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S1. Proof of Theorems

Theorem 1. Let g} be the optimal value function of
M under P2.1 and P2.2. Let further n be any arbi-
trary policy that satisfies the following:

n(s,a) <1+ ¢:(s,a), V(s,a) eSxA (1)

where q’ (s, ) # —1 at least for one action. Then n is
secure.

Proof. The two conditions jointly imply that the optimal
value of all and only the dead-end states will be exactly —1
regardless of the length of dead-end trajectories. Specif-
ically, under P1 and P2, direct evaluation of Bellman’s
equation follows that for all dead-end states s’ € Sp and
all actions a € A, ¢¥(s’,a) = —1. It directly implies
maxg ¢i(s’,a) = —1. Additionally, it implies that if
qi(s,-) # —1 at least for one action, then s is not a dead-
end. For non-dead-end states s € S\Sp we therefore get:

qi(s,a) = — Z T(s,a,s" )+
s’eéSp
Z T(s,a,s") maxq;(s',a’)
s'¢Sp *

— Z T(s,a,s’) — B(s,a), (2)

s’eSp

where,

B(s,a) = — Z T(s,a,s" ) maxq;(s',a’) >0
S/¢SD N

Of note, only 8 > 0 is required for the proof. However, we
can tell more precisely that 3 € [0,1) because if s’ ¢ Sp
then max, ¢i(s’,a’) € (—1,0]. Also, s is not a dead-end;
hence, >° g5, T'(s,a,s") € (0,1].

"Microsoft Research, 2000 McGill College Avenue, Suite 550,
Montréal, QC H3A 3H3, Canada *McGill University, 845 Sher-
brooke Street West, Montréal, QC H3A 0G4, Canada. Correspon-
dence to: Mehdi Fatemi <mehdi.fatemi@microsoft.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Using the antecedent of Property 1 as well as g > 0, it
therefore yields:

qe(s,a) < gc(s,a) + B(s, a)

=— Z T(s,a,s")

s’e€Sp

<-(1-»
which implies 14+¢ (s, a) < A. Hence, setting the following
(s, a) <14 q.(s,a) 3)

will hold the consequent, thereby assuring Property 1, and
1 is secure by definition. O

Theorem 2. Under P2.1 and P2.2, let v} and ¢ be the
optimal state and state-action value functions of M..
Then there exists a gap between v’ (s') and ¢*(s,a)
forall a € A\Ap(s), s € Sp, and s € S\Sp.
Furthermore, the gap is independent of dead-end’s
possible length.

Proof. Similarly to Theorem 1, the two conditions jointly
imply that the optimal value of all the states on all dead-end
trajectories will be exactly —1 regardless of their length. In
particular, v} (s") = maxy ql(s',a’) = —1, Vs’ € Sp,
which implies g7 (s,a) = —1if > 5 T(s,a,8) =
1. On the other hand, for all non-dead-end states s,
ming ¢¥(s,a’) > —1 because there always exists at least
one action that transitions to a non-dead-end state (due to the
assumption of s being non-dead-end itself). Formally, for a
non-dead-end state s, we have T'(s,a,s’) < 1, Vs’ € Sp,
which implies ¢} (s,a) = — >, T(s,a,s’) > —1. Asare-
sult, there will be a theoretical gap between ¢*(s,a) # —1

and v¥(s’) = —1, which only depends on the transi-
tion probabilities T'(s,a,s’) and not the length of dead-
ends. O

Theorem 3. If the following hold:

1. States and actions are finite (tabular settings).

2. Policy n exists that satisfies Property 1, and n is
used as the sole behavioural policy. Furthermore,
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7 visits all the non-dead-end states infinitely often.

3. qx(-,-) is initialized pessimistically and standard
conditions are applied on the step-size ou.

then, Q-learning of q,(s,a) converges to ¢ (s, a) for

s € 8\Sp and a € A\Ap(s).

Proof. Recall that Ap(s) denotes the set of all actions a4,
where T'(s,aq4,8') = 1, ' € Sp. We first note that if
there exists an action « at state s € S\Sp, which transi-
tions to a dead-end with some probability less than 1 (hence
a ¢ Ap(s)) then that specific dead-end and all the dead-
end states after that on all possible trajectories will be seen
infinitely often as s is also visited infinitely often by assump-
tion. Therefore, the value of such dead-ends will be updated
just as in standard Q-learning. Hence, this case does not
affect convergence of ¢, (s, a) to its optimal value.

