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Appendix
Proof of Equation (3): Note that

F (x+ e) 6= F (x)

⇔ 〈x+ e, z〉〈x, z〉 < 0

⇔ 〈e, z〉 > |〈x, z〉|.

The left-hand side is clearly maximized for e = ‖e‖ z
‖z‖ ,

leading to

‖e‖‖z‖ > |〈x, z〉|.

This proves the claim by taking the infimum over ‖e‖.
Lemma 1. Let F be a classifier with locally affine score
function Ψ. Assume l(x) ≥ ρ(x). Then

ρ(x) = min
j 6=i∗

Ψi∗(x)−Ψj(x)

‖∇Ψi∗(x)−∇Ψj(x)‖
, (8)

for i∗ := F (x) the predicted class at x.

Proof. As l(x) ≥ ρ(x), we can take the infimum in (1) over
all perturbations in the local affine component, i.e. e with
‖e‖ ≤ l(x) only. This allows us to reformulate

F (x+ e) 6= F (x)

⇔ ∃j 6= i∗ : Ψj(x+ e) > Ψi∗(x+ e)

⇔ ∃j 6= i∗ : 〈∇Ψj(x)−∇Ψi∗(x), e〉 > Ψi∗(x)−Ψj(x).

The infimum over ‖e‖ is achieved by choosing e as a mul-
tiple of ∇Ψj(x) − ∇Ψi∗(x). A direct computation then
finishes the proof.

Proofs of Homogenization results

Lemma 3 (Euler’s Homogeneous Function Theorem). Let
f : Rm → R be a positive one-homogeneous function that
is continuously differentiable on Rm\{0}. Then

f(x) = 〈∇f(x), x〉

Proof. First note that

∂if(ax) = lim
t→0

f(ax+ tei)− f(ax)

t

= lim
t→0

f(ax+ atei)− f(ax)

at
= ∂if(x).

Hence

f(x) =

∫ 1

0

〈∇f(tx), x〉 dt = 〈∇f(x), x〉

Lemma 2 (Linearized Robustness of Homogeneous Clas-
sifiers). Consider a classifier F with positive one-
homogeneous score functions. Then

ρ̃(x) = α†(x). (12)

Proof. Direct consequence of 3.

Definition 5 (Neural Networks). Define the class of neural
networks N to be any network built on learnable affine
transforms (convolutional layers, dense layers) with linear
weights Θ and biases b and ReLU or leaky ReLU activations.
The network can include arbitrary skip-connections, batch-
normalization layers and max or average pooling layers
of arbitrary window size. This in particular includes many
state-of-the-art classification networks.

Lemma 4 (Homogeneous Networks). For fixed x, consider
the logit Ψi

Θ,b(x) of a network ΨΘ,b ∈ N , where Θ denotes
the linear weights and b the bias vector of the network. Then
the function

f : y 7→ Ψi

Θ,b
‖y‖
‖x‖

(y),

f is positive one-homogeneous and f(x) = Ψi
Θ,b(x).

Proof. Consider first a network consisting of a single
layer with linear transform A and bias b with ReLU non-
linearity. The associated network function is hence given by
ΨA,b(x) = (Ax+ b)+. For this network, we compute for x
fixed and any y and a > 0 as

f(ay) =

(
A(ay) + b

‖ay‖
‖x‖

)

+

=

(
a ·Ay + a · b‖y‖

‖x‖

)

+

= af(y).

A single layer is hence positive one-homogeneous. A
function consisting of compositions of positive one-
homogeneous functions is positive one-homogeneous itself
as well, the function f associated to a network consisting
of affine transforms and ReLU activations is positive one-
homogeneous. All of the operations skip-connections, batch-
normalization layers and max or average pooling are posi-
tive one-homogeneous as well, thus proving the claim.

