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Abstract
Excessive reuse of holdout data can lead to over-
fitting. Known results show that, in the worst-
case, given the accuracies of k adaptively chosen
classifiers on a dataset of size n, one can cre-
ate a classifier with a bias of Θ(

√
k/n) for any

binary prediction problem. We show a new up-
per bound of Õ(max{

√
k log(n)/(mn), k/n})

on the worst-case bias that any attack can achieve
in a prediction problem with m classes. More-
over, we present an efficient attack that achieves a
bias of Ω(

√
k/(m2n)) and improves on previous

work for the binary setting (m = 2). We also
present an inefficient attack that achieves a bias
of Ω̃(k/n). Complementing our theoretical work,
we give new practical attacks to stress-test multi-
class benchmarks by aiming to create as large a
bias as possible with a given number of queries.
Our experiments show that the additional uncer-
tainty of prediction with a large number of classes
indeed mitigates the effect of our best attacks.

1. Introduction
Several machine learning benchmarks have shown surpris-
ing longevity, such as the ILSVRC 2012 image classification
benchmark based on the ImageNet database (Russakovsky
et al., 2015). Even though the test set contains only 50,000
data points, hundreds of results have been reported on this
test set. Large-scale hyperparameter tuning and experimen-
tal trials across numerous studies likely add thousands of
queries to the test data. Despite this excessive data reuse,
recent replication studies (Recht et al., 2018; 2019; Yadav &
Bottou, 2019) have shown that the best performing models
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transfer rather gracefully to a newly collected test set col-
lected from the same source according to the same protocol.

What matters is not only the number of times that a test (or
holdout) set has been accessed, but also how it is accessed.
Modern machine learning practice is adaptive in its nature.
Prior information about a model’s performance on the test
set inevitably influences future modeling choices and hy-
perparameter settings. Adaptive behavior, in principle, can
have a radical effect on generalization.

Standard concentration bounds teach us to expect a maxi-
mum error of O(

√
log(k)/n) when estimating the means

of k non-adaptively chosen bounded functions on a data set
of size n. However, this upper bound sharply deteriorates to
O(
√
k/n) for adaptively chosen functions, an exponential

loss in k. Moreover, there exists a sequence of adaptively
chosen functions, what we will call an attack, that causes
an estimation error of Ω(

√
k/n) (Dwork et al., 2014).

What this means is that in principle an analyst can overfit
substantially to a test set with relatively few queries to the
test set. Powerful results in adaptive data analysis provide
sophisticated holdout mechanisms that guarantee better er-
ror bounds through noise addition (Dwork et al., 2015b)
and limited feedback mechanisms (Blum & Hardt, 2015).
However, the standard holdout method remains widely used
in practice, ranging from machine learning benchmarks and
data science competitions to validating scientific research
and testing products during development. If the pessimistic
bound were indicative of performance in practice, the hold-
out method would likely be much less useful than it is.

It seems evident that there are factors that prevent this worst-
case overfitting from happening in practice. In this work, we
isolate the number of classes in the prediction problem as
one such factor that has an important effect on the amount
of overfitting we expect to see. Indeed, we find that in the
worst-case the number of queries required to achieve certain
bias grows at least linearly with the number of classes, a
phenomenon that we establish theoretically and substantiate
experimentally.
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1.1. Our Contributions

We study in both theory and experiment the effect that multi-
ple classes have on the amount of overfitting caused by test
set reuse. In doing so, we extend important developments
for binary prediction to the case of multiclass prediction.