Now, let us focus on ag € Ap(s). Property 1 with A =0
brings
T(s,aq,8) =1 = n(s,aq) =0

which implies that at state s, ) never selects ay € Ap(s);
hence, the corresponding ¢(s, ag) values will remain at the
initial value with no change. We therefore need to prove that
never seeing transitions of the form (s, aq, '), s € S\Sp
and s’ € Sp does not affect convergence of ¢,(s,a) to

q:(s,a)fors € S\Sp anda € A\ Ap(s).

Consider the Q-learning update for a general transition from
state s to s’ with action @ and reward r, namely

q(s,a) < (1 — a)q(s,a) + ad, with
— ! !
5*7’+75}2ﬁQ(5’a) 4

As explained, ¢(s, aq) remains at the initial value g;,,;; for
all s € S\Sp. Pessimistic initialization therefore implies
that ¢(s,aq) = qinit < maxeeaq(s,a’), Vag € Ap(s),
which yields max,/c 4 q(s,a") = max, e 4\ 4, (s) 4(5,a").
Hence, the Q-learning target § in (4) remains unchanged if
Ap(s) is excluded from the behavioural policy.

We have so far established that transitioning to a dead-end
state with non-zero probability and exclusion of forceful
transitions to dead-ends from exploration (both of which
are resulted from the assumptions of this theorem) do not
affect Q-learning update of ¢, (s, a) fors € S\Sp and a €
A\Ap(s). Finally, we note that Property 1 still maintains
the probability of selecting other actions to be non-zero,
which together with the second part of assumption 2 fulfills
the general conditions under which Q-learning converges,
and therefore Q-learning still converges to the optimal value
for all the stipulated state-action pairs. As a final note, the
value of excluded state and actions by this theorem will
be remaining between, at minimum, the initial value ¢;,;;

A 7
5

Figure 1. The bridge problem. Left: Agent starts from A and
should reach B. Each vertical blue path is an inescapable and un-
controllable fall trajectory with a random length /; (demonstrated
by the gradient blue). Right: The corresponding part of MDP for
state ¢ on the bridge.

and, at maximum, their optimal value, depending how many
updates are taken on each of those state-action pairs before
the algorithm stops. O

S2. The Bridge Game

Consider a bridge of length L, shown in Figure 1. The agent
starts at the left end of the bridge and its goal is to reach
the right end, resulting in some very large reward rp > +1.
At each step, n, actions are available, where action a,, goes
right with probability (w.p.) z,,, goes left w.p. y,,, and falls
down w.p. z,,. Assume the following:

e For ag: x¢ close to 1, yg = 0 and zq close to 0 (zg =
1 —xo);

e Fora;:x1 =2 =0andy; = 1;

e For all other actions, a;, j > 2: z; = y; = 0, and
Zj =1.

Once the agent falls, it takes random (but bounded) num-
ber of uncontrollable steps to terminate and return to the
initial position. Therefore, the agent is always at the risk of
falling into a random-length inescapable trajectory before
the episode undesirably terminates and it can restart.

There are two important possibilities for setting the reward,
which we study separately:

(R1) +rp if reaching B and zero everywhere else, and
(R2) —1 if termination happens before reaching B, +rp if

reach B, and zero otherwise.

In both cases, direct evaluation of Bellman equation yields
the following result.

Proposition 1. If rp is sufficiently large and v < 1,
the optimal policy is 7w(s,ao) = 1, for all the bridge
states s.

The case of R1 brings the following:
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Proposition 2. Under conditions of RI, a tabular
agent with zero initialization (no prior) and with any
one of e-greedy (with or without annealing), fully
greedy, fully random, or Boltzmann exploration will
reach the goal for the first time with probability

_ 1 To\L
P= ) )

Proof. Since there is no reward, all the g-values remain zero
(or any initial value) until the goal is reached for the first
time. As a result, the behavioural policy will be uniformly
random regardless of the mentioned exploration techniques,
which implies that the probability of going one step right or
left at any bridge state will be o« = z¢/n, and 8 = y1 /g,
respectively. Hence, the probability of reaching B in exactly
L steps is o (the probability of reaching B in less than L
steps is trivially zero). For the agent to reach B in exactly
L + 1 steps, it must go left in one and only one of the states
on the bridge, and go right all other times. Say it selects
a; at step 7 < L and selects a all over, before and after
7. The probability that it reaches B in exactly L + 1 steps
will then be a” fal~"+!1 = Bal*!. More generally, the
probability that the agent reaches B in exactly L + M steps
is Ml +M 1t therefore concludes that the probability of
reaching B in at most L + M steps is the following:

1— (ap)M*!

