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Abstract

The CFR framework has been a powerful tool
for solving large-scale extensive-form games in
practice. However, the theoretical rate at which
past CFR-based algorithms converge to the Nash
equilibrium is on the order of O(T−1/2), where T
is the number of iterations. In contrast, first-order
methods can be used to achieve a O(T−1) depen-
dence on iterations, yet these methods have been
less successful in practice. In this work we present
the first CFR variant that breaks the square-root
dependence on iterations. By combining and ex-
tending recent advances on predictive and stable
regret minimizers for the matrix-game setting we
show that it is possible to leverage “optimistic”
regret minimizers to achieve a O(T−3/4) conver-
gence rate within CFR. This is achieved by intro-
ducing a new notion of stable-predictivity, and by
setting the stability of each counterfactual regret
minimizer relative to its location in the decision
tree. Experiments show that this method is faster
than the original CFR algorithm, although not as
fast as newer variants, in spite of their worst-case
O(T−1/2) dependence on iterations.

1. Introduction
Counterfactual regret minimization (CFR) (Zinkevich et al.,
2007) and later variants such as Monte-Carlo CFR (Lanctot
et al., 2009), CFR+ (Tammelin et al., 2015), and Discounted
CFR (Brown & Sandholm, 2019), have been the practical
state-of-the-art in solving large-scale zero-sum extensive-
form games (EFGs) for the last decade. These algorithms
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were used as an essential ingredient for all recent milestones
in the benchmark domain of poker (Bowling et al., 2015;
Moravčı́k et al., 2017; Brown & Sandholm, 2017b). Despite
this practical success all known CFR variants have a signif-
icant theoretical drawback: their worst-case convergence
rate is on the order of O(T−1/2), where T is the number of
iterations. In contrast to this, there exist first-order methods
that converge at a rate of O(T−1) (Hoda et al., 2010; Kroer
et al., 2015; 2018b). However, these methods have been
found to perform worse than newer CFR algorithms such as
CFR+, in spite of their theoretical advantage (Kroer et al.,
2018b;a).

In this paper we present the first CFR variant which breaks
the square-root dependence on the number of iterations. By
leveraging recent theoretical breakthroughs on “optimistic”
regret minimizers for the matrix-game setting, we show how
to set up optimistic counterfactual regret minimizers at each
information set such that the overall algorithm retains the
properties needed in order to accelerate convergence. In
particular, this leads to a predictive and stable variant of
CFR that converges at a rate of O(T−3/4).

Typical analysis of regret-minimization leads to a conver-
gence rate of O(T−1/2) for solving zero-sum matrix games.
However, by leveraging the idea of optimistic learning (Chi-
ang et al., 2012; Rakhlin & Sridharan, 2013a;b; Syrgka-
nis et al., 2015; Wang & Abernethy, 2018), Rakhlin and
Sridharan show in a series of papers that it is possible to
converge at a rate of O(T−1) when leveraging cancellations
that occur due to the optimistic mirror descent (OMD) al-
gorithm (Rakhlin & Sridharan, 2013a;b). Syrgkanis et al.
(2015) build on this idea, and introduce the optimistic follow-
the-regularized-leader (OFTRL) algorithm; they show that
even when the players do not employ the same algorithm, a
rate of O(T−3/4) can be achieved as long as each algorithm
belongs to a class of algorithms that satisfy a stability crite-
rion and leverage predictability of loss inputs. We build on
this latter generalization. Because we can only perform the
optimistic updates locally with respect to counterfactual re-
grets we cannot achieve the cancellations that leads to a rate
of O(T−1); instead we show that by carefully instantiating
each counterfactual regret minimizer it is possible to main-
tain predictability and stability with respect to the overall
decision-tree structure, thus leading to a convergence rate of
O(T−3/4). In order to achieve these results we introduce a
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new variant of stable-predictivity, and show that each local
counterfactual regret minimizer must have its stability set
relative to its location in the overall strategy space, with
regret minimizers deeper in the decision tree requiring more
stability.

In addition to our theoretical results we investigate the prac-
tical performance of our algorithm on several poker sub-
games from the Libratus AI which beat top poker profes-
sionals (Brown & Sandholm, 2017b). We find that our CFR
variant coupled with the OFTRL algorithm and the entropy
regularizer leads to better convergence rate than the vanilla
CFR algorithm with regret matching, while it does not out-
perform the newer state-of-the-art algorithm Discounted
CFR (DCFR) (Brown & Sandholm, 2019). This latter fact
is not too surprising, as it has repeatedly been observed that
CFR+, and the newer and faster DCFR, converges at a rate
better than O(T−1) for many practical games of interest, in
spite of the worst-case rate of O(T−1/2).