To state our results more formally, we introduce some
notation. A classifier is a mapping f : X → Y, where
Y = [m] = {1, . . . ,m} is a discrete set consisting of m
classes and X is the data domain. A data set of size n is
a tuple S ∈ (X × Y )n consisting of n labeled examples
(xi, yi)i∈[n], where we assume each point is drawn indepen-
dently from a fixed underlying population. In our model,
we assume that a data analyst can query the data set by spec-
ifying a classifier f : X → Y and observing its accuracy
accS(f) on the data set S, which is simply the fraction of
points that are correctly labeled f(xi) = yi. We denote by
acc(f) = Pr{f(x) = y} the accuracy of f over the under-
lying population from which (x, y) are drawn. Proceeding
in k rounds, the analyst is allowed to specify a function in
each round and observe its accuracy on the data set. The
function chosen at a round t may depend on all previously
revealed information. The analyst builds up a sequence of
adaptively chosen functions f1, . . . , fk in this manner.

We are interested in the largest value that accS(ft)−acc(ft)
can attain over all 1 ≤ t ≤ k. Our theoretical analysis
focuses on the worst case setting where an analyst has no
prior knowledge (or, equivalently, has a uniform prior) over
the correct label of each point in the test set. In this setting,
the highest expected accuracy achievable on the unknown
distribution is 1/m. In effect, we analyze the expected
advantage of the analyst over random guesses.

In reality, an analyst typically has substantial prior knowl-
edge about the labels and starts out with a far stronger classi-
fier than one that predicts at random. Using domain informa-
tion, models, and training data, there are many conceivable
ways to label many points with high accuracy and to pare
down the set of labels for points the remaining points. In-
deed, our experiments explore a couple of techniques for
reducing label uncertainty given a good baseline classifier.
After incorporating all prior information, there is usually
still a large set of points for which there remains high un-
certainty over the correct label. Effectively, to translate the
theoretical bounds to a practical context, it is useful to think
of the dataset size n as the number of point that are hard to
classify, and to think of the class count m as a number of
(roughly equally likely) candidate labels for those points.

Our theoretical contributions are several upper and lower
bounds on the achievable bias in terms of the number of
queries k, the number of data points n, and the number of
classes m. We first establish an upper bounds on the bias
achievable by any attack in the uniform prior setting.

Theorem 1.1 (Informal). There is a distribution P over
examples labeled by m classes such that any algorithm that
makes at most k queries to a dataset S ∼ Pn must satisfy
with high probability

max
1≤t≤k

accS(ft) =
1

m
+O

(
max

{√
k log n

nm
,
k log n

n

})
.

This bound has two regimes that emerge from the concen-
tration properties of the binomial distribution. The more im-
portant regime for our discussion is when k = Õ(n/m) for
which the bound is Õ(

√
k/(nm)). In other words, achiev-

ing the same bias requires O(m) more queries than in the
binary case. What is perhaps surprising in this bound is
that the difficulty of overfitting is not simply due to an in-
crease in the amount of information per label. The label
set {1, . . . ,m} can be indexed with only log(m) bits of
information.

We remark that these bounds hold even if the algorithm has
access to the data points without the corresponding labels.
The proofs follow from information-theoretic compression
arguments and can be easily extended to any algorithm for
which one can bound the amount of information extracted by
the queries (e.g. via the approach in (Dwork et al., 2015a)).

Complementing this upper bound, we describe two attack
algorithms that establish lower bounds on the bias in the
two parameter regimes.

Theorem 1.2 (Point-wise attack, informal). For sufficiently
large n and n ≥ k ≥ kmin = O(m logm) there is an
attack that uses k queries and on any dataset S outputs f
such that

accS(f) =
1

m
+ Ω

(√
k

nm2

)
.

The algorithm underlying Theorem 1.2 outputs a classifier
that computes a weighted plurality of the labels that com-
prise its queries, with weights determined by the per-query
accuracies observed. Such an attack is rather natural, in that
the function it produces is close to those produced by boost-
ing and other common techniques for model aggregation. It
also allows for simple incorporation of any prior distribution
over a label of each point. In addition, it is adaptive in the
relatively weak sense: all queries are independent from one
another except for the final classifier that combines them.

