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Appendix

Proof of Equation (3): Note that

Flo+e) # ()
S(zx+ez)(r,z) <0
& (e, z) > |(x, 2)].

The left-hand side is clearly maximized for e =
leading to

lellrZg
T=T*

llellllzll > [(z, 2)].

This proves the claim by taking the infimum over ||¢]|.

Lemma 1. Let F be a classifier with locally affine score
Sunction . Assume l(x) > p(x). Then

U () — W ()
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r) = min
p(z) min

Sor i* := F(x) the predicted class at x.

Proof. Asl(z) > p(x), we can take the infimum in (1) over
all perturbations in the local affine component, i.e. e with
|le]l < I(«) only. This allows us to reformulate

Flo+¢) # F(a)
eI A£d W (rte)>T (z+e)
& Jj £ (VI (z) — VI (z),€) > U (2) — U (z).
The infimum over ||¢|| is achieved by choosing e as a mul-

tiple of VW (z) — V¥ (z). A direct computation then
finishes the proof. O

Proofs of Homogenization results

Lemma 3 (Euler’s Homogeneous Function Theorem). Let
f:R™ — R be a positive one-homogeneous function that
is continuously differentiable on R"™\{0}. Then

f(@) = (Vf(x), )
Proof. First note that

0 f(az) = 1im 1107 Ftes) = Flaz)

t—0 t
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Hence

Lemma 2 (Linearized Robustness of Homogeneous Clas-
sifiers). Consider a classifier F with positive one-
homogeneous score functions. Then

p(z) = al(z). (12)

Proof. Direct consequence of 3. O

Definition 5 (Neural Networks). Define the class of neural
networks N to be any network built on learnable affine
transforms (convolutional layers, dense layers) with linear
weights © and biases b and ReLU or leaky ReLU activations.
The network can include arbitrary skip-connections, batch-
normalization layers and max or average pooling layers
of arbitrary window size. This in particular includes many
state-of-the-art classification networks.

Lemma 4 (Homogeneous Networks). For fixed x, consider
the logit W%7b(x) of a network Ve, € N, where © denotes
the linear weights and b the bias vector of the network. Then
the function

f ‘Y= \I/éb%(y)’
f is positive one-homogeneous and f(x) = \I/”@b(ac)

Proof. Consider first a network consisting of a single
layer with linear transform A and bias b with ReLU non-
linearity. The associated network function is hence given by
U 44(z) = (Az + b)4. For this network, we compute for
fixed and any y and @ > 0 as

flay) = (A(ay) n b||ay||)+

]

= (a-Ay+a-b”y”> =af(y).
el /
A single layer is hence positive one-homogeneous. A
function consisting of compositions of positive one-
homogeneous functions is positive one-homogeneous itself
as well, the function f associated to a network consisting
of affine transforms and ReLLU activations is positive one-
homogeneous. All of the operations skip-connections, batch-
normalization layers and max or average pooling are posi-
tive one-homogeneous as well, thus proving the claim. [

Theorem 1 (Homogeneous Decomposition of Neural Net-
works). Let \I/in be any logit of a neural network with
ReLU activations (of class N in the appendix). Denote by
O the linear filters and by b the bias terms of the network.
Then

o) = (2, VoWl 4 (2)) + (b, Vol , (x))
= (@, Vo Uh (@) + 3 by, Ty (). 1)
k
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Proof. Let f be the functions associated with the network
\If@ , as in Lemma 4. Then by Lemma 3 we can compute
the value of f at the point x via

f(@) = {2, Vy f(y)|y=z)-

Note that by construction f(z) = Wg (). We compute
the gradient of f at the point = explicitly as

Combining these results shows
F(@) = (2, VoV () + 15 (b, Vil 4 (7))

[EIR ||2

= (2, VaWo () + (b, Voo 4 ().

O

Recall the notation i* = F'(z) and j* for the minimizer in
jin (9).

Theorem 2. Let g := V' (x). Furthermore, let
gt = V(U — W) () and BT := BV (x) — B7" (). Then

po) < oty + 21 (14)
gl
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< afz)+ ] -lg" - gl + o
Proof. We have
N U () — W97 ()
plz) = = =
= 9w (@)~ Ve @]
_ (@, VU (2) - VI (2)) + 87 (x) — 7 ()
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il b
= [(z,9") + af (@) +
llgtll| = lgtl’
using the decomposition theorem and the triangle inequality.
Further,
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using the Cauchy-Schwarz inequality. O

Theorem 3. Let { := z + %ﬁ and y := VU (¢),
with g and B defined as in the previous theorem. Then
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and if additionally F ()

plx) < a(€) + gl - lIg" =1l

+Ell- gt =7, (16)

= F(&), then

Proof. We have

.
(z,g") + BT (%5, gT)
5z — [T
9]l

= (9" =7 -g+79)
<&+ gl - gt =,
using the Cauchy-Schwarz inequality in the same way as in
the last theorem. O
MNIST Model Architecture

Here we describe the architecture that was used for the
MNIST models.

Conv2D (3 x 3, ’same’), 32 feature maps, ReLU
Max Pooling (factor 2)

Conv2D (3 x 3, ’same’), 64 feature maps, ReLU
Max Pooling (factor 2)

Conv2D (3 x 3, ’same’), 128 feature maps, ReLU
Max Pooling (factor 2)

Dense Layer (128 neurons), ReLLU
Dropout (0.5)
Softmax




