; < (1 +
€)M, or approximate infeasibility certificate ¢ € A,,.

3:t=0,c0 = 1/m.
t'=0,s" =0, 8 =o.

5: while ||c®||; <1+ do

(1+51)2—1
(t) " .
6: ¢ = (AD(C)A ) b.// Equivalently,

¢”J is the vector of potentials
which induce the electrical

flow @ = argmin.—p{1/c, 332> via
z=D(c)A"¢.
T p(®)
7: if H ?T(#(t) ‘ < m1/3 : ﬁ then
8- t = t/ 4 1’ S(t/) _ S(t/_l) + ‘% , Q(t’) —
t'—1 (®)
e 4
9: endif
10:if 8]0/t < 7=iyz7 then
11: return ) /¢/.
12:  end if
1 if 14 e 1
. () _ b o™ = (1-e)M>
13: Oé,L- = (AT¢<‘))v 2
(W) - M?  otherwise.
14:  ifa® =1 then
15: return ¢,
16:  endif
17: c(t+1) = c(t) . a(t)
18: t=t+1.
19: end while
20: return z = D(c)A" ™.

tion[A] that we can prove a much finer upper bound.

Finally, we need to argue that whenever the algorithm re-
turns on line 20, it returns an infeasibility certificate as per
Lemma[2.T, We defer the proof to Lemma[A.5]in Section|[A.

3.2. The /; Minimization Algorithm

The ¢; version is very similar. As a matter of fact, it can be
re-derived simply by attempting to solve the convex dual
of the problem from (2.3), which is an ¢, minimization
problem, by using the routine from Figure [I. However,
since the reduction requires several, and previous works
attempted to solve this directly using various versions of
IRLS, we provide a natural iteration which does not involve
any reductions.

Correctness. We notice that Algorithm|2|has two possible
outcomes. Either it returns an approximate infeasibility

certificate (lines 11 and 15), or returns an approximately
feasible solution (line 20).

Let us verify that in the former case the returned vector

is indeed an approximate infeasibility certificate. Line 11
®)

returns &) = Y oies b-?%#)(t)’ where we know that S'is a

set for which

Ja7e] - 4T 20
t
o tes 0 O
AT¢(t) Z AT¢(t) t/
tes bT¢(t) tes bT‘b(t) T (l-e)M°

oo o0

Since b' &*) =+ we see that returned vector & Jt' is
an approximate infeasibility certificate, as defined in Sec-

tion 2.3] If the algonthm returns on line 15, we get that

AT oM
|5
sibility certificate.

‘ < @M E) +7 > hence (;b( ) is an approximate infea-

Also, note that in case none of these stopping conditions is
triggered, the algorithm returns a solution on line 20 after a
finite number of iterations. Indeed, just as in the ¢, case, in
every iteration some conductance gets increased by a factor
of at least {2(1 + ¢), hence the algorithm must stop in finite
time. We provide a rigorous analysis of the time required
for convergence in Section [Al

Finally, we need to argue that whenever the algorithm re-
turns a solution on line 20, it is indeed an approximately
feasible solution. We defer the proof to Lemma in
Section [A]

4. Experiments

We test both our resistance/conductance update schemes in
order to verify that the resulting algorithms converge fast
in practice. We slightly modify the schemes such that they
always update their target value M depending on the value
of the objective they have achieved so far. We stop when
given the history of witnessed iterates, we can certify a
sufficiently small duality gap. For solving linear systems,
we used the conjugate gradient implementation from the
£1-MAGIC optimization suite (Candes & Romberg).

We test both algorithms while varying ¢, and varying m. We
consider both the update scheme given by our algorithms
from Section [3| and one where we attempt to double the
length of the step for as long as the invariants from (2.1)
and (2.2)), respectively, are maintained. We notice that in
general, using this long step strategy, we improve both the
number of iterations and the running time.

The plots corresponding to the standard update scheme
(short-steps) are drawn in red, those corresponding to the
long-step version are drawn in blue.
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Figure 3.1: Experimental results.

The experiments where we varied ¢ are reported in fig-
ures and [I(f). For all these experiments,
the input consists a random 150 x 200 matrix A with or-
thogonal rows, and a vector b obtained from applying A
to a £1-vector of sparsity 15. We plot the number of iter-
ations/running time of the algorithm for ¢ = 1/2*, where
ke{l,...,12}.

‘We notice that for these experiments, the number of itera-
tions for the short-step version does indeed scale linearly
with e~1; the long-step version makes significant gains in
the /., case.

The experiments where we varied m are reported in fig-
ures [T(d)}[T(g), and[T(h)] For all these experiments, the
input consists of a random 150 x (200 - k) matrix A with or-
thogonal vectors, and a vector b obtained from applying A
to a +1-vector of sparsity 15, and a fixed accuracy € = .01.
We plot the number of iterations required by the algorithm
fork € {1,...,30}.

We notice that for these experiments, both the number of
iterations and the running time scale significantly better than
by m!/3, which suggests that this polynomial dependence
in m depends on the input structure, and can be avoided in
practice.
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