The reader may wonder why we care about breaking the
square-root barrier within the CFR framework. It is well-
known that a convergence rate of O(T−1) can be achieved
outside the CFR framework. As mentioned previously, this
can be done with first-order methods such as the excessive
gap technique (Nesterov, 2005) or mirror prox (Nemirovski,
2004) combined with a dilated distance-generating func-
tion (Hoda et al., 2010; Kroer et al., 2015; 2018b). Despite
this, there has been repeated interest in optimistic regret min-
imization within the CFR framework, due to the strong prac-
tical performance of CFR algorithms. Burch (2017) tries
to implement CFR-like features in the context of O(T−1)

FOMs and regret minimizers, while Brown & Sandholm
(2019) experimentally tries optimistic variants of regret min-
imizers in CFR. We stress that these prior results are only
experimental; our results are the first to rigorously incorpo-
rate optimistic regret minimization in CFR, and the first to
achieve a theoretical speedup.

Notation. Throughout the paper, we use the following no-
tation when dealing with Rn. We use 〈x,y〉 to denote the
dot product x>y of two vectors x and y. We assume that a
pair of dual norms ‖ · ‖, ‖ · ‖∗ has been chosen. These norms
need not be induced by inner products. Common examples
of such norm pairs are the `2 norm which is self dual, and
the `1, `∞ norms, which are are dual to each other. We will
make explicit use of the 2-norm: ‖x‖2 :=

√
〈x,x〉.

2. Sequential Decision Making and EFG
Strategy Spaces

A sequential decision process can be thought of as a tree
consisting of two types of nodes: decision nodes and ob-
servation nodes. The set of all decision nodes is denoted
as J , and the set of all observation nodes with K. At each

decision node j ∈ J , the agent chooses a strategy from the
simplex ∆nj of all probability distributions over the set Aj
of nj = |Aj | actions available at that decision node. An
action is sampled according to the chosen distribution, and
the agent then waits to play again. While waiting, the agent
might receive a signal (observation) from the process; this
possibility is represented with an observation node. At a
generic observation point k ∈ K, the agent might receive
nk signals; the set of signals that the agent can observe is
denoted as Sk. The observation node that is reached by the
agent after picking action a ∈ Aj at decision point j ∈ J is
denoted by ρ(j, a). Likewise, the decision node reached by
the agent after observing signal s ∈ Sk at observation point
k ∈ K is denoted by ρ(k, s). The set of all observation points
reachable from j ∈ J is denoted as Cj := {ρ(j, a) : a ∈ Aj}.
Similarly, the set of all decision points reachable from k ∈ K
is denoted as Ck := {ρ(k, s) : s ∈ Sk}. To ease the notation,
sometimes we will use the notation Cja to mean Cρ(j,a). A
concrete example of a decision process is given in the next
subsection.

At each decision point j ∈ J in a sequential decision pro-
cess, the decision x̂j ∈ ∆nj of the agent incurs an (expected)
linear loss 〈`j , x̂j〉. The expected loss throughout the whole
process is therefore

∑
j∈J πj〈`j , x̂j〉, where πj is the prob-

ability of the agent reaching decision point j, defined as the
product of the probability with which the agent plays each
action on the path from the root of the process to j.

In extensive-form games where all players have perfect re-
call (that is, they never forget about their past moves or their
observations), all players face a sequential decision process.
The loss vectors {`j} are defined based on the strategies of
the opponent(s) as well as the chance player. However, as
already observed by Farina et al. (2019), sequential decision
processes are more general and can model other settings as
well, such as POMDPs and MDPs when the decision maker
conditions on the entire history of observations and actions.

2.1. Example: Sequential Decision Process for the First
Player in Kuhn Poker

As an illustration, consider the game of Kuhn poker (Kuhn,
1950). Kuhn poker consists of a three-card deck: king,
queen, and jack. Each player first has to put a payment of 1
into the pot. Each player is then dealt one of the three cards,
and the third is put aside unseen. A single round of betting
then occurs. The sequential decision process the Player 1 is
shown in Figure 1, where denotes an observation point. In
that example, we have: J = {X0, X1, X2, X3, X4, X5, X6};
n0 = 1; nj = 2 for all j ∈ J \ {X0}; AX0

= {start}, AX1
=

AX2
= AX3

= {check, raise}, AX4
= AX5

= AX6
=

{fold, call}; Cρ(X0,start) = {X1, X2, X3}, Cρ(X1,raise) = ∅,
Cρ(X3,check) = {X6}; etc.
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X0

X3

X6

X2

X5

X1

X4

start

fold call fold call fold call

check raise check raise check raise

jack queen king

check raise check raise check raise

Figure 1. The sequential decision process for the first player in the
game of Kuhn poker. denotes an observation point; small dots
represents the end of the decision process.

2.2. Sequence Form for Sequential Decision Processes

The expected loss for a given strategy, as defined in Sec-
tion 2, is non-linear in the vector of decisions variables
(x̂j)j∈J . This non-linearity is due to the product πj of prob-
abilities of all actions on the path to from the root to j. We
now present a well-known alternative representation of this
decision space which preserves linearity.

