Supplementary material: Cross-Domain 3D Equivariant Image Embeddings

Carlos Esteves” ! Avneesh Sud? Zhengyi Luo' Kostas Daniilidis' Ameesh Makadia >

64x64x1 128x128x1 128x128x1 _
PR 6Ax64x64 6dx6dx64 16x16x64
lx! 1‘2
x2
G4x064x 128 l6x16x128
64x64x32 64x64x128
lx! 1.‘&2
x2
32x32x256 8x8x256
lJ\E lnﬁ
x2
16x16x256 4x4x256
32x32x64 16x16x256 l‘j l N
G 8x8x256 2x2x256
%32
ARG 8x8x256 lxg 1
Ix1x1024
x2 4x4x256 -
32x32x64 P l" }
e 4xdx256
< 2x2x256 l"’
16x16x128 1
2x2x256 8x8x256
Ix1x1024
1 l 1.\2
16x16x128
Ixlx1024 4xdx256 16x16x256
1 le lx'j
16x16x128 Axdx 128
8x8x128 32x32x128
x2
l—'ll 112
2
. 8x8x64 16x16x64 64x64x64
T
! ! I
1x1x128 16x16x32 128x128x1

Spherical CNN Pose embedding Synthesis embedding Synthesizer

Figure 1. Network architectures used in this work. Rectangles
indicate data dimensions (width x height x channels). Red arrow:
spherical convolutional residual bottleneck layer; dashed arrow:
global average pooling; blue arrow: residual bottleneck layer;
black arrow: convolutional layer. Nodes with yellow and green
backgrounds are the target embeddings for pose and synthesis,
respectively.

1. Architecture details
1.1. Spherical CNN

We train a single 10-layer spherical CNN for object classifi-
cation on ModelNet40 and use it to obtain the target embed-
dings for all experiments in this paper. The basic block is
the spherical convolutional residual layer. The architecture
is shown in figure 1, where the a cross-entropy loss over
40 classes is optimized. The network s is trained for 15
epochs with a batch size of 16, and ADAM optimizer with
initial learning rate of 10~3 which is reduced to 2 * 10~
and 4 x 107 at steps 5000 and 8500, respectively. Random
anisotropic scaling is used as augmentation. It achieves
84.2% accuracy. Esteves et al. (2018) achieve 86.9% on the
same task, but with a different architecture containing an
extra branch to process surface normals; our inputs are only
the ray lengths from the ray casting procedure.

1.2. Embedding network

Our embeddings are obtained with encoder-decoder residual
networks. Given an input with dimensions N x N, the en-
coding step contains one 7 x 7 convolutional layer followed
by logy IV —1 blocks of 2 residual layers, followed by a final
convolutional layer that produce a 1D latent vector. The
number of channels double at each residual block, starting
at 64 and capped at 256. Downsampling is through strided
convolutions.

The 1D encoding is upsampled using a convolutional layer
followed by a sequence of residual blocks and a final 7 x 7
convolutional layer up to the desired resolution and number
of channels, which is 16 x 16 x 32 for the pose experiments,
and 32 x 32 x 16 for novel view synthesis. Upsampling is
through transposed convolutions.

Note that our targets are spherical CNN features inside the
residual bottlenecks, so the embeddings have 4 times fewer
channels than the actual spherical CNN layer outputs. The
image inputs are 128 x 128 and 1024 units are used in the
1D encoding. See figure 1 for the resolutions and number of
channels per layer.

The embedding network f is trained to minimize a Huber
loss for 200k steps with a batch size of 16, and ADAM opti-
mizer with initial learning rate of 2 * 10~* which is reduced

Supplementary material: Cross-Domain 3D Equivariant Image Embeddings

to 4 % 1075 and 10~° at steps 80k and 180k, respectively.
Random anisotropic scaling of meshes prior rendering is
used as augmentation.

1.3. Synthesis network

The synthesizer network g follows the same structure as the
embedding, the difference being that the inputs are 32 x 32 x
16 and the outputs 128 x 128. One question that arises is if
the synthesizer should be trained with the target spherical
CNN embeddings as inputs (s(x)) or from the embeddings
obtained from single views by our network (f(y)). We
found that the latter is slightly better.

The synthesis network is trained to minimize an Lo loss for
200k steps with a batch size of 8, and ADAM optimizer with
initial learning rate of 2 * 10~% which is reduced to 4+ 10~
and 1075 at steps 80k and 180k, respectively. Random
anisotropic scaling of meshes prior to rendering is used as
augmentation.

2. Evaluation details

In this section, we include details of the training setup for
competing approaches. Note that we still outperform these
methods even when allowing more information in the form
of oriented meshes, pose supervision and warm starting
from pre-trained networks.

2.1. Regression

We utilize the same architecture as in the middle columns of
figure 1 up to the 1024 dimensional bottleneck, followed by
the pose network from Mahendran et al. (2017). We train for
200k steps, with a batch size of 16, and ADAM optimizer,
with initial learning rate of 1 x 10~4, which is reduced to
5% 1075, 2 % 10—5, and 8 * 1079 at steps 40k, 75k and
125k respectively. The RMSE and geodesic loss scheduling
similar to Mahendran et al. (2017) is used - RMSE loss
is used for 100k steps, followed by geodesic loss. When
training the 3DOF model, we found that the performance
improves when warm starting from a network pre-trained
on the 2DOF training set.

The original model is trained to regress a canonical pose. In
our setting, where we render views from a mesh dataset, the
meshes need to be aligned or have annotated poses. Since
our method does not require aligned meshes, a more fair
comparison would be to train the regression model on pairs
of views where the regression target is the relative pose.
We experimented with several variations of this approach
and the performance was worse than the regression to a
canonical orientation, so we only report results computing
the relative pose from the regressed canonical orientations.

