Stable-Predictive Optimistic Counterfactual Regret Minimization

A. Proofs
A.1. Optimistic Follow-the-Regularized-Leader
We offer a proof of Theorem 8.

First, we introduce the following argmin-function:

i:LHargmin{(cc,L)JrlR(w)}. (18)
xzeX n

Furthermore, let L? := 23:1 £7. With this notation, the decisions produced by OFTRL, as defined in (8), can be expressed
asa’ = (L1 + mb).

Continuity of the argmin-function. The first step in the proof is to study the continuity of the argmin-function z. Intuitively,
the role of the regularizer R is to smooth out the linear objective function (-, L). So, it seems only reasonable to expect that,
the higher the constant that multiplies R, the less the argmin (L) is affected by small changes of L. In fact, the following
holds:

Lemma 5. The argmin-function % is n-Lipschitz continuous with respect to the dual norm, that is
12(L) = #(L)| < nllL — L[|+

Proof. The variational inequality for the optimality of Z(L) implies

<L + %VR(aE(L)), HL) - @(L)> > 0. (19)
Symmetrically for #(L'), we find that

<L' + %R(ﬁc(L’)),i(L) - :E(L’)> > 0. (20)
Summing inequalities 19 and 20, we obtain

% (VR(#(L)) - VR(E(L)), #(L) — #(L')) < (L' — L, #(L) - (L))

Using strong convexity of R(-) on the left-hand side and the generalized Cauchy-Schwarz inequality on the right-hand side,
we obtain

%Ili‘(L) — &L < (L) — &L 1L~ L]+,

and dividing by ||#(L) — #(L")|| we obtain the Lipschitz continuity of the argmin-function . O

A direct consequence of Lemma 5 is the following corollary, which measures the stability (small step size) of the decisions
output by OFTRL.:

Corollary 2. At each time t, the iterates produced by OFTRL satisfy |la! — '~ || < 3nA,.

Proof.
Hmt _ mtflu _ Hj(Ltfl + mt) _ :Z(Lt72 n mtfl)H
<€t +m! —mf L < 3nA,,
where the first inequality holds by Lemma 5 and the second one by definition of A, and the triangle inequality. O

The rest of the proof, specifically the predictivity parameters « and 8 of OFTRL follow directly from the proof of Theorem 19
in the appendix of Syrgkanis et al. (2015).
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A.2. Regret Bounds
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Lemma 1. Forallk € K, R, = Z R

JECK
Proof. By definition of RkA’T,
AT o At A o At =N
t ,t R
R Z{Z x ) — ~AmlnA ", 2, ).
t=1 k €Xp =1

By using (12) and (11), we can break the dot products and the minimization problem into independent parts, one for each
j€Cy:
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as we wanted to show. ]
Lemma 2. Forall j € J, R]-A’T < RJT + inaéx R,CA’T.
€C;
... AT
Proof. By definition of R;
A d A 0
T _ b _ t -
RPT =Y (e 2! S, Z j

t=1 Tj Jtl

By combining (13) and (11), we can break the dot products and the minimization problem into independent parts, one for
each k € C;, as well as a part that depends solely on &;:

T
=2 ([6515,85) + Y faler 2
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T
Z ([ZAt],:i:; +Z At At>

t=1 acAj
k=p(j7a)
T
. A, t - A, t A ¢ AT
— min Z (e +Zﬂ33a (€ ) ¢+ _max Z T R,
T EAY 11T a€A; EEAY S,
k:p(j-,a)

where the equality follows by the definition of RkA"T, and the inequality follows from breaking the minimization of a sum
into a sum of minimization problems. By identifying the difference between the first two terms as the counterfactual regret
RJT (that is, the regret of R; up to time T'), we obtain

R <RT+ ma)% Z:cja AT—R +maxR
&, EA™T kec,

as we wanted to show. O

A.3. Stable-Predictive Regret Minimizer

We will prove both Lemma 3 and Lemma 4 with respect to the 2-norm. This does not come at the cost of generality, since
all norms are equivalent on finite-dimensional vector spaces, that is, for every choice of norm || - ||, there exist constants
m, M > 0 such that for all =, m|z| < ||z|2 < M|z|.