M >0
1—ap )’ -

M

D) = 3 0t —
k=0

&)

The probability of reaching B for the first time is obtained
by taking the limit from (5) as M — 4-co, which proves the
proposition. U

For a long-enough bridge, therefore, the agent reaches B for
the first time only with extremely small probability, which
goes to zero as L grows (since xy < 1). Consequently, for
the corresponding agent, Q-learning with any one of the
mentioned exploration techniques will need painfully long
time to learn the optimal values. Additionally, Proposition
1 explicitly refers to the first time of reaching B, and does
not assume any specific learning method; hence, it equally
applies to other methods than Q-learning.

In the case of R2, let us first study Q-learning with zero
initialization and greedy behavioural policy.

Proposition 3. For the bridge problem of R2, Q-
learning with zero initialization and greedy be-
havioural policy will converge to w(A,ay) = 1, with
probability that goes to 1 as L goes to infinity.

Proof. Let i and i denote the i-th position on the bridge
and its corresponding fall trajectory. Additionally, let 4;

for j =1,---,l; be the j-th state on 7, with [; denoting s
random length. By definition, 7;, is a terminal state and its
value is zero. Starting from 7;,_;, because the behavioural
policy is greedy and all ¢ values are initialized at zero, it
takes exactly n, visits until max,q(i;,—1, a’) becomes
negative (precisely —1 if step-size is 1). Hence, on average,
it takes I;n, visits of i until 11 assumes a negative value,
with I, = E (again, if step-size is 1, then the value is
—7“‘2). Let ¢ be the first state on the bridge, for which ¢;
becomes negative. Then, the very first time that (4, ag, 41)
is observed, if the positive value of the goal state has not
yet been propagate back to i 4 1, then ¢(i, ag) will become
negative. On the other hand, ¢(7, a;) remains zero because
maxqq(i — 1,a") = 0 due to the assumption that i, is the
first one that assumes negative max value. Hence, ¢ becomes
a barrier and the greedy policy will never pass it. Continuing
with the same line of argument, after sufficient number of
steps another state j < ¢ will become a new barrier and the
learning indeed converges to always taking a; at the initial
state. Next, one can observe that the minimum number
of steps to receive rp is L. It implies the probability that
positive values propagate back to ¢ goes to zero as L — 400
for all 7 < L. Hence, the probability that a barrier emerges
goes to 1 as L grows, which concludes the proof. O

The proof highlights the emergence of barriers, which is an
interesting phenomenon. Indeed, barriers are responsible
for greedy actions to fail under R2.

Conversely, using a fully random behavioural policy has
extremely small chance of reaching B for the first time as
L becomes large, just similar to that of Proposition 1. As a
result, methods that combine greedy behaviour with some
perturbation, such as e-greedy or Boltzmann, will land on
getting stuck behind barriers (as in Proposition 3) or having
to wait for extremely large number of steps to see g for the
first time (as in Proposition 1) and yet more training time to
converge.

Another strategy that is also important to be discussed is opti-
mistic initialization, which in theory should converge faster
than e-greedy and is the basis for several other methods.
However, optimistic initialization (and similar techniques)
may not be useful in stochastic environments because the
exploration vanishes quickly to zero; hence, there is no guar-
antee of convergence. Additionally, it presents an exhaustive
search, which makes it challenging to scale.

The aforementioned bridge problem is not the only configu-
ration that is severely problematic. In actual fact, one can
experimentally show that for certain values of z, y, and z,
Q-learning will simply never converge in reasonable time.
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S3. On the Insecurity of Boltzmann Policy
with Negative Rewards

As emphasized in the main text, assigning (large) negative
rewards to undesired terminal states is not a general solution
when function approximation is used. However, in tabular
settings it should not be a problem, at least in principle. In
this section, we show that even if negative rewards are used,
the Boltzmann policy is still not secure. Here we consider
Boltzmann policy with zero initialization.