This attack is computationally efficient and we prove that it
is optimal within a broad class of attacks that we call point-
wise. Roughly speaking, such an attack predicts a label
independently for each data point rather than reasoning
jointly over the labels of multiple points in the test set. The
proof of Theorem 1.2 requires a rather delicate analysis of
the underlying random process.
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Theorems 1.1 and 1.2 leave open a gap between bounds in
the dependence onm. We conjecture that our analysis of the
attack in Theorem 1.2 is asymptotically optimal and thus,
considering the optimality of the attack, gives a lower bound
for all point-wise attacks. If correct, this conjecture suggests
that the effect of a large number of labels on mitigating
overfitting is even more pronounced for such attacks. Some
support for this conjecture is given in the full version of our
work (Feldman et al., 2019).

Our second attack is based on an algorithm that exactly
reconstructs the labels on a subset of the test set.
Theorem 1.3 (Reconstruction-based attack, informal). For
any k = Ω(m logm), there exists an attack A with access
to test set points such that A uses k queries and on any
dataset S outputs f such that

accS(f) = min

{
1,

1

m
+ Ω

(
k log(k/m)

n logm

)}
.

The attack underlying Theorem 1.3 requires knowledge of
the test points (but not their labels)—in contrast to a point-
wise attack like the previous—and is not computationally
efficient in general. For some t ≤ n it reconstructs the
labeling of the first t points in the test set using queries that
are random over the first t points and fixed elsewhere. The
value t is chosen to be sufficiently small so that the answers
to k random queries are sufficient to uniquely identify, with
high probability, the correct labeling of t points jointly. This
analysis builds on and generalizes the classical results of Er-
dos & Rényi (1963) and Chvátal (1983). A natural question
for future work is whether a similar bias can be achieved
without identifying test set points and in polynomial time
(currently a polynomial time algorithm is only known for
the binary case (Bshouty, 2009)).

Experimental evaluation. The goal of our experimental
evaluation is to come up with effective attacks to stress-test
multiclass benchmarks. We explore attacks based on our
point-wise algorithm in particular. Although designed for
worst-case label uncertainty, the point-wise attack proves
applicable in a realistic setting once we reduce the set of
points and the set of labels to which we apply it.

What drives performance in our experiments is the kind
of prior information the attacker has. In our theory, we
generally assumed a prior-free attacker that has no a priori
information about the labels in the test set. In practice, an
analyst almost always knows a model that performs better
than random guessing. We therefore split our experiments
into two parts: (i) simulations in the prior-free case, and (ii)
effective heuristics for the ImageNet benchmark when prior
information is available in the form of a well-performing
model.

Our prior-free simulations it becomes substantially more dif-

ficult to overfit as the number of classes grows, as predicted
by our theory. Under the same simulation, restricted to two
classes, we also see that our attack improves on the one
proposed in (Blum & Hardt, 2015) for binary classification.

Turning to real data and models, we consider the well-known
2012 ILSVRC benchmark based on ImageNet (Russakovsky
et al., 2015), for which the test set consist of 50,000 data
points with 1000 labels. Standard models achieve accuracy
of around 75% on the test set. It makes sense to assume
that an attacker has access to such a model and will use the
information provided by the model to overfit more effec-
tively. We ignore the trained model parameters and only
use the model’s so-called logits, i.e., the predictive scores
assigned to each class for each image in the test set. In other
words, the relevant information provided by the the model
is a 50,000× 1000 array.

But how exactly can we use a well-performing model to
overfit with fewer queries? We experiment with three in-
creasingly effective strategies:

1. The attacker uses the model’s logits as the prior in-
formation about the labels. This gives only a minor
improvement over a prior-free attack.

2. The attacker uses the model’s logits to restrict the at-
tack to a subset of the test set corresponding to the
lowest “confidence” points. This strategy gives modest
improvements over a prior-free attack.

