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A. Derivation of Likelihood Lower Bounds
In this appendix we detail the derivations of the log-
likelihood lower bounds that were provided in Section 2.

EQUIVAE is relevant when a non-empty set of labelled data
is available. We write the data set as

D = Dlab ∪ Dunlab = {xn, yn}Nlab
n=1 ∪ {xn}Nunlab

n=1 (8)

We also decompose Dlab = ∪yDylab, where Dylab is the set of
labelled instantiations x with label y. In particular, in what
follows we think of Dylab as containing only the images x,
not the labels, since they are specified by the index on the
set. We require at least two labelled data points from each
class, so that |Dylab| ≥ 2 ∀y.

We would like to maximise the log likelihood that our model
generates both the labelled and the unlabelled data, which
we write as:

log p(D) = log p(Dlab) + log p(Dunlab|Dlab) (9)

where we make explicit here the usage of labelled data in
the unlabelled generative model.

For convenience, we begin by repeating the generative
model for the labelled data in Equation 1, except with the
deterministic integral over rn completed:
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We will simplify the notation by writing x̂n = Dynlab \ {xn}
and ryn,x̂n = r(Dynlab \ {xn}), but keep all other details
explicit.

We seek to construct a lower bound on log p({xn, yn}Nlab
n=1),

namely the log likelihood of the labelled data, using the
following variational distribution over vn (Equation 3):
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Indeed,
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Which coincides with the notationally simplified lower
bound objective function given in Equation 4.

We now turn to the lower bound on the unlabelled data.
To start, we marginalise over the labels on the unlabelled
dataset:
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where we no longer need to remove xn from Dynlab in r(·)
since for the unlabelled data, xn 6∈ Dynlab .

As was done for the labelled data, we construct a lower
bound using variational inference. However, in this case,
we require a variational distribution over both yn and vn.
We take:
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Thus, we have Equation 6 augmented with the notational
decorations that were omitted in Section 2.

Therefore, the objective

L =
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n=1

L(n)
unlab +

Nlab∑

n=1

L(n)
lab (16)
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given in Equation 7, with L(n)
lab given in Equation 4 and

L(n)
unlab given in Equation 6, is a lower bound on the data log

likelihood.

B. Experimental Setup
In this appendix we provide details of the experimental setup
that was used to generate the results from Section 3.

For our implementation of EQUIVAE, we use relatively
standard neural networks. All of our experiments use im-
plementations with well under 1 million parameters in total,
converge within a few hours (on a Tesla K80 GPU), and are
exposed to minimal hyperparameter tuning.

In particular, for the deterministic class-representation vec-
tor ry given in Equation 2, we parametrise fθinv(x) using a
5-layer, stride-2 (stride-1 first layer), with 5x5 kernal size,
convolution network, followed by a dense hidden layer. The
mean of these m embeddings fθinv(x

i
y) is taken, followed

then by another dense hidden layer, and the final linear
dense output layer. This is shown for a y = 6 MNIST digit
in the top shaded box of Figure 2. Our implementation
uses (8, 16, 32, 64, 64) filters in the convolution layers, and
(128, 64) hidden units in the two subsequent dense layers
for a 16 dimensional latent (the number of units in the dense
layers are halved when using 8 dimensional latents, as in
our semi-supervised experiments on MNIST).

We parametrise the approximate posterior dis-
tribution qφcov(v|ry, x) over the equivariant la-
tent as a diagonal-covariance normal distribution,
N (µφcov(ry, x), σ

2
φcov

(ry, x)), following the SGVB algo-
rithm (Kingma & Welling, 2014; Rezende et al., 2014).
For µφcov(ry, x) and σ2

φcov
(ry, x), we use the identical

convolution architecture as for the invariant embedding
network as an initial embedding for the data point x. This
embedding is then concatenated with the output of a single
dense layer that transforms ry, the output of which is then
passed to one more dense hidden layer for each µ and σ2

separately. This is shown in the bottom shaded box of
Figure 2.

The generative model pθ(x|ry, v) is based on the DCGAN-
style transposed convolutions (Radford et al., 2016), and is
assumed to be a Bernoulli distribution for MNIST (Gaussian
distribution for SVHN) over the conditionally independent
image pixels. Both the invariant representation ry and the
equivariant representation v, are separately passed through
a single-layer dense network before being concatenated and
passed through another dense layer. This flat embedding that
combines both representations is then transpose convolved
to get the output image in a way the mirrors the 5-layer
convolution network used to embed the representations in
the first place. That is, we use (64, 128) hidden units in the
first two dense layers, and then (64, 32, 16, 8, ncolours) filters

in each transpose convolution layer, all with 5x5 kernals and
stride 2, except the last layer, which is a stride-1 convolution
layer (with padding to accommodate different image sizes).

In our semi-supervised experiments, we implement
qφy-post(y|x) using the same (5-CNN, 1-dense) encoding
block to provide an initial embedding for x. This is then
concatenated with stop grad(fθinv(x)) and passed to a 2-
layer dense dropout network with (128, 64) units. The use
of stop grad(fθinv(x)) is simply that fθinv(x) is learning a
highly relevant, invariant representation of x that qφy-post(y|x)
might as well get access to. However, we do not allow gra-
dients to pass through this operation since fθinv(x) is meant
to learn from the complementary data of known same-class
members only.

As discussed in Section 2, the number of complementary
samples m used to reconstruct ry (see Equation 2) is chosen
randomly at each training step in order to ensure that ry
is insensitive to m. For our supervised experiments where
labelled data are plentiful, m is randomly select between
1 and mmax with mmax = 7 for MNIST (mmax = 10 for
SVHN), whereas in the semi-supervised case mmax = 4 for
MNIST (mmax = 10 for SVHN).

We perform standard, mild preprocessing on our data sets.
MNIST is normalised so that each pixel value lies between
0 and 1. SVHN is normalised so that each pixel has zero
mean and unit standard deviation over the entire dataset.

Finally, all activation functions that are not fixed by model
outputs are taken to be rectified linear units. We use Adam
(Kingma & Ba, 2015) for training with default settings, and
choose a batch size of 32 at the beginning of training, which
we double successively throughout training.