Theorem 1 (Homogeneous Decomposition of Neural Net-
works). Let Ψi

Θ,b be any logit of a neural network with
ReLU activations (of class N in the appendix). Denote by
Θ the linear filters and by b the bias terms of the network.
Then

Ψi
Θ,b(x) = 〈x,∇xΨi

Θ,b(x)〉+ 〈b,∇bΨi
Θ,b(x)〉

= 〈x,∇xΨi
Θ,b(x)〉+

∑

k

bk∂bkΨi
Θ,b(x). (13)
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Proof. Let f be the functions associated with the network
Ψi

Θ,b as in Lemma 4. Then by Lemma 3 we can compute
the value of f at the point x via

f(x) = 〈x,∇yf(y)|y=x〉.

Note that by construction f(x) = Ψi
Θ,b(x). We compute

the gradient of f at the point x explicitly as

∇yf(y)|y=x = ∇xΨi
Θ,b(x) +

x

‖x‖2
〈b,∇bΨi

Θ,b(x)〉.

Combining these results shows

f(x) = 〈x,∇xΨi
Θ,b(x) +

x

‖x‖2
〈b,∇bΨi

Θ,b(x)〉〉

= 〈x,∇xΨi
Θ,b(x)〉+ 〈b,∇bΨi

Θ,b(x)〉.

Recall the notation i∗ = F (x) and j∗ for the minimizer in
j in (9).

Theorem 2. Let g := ∇Ψi∗(x). Furthermore, let
g† := ∇(Ψi∗ −Ψj∗)(x) and β† := βi

∗
(x)−βj∗(x). Then

ρ̃(x) ≤ α†(x) +
|β†|
‖g†‖

(14)

≤ α(x) + ‖x‖ · ‖g† − g‖+
|β†|
‖g†‖

. (15)

Proof. We have

ρ̃(x) =
Ψi∗(x)−Ψj∗(x)

‖∇Ψi∗(x)−∇Ψj∗(x)‖

=
〈x,∇Ψi∗(x)−∇Ψj∗(x)〉+ βi

∗
(x)− βj∗(x)

‖∇Ψi∗(x)−∇Ψj∗(x)‖

=

∣∣∣∣〈x, g†〉+
β†

‖g†‖

∣∣∣∣ ≤ α†(x) +
|b†|
‖g†‖

,

using the decomposition theorem and the triangle inequality.
Further,

α†(x) +
|b†|
‖g†‖

=
∣∣〈x, g†〉

∣∣+
|b†|
‖g†‖

=
∣∣〈x, g† − g + g〉

∣∣+
|b†|
‖g†‖

≤ |〈x, g〉|+
∣∣〈x, g† − g〉

∣∣+
|b†|
‖g†‖

≤ α(x) + ‖x‖ · ‖g† − g‖+
|b†|
‖g†‖

,

using the Cauchy-Schwarz inequality.

Theorem 3. Let ξ := x + β†

‖g†‖
g†

‖g†‖ and γ := ∇Ψi∗(ξ),
with g† and β† defined as in the previous theorem. Then

ρ̃(x) ≤ |〈ξ, γ〉|
‖γ‖

+ ‖ξ‖ · ‖g† − γ‖, (16)

and if additionally F (x) = F (ξ), then

ρ̃(x) ≤ α(ξ) + ‖ξ‖ · ‖g† − γ‖.

Proof. We have

ρ̃(x) =
〈x, g†〉+ β†〈 g†

‖g†‖2 , g
†〉

‖g†‖

=
〈x+ β†

‖g†‖
g†

‖g†‖ , g
†〉

‖g†‖
= 〈ξ, g†〉 = 〈ξ, g† − g + g〉
≤ |〈ξ, γ〉|+ ‖ξ‖ · ‖g† − γ‖,

using the Cauchy-Schwarz inequality in the same way as in
the last theorem.

MNIST Model Architecture

Here we describe the architecture that was used for the
MNIST models.

Conv2D (3× 3, ’same’), 32 feature maps, ReLU
Max Pooling (factor 2)

Conv2D (3× 3, ’same’), 64 feature maps, ReLU
Max Pooling (factor 2)

Conv2D (3× 3, ’same’), 128 feature maps, ReLU
Max Pooling (factor 2)

Dense Layer (128 neurons), ReLU
Dropout (0.5)

Softmax