The alternative formulation is called the sequence form.
In the sequence-form representation, the simplex strategy
space at a generic decision point j ∈ J is scaled by the
decision variable leading of the last action in the path from
the root of the process to j. In this formulation, the value of
a particular action represents the probability of playing the
whole sequence of actions from the root to that action. This
allows each term in the expected loss to be weighted only
by the sequence ending in the corresponding action. The
sequence form has been used to instantiate linear program-
ming (von Stengel, 1996) and first-order methods (Hoda
et al., 2010; Kroer et al., 2015; 2018b) for computing Nash
equilibria of zero-sum EFGs. There is a straightforward
mapping between a vector of decisions (x̂j)j∈J , one for
each decision point, and its corresponding sequence form:
simply assign each sequence the product of probabilities in
the sequence. We will let X4 denote the sequence-form
representation of a vector of decisions (x̂j)j∈J . Likewise,
going from a sequence-form strategy x4 ∈ X4 to a corre-
sponding vector of decisions (x̂j)j∈J can be done by divid-
ing each entry (sequence) in x4 by the value x4pj where pj
is the entry in x4 corresponding to the unique last action
that the agent took before reaching j.

Formally, the sequence-form representation X4 of a se-
quential decision process can be obtained recursively, as
follows:

• At every observation point k ∈ K, we let

X4k := X4j1 ×X
4
j2
× · · · ×X4jnk

, (1)

where {j1, j2, . . . , jnk} = Ck are the children decision
points of k.

• At every decision point j ∈ J , we let

X4j :=

{
(λ1, . . . , λnj , λ1xk1 , . . . , λnjxknj

) :

(λ1, . . . , λn) ∈ ∆nj ,xk1 ∈ X
4
k1
,

xk2 ∈ X
4
k2
, . . . ,xknj

∈ X4knj

}
, (2)

where {k1, k2, . . . , knj} = Cj are the children observa-
tion points of j.

The sequence form strategy space for the whole sequential
decision process is then X4r , where r is the root of the
process. Crucially, X4 is a convex and compact set, and the
expected loss of the process is a linear function over X4.

With the sequence-form representation the problem of com-
puting a Nash equilibriun in an EFG can be formulated as
a bilinear saddle-point problem (BSPP). A BSPP has the
form

min
x∈X

max
y∈Y

x>Ay, (3)

where X and Y are convex and compact sets. In the case
of extensive-form games, X = X4 and Y = Y4 are the
sequence-form strategy spaces of the sequential decision
processes faced by the two players, and A is a sparse matrix
encoding the leaf payoffs of the game.

2.3. Notation when Dealing with the Extensive Form

In the rest of the paper, we will make heavy use of the se-
quence form and its inductive construction given in (12)
and (13). We will consistently denote sequence-form strate-
gies with a triangle superscript. As we have already ob-
served, vectors that pertain to the sequence-form have one
entry for each sequence of the decision process, that is one
entry for pair (j, a) where j ∈ J , a ∈ Aj . Sometimes, we
will need to slice a vector v and isolate only those entries
that refer to all decision points j′ and actions a′ ∈ Aj′ that
are at or below some j ∈ J ; we will denote such operation
as [v]↓j . Similarly, we introduce the syntax [v]j to denote
the subset of nj = |Aj | entries of v that pertain to all actions
a ∈ Aj at decision point j ∈ J .

3. Stable-Predictive Regret Minimizers
In this paper, we operate within the online learning frame-
work called online convex optimization (Zinkevich, 2003).
In particular, we restrict our attention to a modern subtopic:
predictive (also often called optimistic) regret minimiza-
tion (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b).

As usual in this setting, a decision maker repeatedly plays
against an unknown environment by making a sequence
of decisions x1,x2, · · · ∈ X ⊆ Rn, where the set X of
feasible decisions for the decision maker is convex and
compact. The evaluation of the outcome of each decision xt

is 〈`t, xt〉, where `t ∈ X is a convex loss vector, unknown
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to the decision maker until after the decision is made. The
peculiarity of predictive regret minimization is that we also
assume that the decision maker has access to predictions
m1,m2, . . . of what the loss vectors `1, `2, . . . will be. In
summary, by predictive regret minimizer we mean a device
that supports the following two operations:

• it provides the next decision xt+1∈X given a predic-
tion mt+1 of the next loss vector and

• it receives/observes the convex loss vectors `t used to
evaluate decision xt.

The learning is online in the sense that the decision maker’s
(that is, device’s) next decision, xt+1, is based only on
the previous decisions x1, . . . ,xt, observed loss vectors
`1, . . . , `t, and the prediction of the past loss vectors as
well as the next one m1, . . . ,mt+1.