Lemma 3. Let k € K be an observation node, and assume that RjA is a (vj,0(1),0(1))-stable-predictive regret minimizer
over the sequence-form strategy space XjA for each j € Cy. Then, R,f is a (v, 0(1),0(1))-stable-predictive regret

minimizer over the sequence-form strategy space X kA
Proof. By hypothesis, for all j € C;, we have

O 1)
RO ( o) JZHW mA3 @1

and
2t — 22 <y, (22)

where zch’t is the decision output by RjA at time ¢.

Substituting (21) into the regret bound of Lemma 1:

2
|

T <o 1)Z—+0(1 Zzwlﬂm m 3

JGCk Jeckt 1
"3/2 A A,

<O0(1)~k— + o) ZZ”Z tm |3
Tk v t 1j5€Cy

-2, Z e —m (23)

Tk

where the second inequality comes from substituting the value -y; = -y, /./n as per (14), and the equality comes from the
fact that the Kf’t and mjA’t form a partition of the vectors K,f’t and mkA"t, respectively.

We now analyze the stability properties of RkA

At 1 At Ajt—1
H 2 = Z ”93] -, ”% < Z ’Y? = Yk

jeck: Jeck

where the first equality follows from (1), the inequality holds by (22) and the second equality holds by substituting the value
vj = k/+/T as per (14). This shows that RkA is y,-stable. Combining this with the predictivity bound (23) above, we
obtain the claim. O
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Lemma 4. Let j € J be a decision node, and assume that RkA is a (yg, O(1),0(1))-stable-predictive regret minimizer over
the sequence-form strategy space Xk,A for each k € C;. Suppose further that ﬁj is a (rj,0(1),0(1))-stable-predictive regret
minimizer over the simplex A"i. Then, RjA is a (vg,O(1),0(1))-stable-predictive regret minimizer over the sequence-form

strategy space X J.A

Proof. By hypothesis, for all k£ € C; we have

O(1
RAT < W“+0<1m2\|6“ m23 (24)
t=1
and
it =2 o < e (29)

We substitute (24) into the regret bound of Lemma 2. The key observation is that the loss vector—and their predictions—
entering the subtree rooted at k (k € C;) are simply forwarded from j; with this, we obtain:

N O(1
RE, <8+ 20 o Z At — m 2, (26)

On the other hand, by hypothesis ﬁj isa (x;,0(1), (1))—stable—pred1ct1ve regret minimizer. Hence,

< )+0<1> S — it 3

t=1

13, 27)

where the equality comes from the definition of ; (Equation (15)) and the fact that

ot At At 2
185 — b5 < S a3 - | —my |2
kec;
At D2 2
< lI¢; 13> Bi

k‘ECJ‘
=o' —mS3.
By substituting (27) into (26) and noting that v;, = O(1)~;, we obtain
A, o At _ oA,
RAT < ( ) 4+ 01y 3 I8 — 3
t=1

which establishes the predictivity of R].A.

To conclude the proof, we show that RJ.A has stability parameter +;. To this end, note that by (2)
2

At At—1y2 -1 At—1 Lt At 1
||:Bj -z 2 = Z mjam Z Tia Tjq + |25 — ||2
acA; acAj 5
~t ~t—12 ANt 2 At 1
<ah—ai B 2 Y et | +2 Y e I3
kECj keCy
2 st at—112 At At—1,2
< 2m;Bj||& —dy 3 +2 ) llzyt — e T,
keCy

where we have used the Cauchy-Schwarz inequality and the definition of B; (Equation 16). By using the stability of R,
that is ||} — :&;71 I3 < &3 = ~7/(4n;B3), as well as the hypothesis (25) and (14):

2
At At— 1 ’Y Vi 2
;" — J +2 E < ) +2 (2 J ) =7;.

kec;
Hence, Rf has stability parameter +; as we wanted to show. O
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B. Experiments
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Figure 4. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use simultaneous updates.
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Figure 5. Convergence rate with iterations on the x-axis, and the exploitability in mbb. All algorithms use alternating updates.