3. The attacker can exploit the fact that the model has
good top-R accuracy, meaning that, for every image,
the R highest weighted categories are likely to contain
the correct class label. The attacker then focuses only
on selecting from the top R predicted classes for each
point. For R = 2, this effectively reduces class count
to the binary case.

In absolute terms, our best performing attack overfits by
about 3% with 5000 queries.

Naturally, the multiclass setting admits attacks more ef-
fective than the prior-free baseline. However, even after
making use of the prior, the remaining uncertainly over mul-
tiple classes makes overfitting harder than in the binary case.
Such attacks also require more sophistication and hence
it is natural to suspect that they are less likely to be the
accidental work of a well-intentioned practitioner.

1.2. Related Work

The problem of biasing results due to adaptive reuse of the
test data is now well-recognized. Most relevant to us are
the developments starting with the work of Dwork et al.
(2014; 2015b) on reusable holdout mechanisms. In this
work, noise addition and the tools of differential privacy
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serve to improve the
√
k/n worst-case bias of the standard

holdout method to roughly k1/4/
√
n. The latter requires

a strengthened generalization bound due to Bassily et al.
(2016). Separately, computational hardness results suggest
that no trivial accuracy is possible in the adaptive setting for
k > n2 (Hardt & Ullman, 2014; Steinke & Ullman, 2015).

Blum & Hardt (2015) developed a limited feedback holdout
mechanism, called the Ladder algorithm, that only provides
feedback when an analyst improves on the previous best
result significantly. This simple mechanism leads to a bound
of log(k)2/3/n1/3 on what they call the leaderboard error.
With the help of noise addition, the bound can be improved
to log(k)3/5/n2/5 (Hardt, 2017). Blum and Hardt also give
an attack on the standard holdout mechanism that achieves
the
√
k/n bound for a binary prediction problem.

Accuracy on a test set is an average of accuracies at individ-
ual points. Therefore our attacks on the test set are related
to the vast literature on (approximate) recovery from lin-
ear measurements, which we cannot adequately survey here
(see for example (Vershynin, 2015)). The primary difference
between our work and the existing literature is the focus on
the multiclass setting, which no longer has the simple linear
structure of the binary case. (In the binary case the accuracy
measurement is essentially an inner product between the
query and the labels viewed in {±1}.) In addition, even in
the binary case the closest literature (see below) focuses the
analysis on prediction with high accuracy (or small error)
whereas we focus on the regime where the advantage over
random guessing is relatively small.

Perhaps the closest in spirit to our work are database recon-
struction attacks in the privacy literature. In this context,
it was first demonstrated by Dinur & Nissim (2003) that
sufficiently accurate answers to O(n) random linear queries
allow exact reconstruction of a binary database with high
probability. Many additional attacks have been developed
in this context allowing more general notions of errors in
the answers (e.g. (Dwork et al., 2007)) and specific classes
of queries (e.g. (Kasiviswanathan et al., 2010; 2013)). To
the best of our knowledge, this literature does not consider
queries corresponding to prediction accuracy in the multi-
class setting and also focuses on (partial) reconstruction as
opposed to prediction bias. Defenses against reconstruction
attacks have lead to the landmark development of the notion
of differential privacy (Dwork et al., 2006).

Another closely related problem is reconstruction of a pat-
tern in [m]n from accuracy measurements. For a query
q ∈ [m]n, such a measurement returns the number of posi-
tions in which q is equal to the unknown pattern. In the bi-
nary case (m = 2), this problem was introduced by Shapiro
(1960) and was studied in combinatorics and several other
communities under a variety of names, such as “group test-
ing” and “the coin weighing problem on the spring scale”