Just as in the case of a regular (that is, non-predictive) re-
gret minimizer, the quality metric for the predictive regret
minimizer is its cumulative regret, which is the difference
between the loss cumulated by the sequence of decisions
x1, . . . ,xT and the loss that would have been cumulated by
playing the best-in-hindsight time-independent decision x̃.
Formally, the cumulative regret up to time T is

RT :=

T∑
t=1

〈`t, xt〉 − min
x̃∈X

{
T∑
t=1

〈`t, x̃〉

}
. (4)

We introduce a new class of predictive regret minimizers
whose cumulative regret decomposes into a constant term
plus a measure of the prediction quality, while maintaining
stability in the sense that the iterates x1, . . . ,xT change
slowly.
Definition 1 (Stable-predictive regret minimizer). A pre-
dictive regret minimizer is (κ, α, β)-stable-predictive if the
following two conditions are met:

• Stability. The decisions produced change slowly:

‖xt+1 − xt‖ ≤ κ ∀ t ≥ 1. (5)

• Prediction bound. For all T , the cumulative regret up
to time T is bounded according to

RT ≤ α

κ
+ βκ

T∑
t=1

‖`t −mt‖2∗. (6)

In other words, small prediction errors only minimally
affect the regret accumulated by the device. If, in par-
ticular, the prediction mt matches the loss vector `t

perfectly for all t, the cumulative regret remains asymp-
totically constant.

Our notion of stable-predictivity is similar to the Regret
bounded by Variation in Utilities (RVU) property given
by Syrgkanis et al. (2015), which asserts that

RT ≤ α′+β′
T∑
t=1

‖`t−`t−1‖2∗−γ′
T∑
t=1

‖xt−xt−1‖2. (RVU)

However, there are several important differences:

• Syrgkanis et al. (2015) assume that mt = `t−1; this
explains the term ‖`t − `t−1‖2∗ in (RVU) instead of
‖`t − mt‖2∗ in (6). One of the reason why we do
not make assumptions on mt is that, unlike in matrix
games, we will need to use modified predictions for
each local regret minimizer, since we need to predict
the local counterfactual loss.

• Our notion ignores the cancellation term −γ′
∑
‖xt −

xt−1‖2; instead, we require the stabilty property (5).

• The coefficients in the regret bound (6) are forced to
be inversely proportional, and tied to the choice of the
stability parameter κ. Syrgkanis et al. (2015) show
that same correlation holds for the optimistic follow-
the-regularized leader, but they don’t require it in their
definition of the RVU property.

Syrgkanis et al. (2015) show that their optimistic follow-
the-regularized-leader (OFTRL) algorithm, as well as the
variant of the mirror descent algorithm presented by Rakhlin
& Sridharan (2013a), satisfy (RVU). In Section 3.2 we show
that OFTRL also satisfies stable-predictivity.

3.1. Relationship with Bilinear Saddle-Point Problems

In this subsection we show how stable-predictive regret
minimization can be used to solve a BSPP such as a Nash
equilibrium problem in two-player zero-sum extensive-form
games with perfect recall (Sections 2 and 2.2). The solutions
of (3) are called saddle points. The saddle-point residual
(or gap) ξ of a point (x̄, ȳ) ∈ X × Y, defined as

ξ := max
ŷ∈Y

x̄>Aŷ − min
x̂∈X

x̂>Aȳ,

measures how close (x̄, ȳ) is to being a saddle point (the
lower the residual, the closer).

It is known that regular (non-predictive) regret minimiza-
tion yields an anytime algorithm that produces a sequence
of points (x̄T , ȳT ) ∈ X × Y whose residuals are ξT =

O(T−1/2). Syrgkanis et al. (2015) observe that in the con-
text of matrix games (i.e., when X and Y are simplexes),
RVU minimizers that also satisfy the stability condition (5)
can be used in place of regular regret minimizers to improve
the convergence rate toO(T−3/4). In what follows, we show
how to extend the argument to stable-predictive regret mini-
mizers and general bilinear saddle-point problems beyond
Nash equilibria in two-player zero-sum matrix games.

A folk theorem explains the tight connections between low
regret and low residual (Cesa-Bianchi & Lugosi, 2006).
Specifically, by setting up two regret minimizers (one for
X and one for Y) that observe loss vectors given by `tX :=
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−Ayt, `tY := A>xt, the profile of average decisions(
1

T

T∑
t=1

xt,
1

T

T∑
t=1

yt
)
∈ X × Y (7)

has residual ξ bounded from above according to

ξ ≤ 1

T
(RTX +RTY ).