2.2. KeyPointNet

We utilize the authors’ publicly available code and default
parameters with minor modifications. The required changes
are because Suwajanakorn et al. (2018) distribute the train-
ing, which allows a larger batch size of 256, while we train
only on a single GPU with a batch size of 24. We found
that with a smaller batch size the default orientation predic-
tion annealing steps (30k-60k) prevents convergence; we
changed it to 120k-150k and increased the number of steps
from 200k to 300k to be able to reproduce (and slightly im-
prove) the numbers reported in Suwajanakorn et al. (2018)
(see table 1). We also modify their rendering code to gener-
ate the 2DOF and 3DOF datasets, as the original paper only
considers a 2DOF hemisphere.

airplane car chair
Our parameters 6.06 331 494
Original parameters 572 337 542

Table 1. Median angular error in degrees for instance based 2DOF
hemisphere alignment on ShapeNet. Our parameter selection
slightly outperforms the original results from Suwajanakorn et al.
(2018).

3. Extra experiments

We evaluate image to mesh alignment on ShapeNet and rela-
tive pose estimation on ModelNet40. For completeness, we
also include regression results to estimate error to a canoni-
cal pose. Table 3 shows the results for 3DOF alignment and
Table 4 for 2DOF alignment for ModelNet40.

3.1. Image to mesh alignment

Although we focus on tasks where the inputs are 2D images,
our method produces a common equivariant representation
for images and meshes that can be used to align images to
meshes. Table 2 shows the results.

airplane | car | chair | sofa

im-mesh 5.65 495 | 13.28 | 12.34

2DOF | iim | 624 | 473 | 12,10 | 10.80
im-mesh 5.98 424 | 1321 | 11.43

3DOF im-im 7.27 4.59 | 1230 | 9.66

Table 2. Image to mesh alignment experiment on ShapeNet. We
show the category based median relative pose error in deg for
image to image (im-im) and image to mesh (im-mesh).

3.2. ModelNet40 relative pose

Tables 3 and 4 show alignment results for ModelNet40.

Supplementary material: Cross-Domain 3D Equivariant Image Embeddings

airplane | bed | chair | car | sofa | toilet
Regr.| 11.8 |26.0|43.7|16.5/25.3|17.8
Ours | 7.23 |4.93|7.79 |3.95|6.51| 5.17
Regr.| 129 |29.9|52.5(15.2(345|17.8
Ours | 8.81 |8.55|15.3 5.12|11.0| 10.9

1B

CB

Table 3. Median angular error in degrees for instance (IB) and
category-based (CB) 3DOF alignment on ModelNet40.

airplane | bed |chair | car | sofa |toilet
Regr.| 6.29 |12.7|25.5|6.84|12.5|9.76
Ours | 3.33 [4.46|7.07 |4.12|4.52| 4.88
Regr.| 7.13 |15.8|32.2|7.00|13.3| 104
Ours | 4.80 [6.60| 10.2 [4.82/9.56| 10.8

IB

CB

Table 4. Median angular error in degrees for instance (IB) and
category-based (CB) 2DOF alignment on ModelNet40.

3.3. Novel view synthesis

We show novel view synthesis results for other classes, in-
cluding a failure case in 2.

3.4. Visualization

Figure 3 shows inputs, embedding channels, rotated em-
bedding channels and outputs from synthesis. Figure 4
shows inputs, embedding channels, and alignment visu-
alization. See animations in the supplementary material
(synthesisl.gif, synthesis2.gif, pose.gif).

References

Esteves, C., Allen-Blanchette, C., Makadia, A., and Dani-
ilidis, K. Learning SO(3) equivariant representations
with spherical cnns. In The European Conference on
Computer Vision (ECCV), September 2018.

Mahendran, S., Ali, H., and Vidal, R. 3d pose regression
using convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017.

Suwajanakorn, S., Snavely, N., Tompson, J. J., and Norouzi,
M. Discovery of latent 3d keypoints via end-to-end ge-
ometric reasoning. In Advances in Neural Information
Processing Systems (NIPS), pp. 2063-2074, 2018.

Supplementary material: Cross-Domain 3D Equivariant Image Embeddings

* m »“i'i H Al
= &% A M

Figure 2. More novel view synthesis results. 7op-left: inputs, which are 2D images from the test set. Top row: novel views generated
using our method. Bottom row: ground truth views rendered from the original mesh. The bottom right shows a failure case due to a chair
with uncommon appearance.

/-A/\\ , '
O ,,\"' 4~ ”’D’W‘

20 B
90 990 H
mqmﬁ.mii

NOD DD
200 #%0 [

ESNESENESED

Figure 3. Novel view synthesis visualization. Each row: inputs, 3 embedding channels, rotated embedding channels, outputs. Top 3
rows show generation of a canonical view from arbitrary views and correspond to synthesisl.gif. Bottom 3 rows show generation
of arbitrary views from a canonical view and correspond to synthesis2.gif.

Supplementary material: Cross-Domain 3D Equivariant Image Embeddings

—

—

- He §il He

—

/S
LS S S

SO00OCCECO
ceoceecec
0060060606

-
i
.-
@
.-
-

“He

Figure 4. Relative pose estimation visualization. Each block of two rows: pair of inputs, 3 embedding channels per input, mesh 2
rotated into pose 1, and mesh 1 rotated into pose 2. We render from the ground truth meshes for visualization purposes only; our inputs
are solely the 2D views and output is the relative pose. See pose . gif for an animation.