(see (Bshouty, 2009) for a literature overview). In the gen-
eral case, this problem is closely related to a generalization
of the Mastermind board game (Wikipedia) with only black
answer pegs used. Erdos & Rényi (1963) demonstrated that
the optimal reconstruction strategy in the binary case uses
Θ(n/ log n) measurements. An efficient algorithm achiev-
ing this bound was given by Bshouty (2009). General m
was first studied by Chvátal (1983) who showed a bound of
O(n logm/ log(n/m)) for m ≤ n (see Doerr et al. (2016)
for a recent literature overview). It is not hard to see that
the setting of this reconstruction problem is very similar to
our problem when the attack algorithm has access to the test
set points (and only their labels are unknown). Indeed, the
analysis of our reconstruction-based attack (Theorem 1.3)
can be seen as a generalization of the argument from Erdos
& Rényi (1963); Chvátal (1983) to partial reconstruction. In
contrast, our point-wise attack does not require such knowl-
edge of the test points and it gives bounds on the achievable
bias (which has not been studied in the context of pattern
reconstruction).

An attack on a test set is related to a boosting algorithm. The
goal of a boosting algorithm is to output a high-accuracy
predictor by combining the information from multiple low-
accuracy ones. A query function to the test set that has some
correlation with the target function gives a low-accuracy
predictor on the test set and an attack algorithm needs to
combine the information from these queries to get the largest
possible prediction accuracy on the test set. Indeed, our op-
timal point-wise attack (Theorem 1.2) effectively uses the
same combination rule as the Adaboost algorithm (Freund
& Schapire, 1997) and its multiclass generalization (Hastie
et al., 2009). Note that in our setting one cannot modify the
weights of individual points in the test set (as is required by
boosting). On the other hand, unlike a boosting algorithm,
an attack algorithm can select which predictors to use as
queries. Another important difference is that boosting al-
gorithms are traditionally analyzed in the setting when the
algorithm achieves high-accuracy, whereas we deal primar-
ily with the more delicate low-accuracy regime.

2. Preliminaries
Let S = (xi, yi)i∈[n] denote the test set, where (xi, yi) ∈
X × Y . Let m = |Y | and without loss of generality we
assume that Y = [m]. For f : X → Y its accuracy on
the test set is accS(f) = 1

n

∑
i∈[n] Ind(f(xi) = yi) We are

interested in overfitting attack algorithms that do not have
access to the test set S. Instead, they have query access to
accuracy on the test set S, i.e. for any classifier f : X → Y
the algorithm can obtain the value accS(f). We refer to
each such access as a query, and we denote the execution of
an algorithm A with access to accuracy on the test S and
AO(S). In addition, in some settings the attack algorithm
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may also have access to the set of points x1, . . . , xn.

A k-query test set overfitting attack is an algorithm that,
given access to at most k accuracy queries on some unknown
test set S, outputs a function f . For any such possibly
randomized algorithm A we define

acc(A)
.
= inf
S∈(X×Y )n

E
f=AO(S)

[accS(f)].

An algorithm is non-adaptive if none of its queries depend
on the accuracy values of previous queries (however the
output function depends on the accuracies so a query for
that function is adaptive).

The main attack we design will be from a restricted class
of point-wise attacks. We define an attack is point-wise if
its queries and output function are generated for each point
individually (while still having access to accuracy on the
entire dataset). More formally, A is defined using an al-
gorithms B that evaluated queries and the final classifier.
A query f` at x is defined as the execution of B on val-
ues f1(x), . . . , f`−1(x) and the corresponding accuracies:
accS(f1), . . . , accS(f`−1). Similarly, for k query attack,
the value of the final classifier f at x is defined as the execu-
tion of B on f1(x), . . . , fk(x) and accS(f1), . . . , accS(fk).
An important property of point-wise attacks is that they can
be easily implemented without access to data points. Fur-
ther, the accuracy they achieve depends only on the vector
of target labels.

Our upper bounds on the bias will apply even to algorithms
that have access to points x1, . . . , xn. The accuracy of
such algorithms depends only on target labels. Hence for
most of the discussion we describe the test set by the vector
of labels ȳ = (y1, . . . , yn). Similarly, we specify each
query by a vector of labels on the points in the dataset
q̄ = (q1, . . . , qn) ∈ [m]n. Accordingly, we use ȳ in place of
the test set and q̄ in place of a classifier in our definitions of
accuracy and access to the oracle (e.g. accȳ(q̄) and AO(ȳ)).