Hence, by letting the predictions be defined as mt
X :=

`t−1
X ,mt

Y := `t−1
Y , and assuming that the predictive regret

minimizers are (κ, α, β)-stable-predictive, we obtain that the
residual ξ of the average decisions (7) satisfies

Tξ ≤ 2α

κ
+ βκ

T∑
t=1

‖−Ayt + Ayt−1‖2∗

+ βκ

T∑
t=1

‖A>xt −A>xt−1‖2∗

≤ 2α

κ
+ β‖A‖2opκ

(
T∑
t=1

‖xt−xt−1‖2 +

T∑
t=1

‖yt−yt−1‖2
)

≤ 2α

κ
+ 2βT‖A‖2opκ

3,

where the first inequality holds by (6), the second by noting
that the operator norm ‖ · ‖op of a linear function is equal to
the operator norm of its transpose, and the third inequality
by the stability condition (5). This shows that if the stability
parameter κ of the two stable-predictive regret minimizers is
Θ(T−1/4), then the saddle point residual is ξ = O(T−3/4),
an improvement over the bound ξ = O(T−1/2) obtained
with regular (that is, non-predictive) regret minimizers.

3.2. Optimistic Follow the Regularized Leader

Optimistic follow-the-regularized-leader (OFTRL) is a re-
gret minimizer introduced by Syrgkanis et al. (2015). At
each time t, OFTRL outputs the decision

xt = argmin
x̃∈X

{〈
x̃,mt +

T−1∑
t=1

`t
〉

+
1

η
R(x̃)

}
, (8)

where η > 0 is a free constant andR(·) is a 1-strongly convex
regularizer with respect to the norm ‖ · ‖. Furthermore, let
∆R := maxx,y∈X {R(x) − R(y)} denote the diameter of
the range of R, and let ∆` := maxt max{‖`t‖∗, ‖mt‖∗} be
the maximum (dual) norm of any loss vector or prediction
thereof.

A theorem similar to that of Syrgkanis et al. (2015, Propo-
sition 7), which was obtained in the context of the RVU
property, can be shown for the stable-predictive framework:

Theorem 1. OFTRL is a 3∆`(η,∆R, 1)-stable-predictive
regret minimizer.

We give a proof of Theorem 1 the appendix. When the
loss vectors are further assumed to be non-negative, it can
be shown that OFTRL is 2∆`(η,∆R, 1)-stable-predictive,
where we have substituted a factor of 2 rather than the factor
of 3 in Theorem 1.

4. CFR as Regret Decomposition
In this section we offer some insights into CFR, and discuss
what changes need to be made in order to leverage the power
of predictive regret minimization. CFR is a framework for
constructing a (non-predictive) regret minimizer R4 that
operates over the sequence-form strategy space X4 of a
sequential decision process. In accordance with Section 2.3,
we denote the decision produced by R4 at time t as x4,t;
the corresponding loss functions is denoted as `4,t.

One central idea in CFR is to define a localized notion of
loss: for all j ∈ J , CFR constructs the following linear
counterfactual loss function ˆ̀t,◦

j : ∆nj → R. Intuitively, the
counterfactual loss ˆ̀t,◦

j (xj) of a local strategy xj ∈ ∆nj

measures the loss that the agent would face were the agent
allowed to change the strategy at decision point j only. In
particular, ˆ̀t,◦

j (xj) is the loss of an agent that follows the
strategy xj instead of x4,t at decision point j, but otherwise
follows the strategy x4,t everywhere else. Formally,

ˆ̀t,◦
j : xj = (xja1 , . . . xjanj

) 7→ 〈[`4,t]j ,xj〉

+
∑
a∈Aj

xja ∑
j′∈Cja

〈[`4,t]↓j′ , [x4,t]↓j′〉

. (9)

Since ˆ̀t,◦
j is a linear function, it has a unique representation

as a counterfactual loss vector ˆ̀t
j , defined as

ˆ̀t,◦
j (xj) = 〈 ˆ̀tj ,xj〉 ∀xj ∈ ∆nj . (10)

With this local notion of loss function, a corresponding local
notion of regret for a sequence of decisions x̂1

j , . . . , x̂
T
j ,

called the counterfactual regret, is defined for each decision
point j ∈ J :

R̂Tj :=

T∑
t=1

〈 ˆ̀tj , x̂
t
j〉 − min

x̃j∈∆nj

T∑
t=1

〈 ˆ̀tj , x̃j〉.

Intuitively, R̂Tj represents the difference between the loss
that was suffered for picking x̂tj ∈ ∆nj and the minimum
loss that could be secured by choosing a different strategy
at decision point j only. This is conceptually different
from the definition of regret ofR4, which instead measures
the difference between the loss suffered and the best loss
that could have been obtained, in hindsight, by picking
any strategy from the whole strategy space, with no extra
constraints.

With this notion of regret, CFR instantiates one (non-stable-
predictive) regret minimizer R̂j for each decision point
j ∈ J . Each local regret minimizer R̂j operates on the
domain ∆nj , that is, the space of strategies at decision point
j only. At each time t, R4 prescribes the strategy that, at
each information set j, behaves according to the decision
of R̂j . Similarly, any loss vector `4,t input to R4 is pro-
cessed as follows: (i) first, the counterfactual loss vectors
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{ ˆ̀t
j}j∈J , one for each decision point j ∈ J , are computed;

(ii) then, each R̂j observes its corresponding counterfactual
loss vector ˆ̀t

j .