Let us assume that positively rewarded transitions are rel-
atively distant. Hence, we may assume that the dead-end
values next to the initial state s converge before any positive
value propagates back. This is a fair assumption if the bridge
effect is severe. For simplicity, assume also that all the dead-
ends have same length of L. Before the positive values have
the chance of propagating back to the neighboring states of
s, the value of all the neighbors are non-positive. The reward
for any transition starting from (s, a) is also non-positive
(by the assumption of positive rewards being distant). One
can therefore write:

q(s,a) < Z T(&a,s’)ﬂyn}f}xq(s',a/)—i-

s’€Sp
Z T(s,a,s')vn}lzlzxq(s/,a’)
S ¢Sp
< Y T(s,a,8)v(—y"")+
s’€Sp
Z T(s,a,s’)’yn}ﬁxq(s’,a’)
s'¢Sp
<ot Y T(s,as) - B,
s’€Sp

where § > 0. Hence, antecedent of Property 1 implies:

M > Z T(s,a,8')>1—-X\
- s'eSp
= q(s,0) < q(s,a) + B < =" (1= 1)
— (s, a) x 95 < e~ A=Y (6)

where the equality holds if for example 1 — ) is the strict
value (ie., Y cs, T(s,a,s") =1 — N), and if there exists
at least one deterministic transition from s to a zero-valued
state and the reward of such a transition is zero, which is not
unlikely to happen at all. Hence, the gap between 7(s, a)

and e=7" (1= can be arbitrarily small (possibly zero).

Over the interval A € [0, 1], one can show that e (1=X) >
A, with the equality holds if A = 1 and the maximum gap
occurs at A = 0 (the curve y = =D ¢ > 0, is always
above the line y = x over the interval = € [0, 1] and they
touch at y = x = 1). It implies that even after considering
the normalization factor, there is no guarantee that 7(s, a)

holds Property 1; hence, Boltzmann policy is not secure
in general. In particular, the probability that  becomes
insecure increases as L increase and/or v decreases. More
importantly, (6) asserts that the Boltzmann policy is inse-
cure almost surely when A becomes very small. Therefore,
the actions that almost surely transition to a dead-end are
still likely to be chosen. In practical situations, one can
easily show that the probability of taking an action, which
deterministicaly transitions to a dead-end, can be totally non-
negligible. This makes the algorithm very sensitive to the
chosen magnitude of negative rewards (or to the temperature
parameter of Boltzmann distribution).

S4. Implementation Details

For the deep RL example, we use a deep neural network with
experience replay and a very basic/simplistic prioritizing
technique. For the prepossessing and main implementation
details, we closely follow (Mnih et al., 2015) with a smaller
network. For the Atari screen, we only used the red channel
resized to 84x84 pixels, which is stacked with the history
of three previous images to shape the state (a tensor of
4x84x84). The neural network consists of two convolutional
layers with 16 filters of 8x8 and stride of 4, and 32 filters of
4x4 and stride of 2, respectively. The convolutional layers
have ReLU activation and are followed by a dense layer of
256 ReLU units, which is connected to a dense linear layer
that provides the action-values. We use RMSProp optimizer
with learning rate 0.000125 and Huber loss similarly to
(Mnih et al., 2015). We trained the exploration network for
2M transitions with fully secure random walk (i.e., € = 1),
and then anneal € to 0.1 in 1M more steps, just as usual
DQN implementations. Both trainings start after at least
50000 transitions and when at least one rewarding transition
is observed. The rest of hyper-parameters are the same as in
(Mnih et al., 2015).

As described in the deep RL section of the paper, for the ex-
ploration network, we always clip the target value to remain
in [—1,0]. For both networks, we maintain a very small
additional experience replay, which only keeps the non-zero
rewarding transitions in a FIFO manner. Once sampling a
minibatch, we replace only one of the samples (out of 32,
which is the minibatch size) by one sample from the reward-
ing buffer with probability 1.0 for exploration and 0.1 for
exploitation agents. The size of rewarding buffers are 20 and
200 transitions for the exploitation and exploration agents,
respectively. Notice that the number of rewarding transitions
are normally much larger for undesired terminations (hence,
for the exploration agent). Finally, for the exploration net-
work, a life-loss is considered as an undesired terminal state
with r, = —1, and zero reward elsewhere, according to P1
(see Section 2.2. of the main text). No other terminal state
is considered for exploration. Additionally, a life-loss is not



Supplementary Materials

necessarily the end of the game, and the environment may
continue if more lives are still available. Note also that any
life-loss is directly signalled from ALE, and there is no need
to accessing the RAM.
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