In addition to worst-case (expected) accuracy, we will also
consider the average-case accuracy of the attack algorithm
on randomly sampled labels. The random choice of labels
may reflect the uncertainty that the attack algorithm has
about the labels. Hence it is natural to refer to it as a prior
distribution. In general, the prior needs to be specified on
all points in X , but for point-wise attacks or attacks that
have access to points it is sufficient to specify a vector
π̄ = (π1, . . . , πn), where each πi is a probability mass
function on [m] corresponding to the prior on yi. We use
ȳ ∼ π̄ to refer to ȳ being chosen randomly with each yi
sampled independently from πi. We also define the average
case accuracy of A relative to π̄ by

acc(A, π̄)
.
= E
ȳ∼π̄

[
E

r̄=AO(ȳ)

[accȳ(r̄)]

]
.

Note that for every π̄, acc(A) ≤ acc(A, π̄).

For a matrix of query values Q ∈ [m]n×k, i ∈ [n] and
j ∈ [k], we denote by Qj the j-th column of the matrix
(which corresponds to query j) and by Qi the i-th row of
the matrix: (Qi,1, . . . , Qi,k) (which corresponds to all query
values for point i). For a matrix of queriesQ and label vector
ȳ we denote by accȳ(Q)

.
= (accȳ(Qj))j∈[k].

3. Upper Bound
In this section we formally establish the upper bound on bias
that can be achieved by any overfitting attack on a multiclass
problem. The upper bound assumes that the attacker does
not have any prior knowledge about the test set. That is, its
prior distribution is uniform over all possible labelings.

The upper bound applies to algorithms that have access
to the points in the test set. The upper bound has two
distinct regimes. For k = Õ(n/m) the upper bound on

bias is O
(√

k logn
nm

)
and so the highest bias achieved in

this regime is Õ(1/m) (i.e. total accuracy improves by at
most a constant factor). For k ≥ n/m, the upper bound
is O

(
k logn
n

)
. Note that, in this regime, the attacker pays

on average one query to improve the accuracy by one data
point (up to log factors).

The proof of the upper bound relies on a simple descrip-
tion length argument, showing that finding a classifier with
desired accuracy and non-negligible probability of success
requires learning many bits about the target labeling.

Theorem 3.1. Let m,n, k be positive integers and µnm de-
note the uniform distribution over [m]n. Then for every k-
query attack algorithmA, δ > 0, b = k ln(n+1)+ln(1/δ),
and

ε = 2 ·max

{√
b

nm
,
b

n

}
,

Pr
ȳ∼µnm,r̄=AO(ȳ)

[
accȳ(r̄) ≥ 1

m
+ ε

]
≤ δ.

Remark 3.2. The upper bound applies to arbitrary test
set access models that limit the number of bits revealed.
Specifically, if the information that the attacker learns about
the labeling can be represented using t bits then the same
upper bound applies for b = t + ln(1/δ). It can also be
easily generalized to algorithms whose output has bounded
(approximate) max-information with the labeling (Dwork
et al., 2015a).

This upper bound can also be converted to a simpler one on
the expected accuracy by setting δ = 1/n and noticing that
accuracy is bounded above by 1. Therefore, for

ε =
1

n
+2·max

{√
(k + 1) ln(n+ 1)

nm
,

(k + 1) ln(n+ 1)

n

}
,
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we have acc(A, µnm) ≤ 1
m + ε.

4. Test Set Overfitting Attacks
In this section we will examine two attacks that both rely on
queries chosen uniformly at random. Our first attack will
be a point-wise attack that simply estimates the probabil-
ity of each of the labels for the point, given the per-query
accuracies, and then outputs the most likely label. We will
show that this algorithm is optimal among all point-wise
algorithms and then analyze the bias of this attack.