Another way to look at CFR and counterfactual losses is
as an inductive construction over subtrees. When a loss
function relative to the whole sequential decision process
is received by the root node, inductively each node of the
sequential decision process does the following:

• If the node receiving the loss vector is an observation
node, the incoming loss vector is partitioned and for-
warded to each child decision node. The partition of
the loss vector is done so as to ensure that only entries
relevant to each subtree are received down the tree.

• If the node receiving the loss vector is a decision node,
the incoming loss vector is first forwarded as-is to each
of the child observation points, and then it is used to
construct the counterfactual loss vector ˆ̀t

j which is
input into R̂j .

This alternative point of view differs from the original one,
but has been recently used by Farina et al. (2018; 2019) to
simplify the analysis of the algorithm. When viewed from
the above point of view, CFR is recursively building—in
a bottom-up fashion—regret minimizers for each subtree
starting from child subtrees.

In accordance with our convention (Section 2.3), we denote
R4v , for v ∈ J∪K, the regret minimizer that operates onX4v
obtained by only considering the local regret minimizers
in the subtree rooted at vertex v of the sequential decision
process. Analogously, we will denote with R4,Tv the regret
ofR4v up to time T , and with `4,tv the loss function entering
R4v at time t. In accordance with the above construction,
we have that

`4,tk = [`4,tj ]↓k ∀k ∈ Cj , `4,tj = [`4,tk ]↓j ∀j ∈ Ck. (11)

Finally, we denote the decisions produced byR4v at time t as
x4,tv . As per our discussion above, the decisions produced
by R4 are tied together inductively according to

x4,tk = (x4,tj1
, . . . ,x4,tjnk

) ∀k ∈ K, (12)

where {j1, . . . , jnk} = Ck, and

x4,tj =

(
x̂tj , x̂

t
ja1x

4,t
ρ(j,a1)

, ..., x̂tjanj
x4,t
ρ(j,anj

)

)
∀j∈J , (13)

where {a1, . . . , anj} = Aj . The following two lemmas can
be easily extracted from Farina et al. (2018). A proof is
presented in the appendix.

Lemma 1. For all k ∈ K, R4,Tk =
∑
j∈Ck

R4,Tj .

Lemma 2. For all j ∈ J , R4,Tj ≤ R̂Tj + max
k∈Cj

R4,Tk .

The two lemmas above do not make any assumption about
the nature of the (localized) regret minimizers R̂j , and there-
fore they are applicable even when the R̂j are predictive or,
specifically, stable-predictive.

5. Stable-Predictive Counterfactual Regret
Minimization

Our proposed algorithm behaves exactly like CFR, with
the notable difference that our local regret minimizers R̂j
are stable-predictive and chosen to have specific stability
parameters. Furthermore, the predictions mt

j for each local
regret minimizer R̂j are chosen so as to leverage the pre-
dictivity property of the regret minimizers. Given a desired
value of κ∗ > 0, by choosing the stability parameters and
predictions as we will detail later, we can guarantee thatR4

is a (κ∗, O(1), O(1))-stable-predictive regret minimizer.1

5.1. Choice of Stability Parameters

We use the following scheme to pick the stability parameter
of R̂j . First, we associate a scalar γv to each node v ∈ J ∪K
of the sequential decision process. The value γr of the root
decision node is set to κ∗, and the value for each other node
v is set relative to the value γu of their parent

γv :=
γu

2
√
nu

if u ∈ J , γv :=
γu√
nu

if u ∈ K. (14)

The stability parameter of each decision point j ∈ J is

κj :=
γj

2
√
njBj

, (15)

where Bj is an upper bound on the 2-norm of any vector
in X4j . A suitable value of Bj can be found by recursively
using the following rules: for all k ∈ K and j ∈ J ,

Bk =

√ ∑
j′∈Ck

B2
j′ , Bj =

√
1 + max

k′∈Cj
B2
k′ (16)

At each decision point j, any stable-predictive regret mini-
mizer that is able to guarantee the above stability parameter
can be used. For example, one can use OFTRL where the
stepsize η is chosen appropriately. As an examples, assum-
ing that all loss vectors involved have (dual) norm bounded
by 1/3, we can simply set the stepsize η of the local OFTRL
regret minimizer R̂j at decision point j to be η = κj .

5.2. Prediction of Counterfactual Loss Vectors

Let m4,t be the prediction received by R4, concerning the
future loss vector `4,t. We will show how to process the
prediction and produce counterfactual prediction vectors
m̂t
j (one for each decision point j ∈ J ) for each local stable-

predictive regret minimizer R̂j .

1Throughout the paper, our asymptotic notation is always with
respect to the number of iterations T .
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Following the construction of the counterfactual loss func-
tions defined in (9), for each decision point j ∈ J we define
the counterfactual prediction function m̂t,◦

j : ∆nj → R as

m̂t,◦
j : ∆nj 3 xj = (xja1 , . . . , xjanj

) 7→
〈

[m4,t]j ,xj
〉

+
∑
a∈Aj

xja ∑
j′∈Cja

〈
[m4,t]↓j′ , [x

4,t]↓j′
〉.

Observation. It important to observe that the counterfac-
tual prediction function m̂t

j depends on the decisions pro-
duced at time t in the subtree rooted at j. In other words,
in order to construct the prediction for what loss R̂j will
observe after producing the decision xtj , we use the “future”
decisions xtja from the subtrees below j ∈ J .

Similarly to what is done for the counterfactual loss function,
we define the counterfactual loss prediction vector m̂t

j , as
the (unique) vector in Rnj such that

m̂t,◦
j (xj) = 〈m̂t

j ,xj〉 ∀xj ∈ ∆nj . (17)

5.3. Proof of Correctness

We will prove that our choice of stability parameters (14)
and (localized) counterfactual loss predictions (17) guar-
antee that R4 is a (κ∗, O(1), O(1))-stable-predictive regret
minimizer. Our proof is by induction on the sequential de-
cision process structure: we prove that our choices yield
a (γv, O(1), O(1))-stable-predictive regret minimizer in the
sub-sequential decision process rooted at each possible node
v ∈ J ∪ K. For observation nodes v ∈ K the inductive step
is performed via Lemma 3, while for decision nodes v ∈ J
the inductive step is performed via Lemma 4. The proof of
both lemmas can be found in the appendix.
Lemma 3. Let k ∈ K be an observation node, and assume
that R4j is a (γj , O(1), O(1))-stable-predictive regret mini-
mizer over the sequence-form strategy space X4j for each
j ∈ Ck. Then, R4k is a (γk, O(1), O(1))-stable-predictive re-
gret minimizer over the sequence-form strategy space X4k .

Lemma 4. Let j ∈ J be a decision node, and assume that
R4k is a (γk, O(1), O(1))-stable-predictive regret minimizer
over the sequence-form strategy space X4k for each k ∈
Cj . Suppose further that R̂j is a (κj , O(1), O(1))-stable-
predictive regret minimizer over the simplex ∆nj . Then,
R4j is a (γk, O(1), O(1))-stable-predictive regret minimizer
over the sequence-form strategy space X4j .

Putting together Lemma 3 and Lemma 4, and using induc-
tion on the sequential decision process structure, we obtain
the following formal statement.
Corollary 1. Let κ∗ > 0. If:

1. Each localized regret minimizer R̂j is (κj , O(1), O(1))-
stable-predictive and produces decisions over the local
(simplex) action space ∆nj , where κj is as in (15); and

2. R̂j observes the counterfactual loss prediction m̂t
j as

defined in (17); and
3. R̂j observes the counterfactual loss vectors ˆ̀t

j as de-
fined in (10),

then R4 is a (κ∗, O(1), O(1))-stable-predictive regret mini-
mizer that acts over the sequence-form strategy space X̃.

By combining the above result with the arguments
of Section 3.1, we conclude that by constructing two
(Θ(T 1/4), O(1), O(1))-stable-predictive regret minimizers,
one per player, using the construction above, we obtain an
algorithm that can approximate a Nash equilibrium and at
time T the average strategy produces an O(T−3/4)-Nash
equilibrium in a two-player zero-sum game.

6. Experiments
Our techniques are evaluated in the benchmark domain of
heads-up no-limit Texas hold’em poker (HUNL) subgames.
In HUNL, two players P1 and P2 each start the game with
$20,000. The position of the players switches after each
hand. The players alternate taking turns and may choose to
either fold, call, or raise on their turn. Folding results in the
player losing and the money in the pot being awarded to the
other player. Calling means the player places a number of
chips in the pot equal to the opponent’s share. Raising means
the player adds more chips to the pot than the opponent’s
share. There are four betting rounds in the game. A round
ends when both players have acted at least once and the
most recent player has called. Players cannot raise beyond
the $20,000 they start with. All raises must be at least $100
and at least as large as any previous raise in that round.

At the start of the game P1 must place $100 in the pot and P2

must place $50 in the pot. Both players are then dealt two
cards that only they observe from a 52-card deck. A round
of betting then occurs starting with P2. P1 will be the first to
act in all subsequent betting rounds. Upon completion of the
first betting round, three community cards are dealt face up.
After the second betting round is over, another community
card is dealt face up. Finally, after that betting round one
more community card is revealed and a final betting round
occurs. If no player has folded then the player with the best
five-card poker hand, out of their two private cards and the
five community cards wins the pot. The pot is split evenly
if there is a tie.