We then analyze the accuracy of an attack that relies on
access to data points and is not computationally efficient.
While such an attack might not be feasible in many scenarios
(and we do not evaluate it empirically), it demonstrates the
tightness of our upper bound on the optimal bias. This attack
is based on exactly reconstructing part of the test set labels.
Omitted proofs appear in the supplemental material.

4.1. Point-wise Attack

The queries in our attack are chosen randomly and uniformly.
A point-wise algorithm can implement this easily because
each coordinate of such a query is independent of all the rest.
Hence we only need to describe how the label of the final
classifier on each point is output, given the vector of the
point’s k labels s̄ = (s1, . . . , sk) from each query, and given
the corresponding accuracies ᾱ = (α1, . . . , αk). To output
the label our algorithm computes for each of the possible
labels the probability of the observed vector of queries given
the observed accuracies. Specifically, if the correct label is
` ∈ [m] then the probability of observing sj given accuracy
αj is αj if sj = ` and (1−αj)

m−1 otherwise. Accordingly, for
each label ` the algorithm considers:

conf(`, s̄, ᾱ) =
∏

j∈[k],sj=`

αj ×
∏

j∈[k],sj 6=`

(1− αj)
m− 1

.

It then predicts the label that maximizes conf, and in case
of ties it picks one of the maximizers randomly.

This algorithm also naturally incorporates the prior distribu-
tion over labels π̄ = (πi)i∈[n]. Specifically, on point i the al-
gorithm outputs the label that maximizes πi(`)·conf(`, s̄, ᾱ).
Note that the version without a prior is equivalent to one
with the uniform prior. We refer to these versions of the
attack algorithm as NB and NBπ̄ , respectively.

We will start by showing that conf(`, s̄, ᾱ) accurately com-
putes the probability of query values.

Lemma 4.1. Let µn×km denote the uniform distribution over
k queries. Then for every ȳ ∈ [m]n, accuracy vector ᾱ,

s̄ ∈ [m]k, i ∈ [n] and j ∈ [k],

Pr
Q

[Qi,j = sj | accȳ(Q) = ᾱ] =

{
αj if sj = yi,
1−αj
m−1 otherwise.

Further Qi,j are independent conditioned on accȳ(Q) = ᾱ.
That is

Pr
Q

[Qi = s̄ | accȳ(Q) = ᾱ]

=
∏

j∈[k],sj=yi

αj ×
∏

j∈[k],sj 6=yi

(1− αj)
m− 1

= conf(yi, s̄, ᾱ).

Proof. For every fixed value ȳ, the distribution Q ∼ µn×km

conditioned on accȳ(Q) = ᾱ is uniform over all query
matrices that satisfy accȳ(Q) = ᾱ. This implies that for
every j the marginal distribution over Qj is uniform over
the set {q̄ | accȳ(q̄) = αj}. We denote this distribution
ρȳ,αj . In addition, Q conditioned on accȳ(Q) = ᾱ is just
the product over marginals ρȳ,α1

× · · · × ρȳ,αk . It is easy
to see from the definition of ρȳ,αj , that for every q ∈ [m],

Pr
q̄∼ρȳ,αj

[q̄i = q] =

{
αj if q = yi,
1−αj
m−1 otherwise.

Thus for every s̄,

Pr
Q

[Qi = s̄ | accȳ(Q) = ᾱ]

=
∏

j∈[k],sj=yi

αj ×
∏

j∈[k],sj 6=yi

(1− αj)
m− 1

= conf(`, s̄, ᾱ).

This lemma allows us to conclude that our algorithm is
optimal for this setting.

Theorem 4.2. Let π̄ = (π1, . . . , πn) be an arbitrary prior
on n labels. Let A be an arbitrary point-wise attack using
k randomly and uniformly chosen queries. Then

acc(A, π̄) ≤ acc(NBπ̄, π̄).