The most competitive agents for HUNL solve portions of
the game (referred to as subgames) in real time during
play (Brown & Sandholm, 2017a; Moravčı́k et al., 2017;
Brown & Sandholm, 2017b; Brown et al., 2018). For ex-
ample, Libratus solved in real time the remainder of HUNL
starting on the third betting round. We conduct our exper-
iments on four open-source subgames solved by Libratus
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in real time during its competition against top humans in
HUNL.2 Following prior convention, we use the bet sizes
of 0.5× the size of the pot, 1× the size of the pot, and the
all-in bet for the first bet of each round. For subsequent bets
in a round, we consider 1× the pot and the all-in bet.

Subgames 1 and 2 occur over the third and fourth betting
round. Subgame 1 has $500 in the pot at the start of the
game while Subgame 2 has $4,780. Subgames 3 and 4
occur over only the fourth betting round. Subgame 1 has
$500 in the pot at the start of the game while Subgame
4 has $3,750. We measure exploitability in terms of the
standard metric: milli big blinds per game (mbb/g), which
is the number of big blinds (P1’s original contribution to the
pot) lost per hand of poker multiplied by 1,000 and is the
standard measurement of win rate in the related literature.

We compare the performance of three algorithms: vanilla
CFR (i.e. CFR with regret matching; labeled CFR in plots),
the current state-of-the-art algorithm in practice, Discounted
CFR (Brown & Sandholm, 2019) (labeled DCFR in plots),
and our stable-predictive variant of CFR with OFTRL at
each decision point (labeled OFTRL in plots). DCFR was
set up with parameters (α, β, γ) = (1.5, 0, 2), as recom-
mended in the original DCFR paper. For OFTRL we use
the stepsize that the theory suggests in our experiments on
subgames 3 and 4 (labeled OFTRL theory). For subgames
1 and 2 we found that the theoretically-correct stepsize is
much too conservative, so we also show results with a less-
conservative parameter found through dividing the stepsize
by 10, 100, and 1000, and picking the best among those
(labeled OFTRL tuned). For all games we show two plots:
one where all algorithms use simultaneous updates, as CFR
traditionally uses, and one where all algorithms use alternat-
ing updates, a practical change that usually leads to better
performance.
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Figure 2. Convergence rate with iterations on the x-axis, and the
exploitability in mbb. All algorithms use simultaneous updates.

Figure 2 shows the results for simultaneous updates on sub-
games 2 and 4, while Figure 4 in the appendix for subgames
1 and 3. In the smaller subgames 3 and 4 we find that OFTRL
with the stepsize set according to our theory outperforms
CFR: in subgame 4 almost immediately and significantly, in
subgame 3 only after roughly 800 iterations. In contrast to

2
https://github.com/CMU-EM/LibratusEndgames

this we find that in the larger subgames 1 and 2 the OFTRL
stepsize is much too conversative, and the algorithm barely
starts to make progress within the number of iterations that
we run. With a moderately-hand-tuned stepsize OFTRL
beats CFR somewhat significantly. In all games DCFR
performs better than OFTRL, and also significantly better
than its theory predicts. This is not too surprising, as both
CFR+ and the improved DCFR are known to significantly
outperform their theoretical convergence rate in practice.

Figure 3 shows the results for alternating updates on sub-
games 2 and 4, while subgames 1 and 3 are given in the
appendix in Figure 5. In the alternating-updates setting
OFTRL performs worse relative to CFR and DCFR. In
subgame 1 OFTRL with stepsizes set according to the the-
ory slightly outperforms CFR, but in subgame 2 they have
near-identical performance. In subgames 3 and 4 even the
manually-tuned variant performs worse than CFR, although
we suspect that it is possible to improve on this with a
better choice of stepsize parameter. In the alternating set-
ting DCFR performs significantly better than all other algo-
rithms.
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Figure 3. Convergence rate with iterations on the x-axis, and the
exploitability in mbb. All algorithms use alternating updates.

7. Conclusions
We developed the first variant of CFR that converges at a
rate better than T−1/2. In particular we extend the ideas of
predictability and stability for optimistic regret minimiza-
tion on matrix games to the setting of EFGs. In doing so we
showed that stable-predictive simplex regret minimizers can
be aggregated to form a stable-predictive variant of CFR for
sequential decision making, and we showed that this leads
to a convergence rate of O(T−3/4) for solving two-player
zero-sum EFGs. Our result makes the first step towards
reconciling the gap between the theoretical rate at which
CFR converges, and the rate at which O(T−1) first-order
methods converge.

Experimentally we showed that our CFR variant can outper-
form CFR on some games, but that the choice of stepsize
is important, while we find that DCFR is faster in practice.
An important direction for future work is to find variants of
our algorithm that still satisfy the theoretical guarantee and
perform even better in practice.

https://github.com/CMU-EM/LibratusEndgames
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