In particular, acc(A) ≤ acc(NB).

We now provide the analysis of a lower bound on the bias
achieved by NB. Our analysis will apply to a simpler algo-
rithm that effectively computes the plurality label among
those for which accuracy is sufficiently high (larger than the
mean plus one standard deviation). Further, to simplify the
analysis, we take the number of queries to be a draw from
the Poisson distribution. This Poissonization step ensures
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Figure 1. Average accuracy (with standard deviation bars), over 10 attack trials, of the NBπ̄ attack against the ImageNet test set. The
attacker’s gains improve when the effective class count, as indicated by rank (the value R used in the top-R heuristic) is reduced,
illustrating the increasing vulnerability of the test set when classes are removed.

that the counts of the times each label occurs are indepen-
dent. The optimality of the NB attack implies that the bias
achieved by NB is at least as large as that of this simpler
attack.

Theorem 4.3. For any m ≥ 2, n ≥ k ≥ kmin = O(lnn+
m lnm), we have that

acc(NB) =
1

m
+ Ω

( √
k

m
√
n

)
.

The key to our proof of Theorem 4.3 is the following lemma
about biased and Poissonized multinomial random variables.

Lemma 4.4. For γ ≥ 0 let ργ denote the categorical dis-
tribution ργ over [m] such that Prs∼ργ [s = m] = 1

m + γ
and for all y 6= m, Prs∼ργ [s = y] = 1

m −
γ

m−1 . For an
integer t, let Mnom(t, ργ) be the multinomial distribution
over counts corresponding to t independent draws from ργ .
For a vector of counts c̄, let argmax(c̄) denote the index of
the largest value in c̄. If several values achieve the maxi-
mum then one of the indices is picked randomly. Then for
λ ≥ 2m ln(4m) and γ ≤ 1

8
√
λm

,

Pr
t∼Pois(λ),c̄∼Mnom(t,ργ)

[argmax(c̄) = m] ≥ 1

m
+Ω

(
γ
√
λ√
m

)

4.2. Reconstruction-based Attack

Our second attack relies on a probabilistic argu-
ment, showing that any dataset’s label vector is, with
high probability, uniquely identified by the accura-
cies of O

(
max

{
n lnm

ln(n/m) ,m ln(nm)
})

uniformly random
queries. This argument was first used for the binary label
case by Erdos & Rényi (1963) and generalized to arbitrary
m by Chvátal (1983). We further generalize it to allow

identification when the accuracy values are known only up
to a fixed shift. This is needed as we apply this algorithm
to a subset of labels such that the accuracy on the remain-
ing labels is unknown. Formally, the unique identification
property follows.

Theorem 4.5. Say that a query matrix Q ∈ [m]n×k recov-
ers any label vector from shifted accuracies if there do not
exist distinct ȳ, ȳ′ ∈ [m]n and shift β ∈ R such that

accȳ(Q) = accȳ′(Q) + β · (1, 1, . . . , 1).

For m ≥ 3 and k = max
{

5n lnm
ln(n/4m) , 20m ln(nm)

}
, with

probability at least 1/2 over the choice of random Q ∼
µn×km , Q recovers any label vector from shifted accuracies.

Naturally, if for all distinct labeling ȳ, ȳ′, accȳ(Q) 6=
accȳ′(Q) then we can recover the unknown labeling ȳ sim-
ply by trying out all possible labeling ȳ′ and picking the
one for which the accȳ(Q) = acc′ȳ(Q). Thus an immediate
implication of Thm. 4.5 is that there exists a fixed set of
k = O

(
max

{
n lnm

ln(n/m) ,m ln(nm)
})

queries that can be
used to reconstruct the labels. In particular, this gives an at-
tack algorithm with accuracy 1. If k is not sufficiently large
for reconstructing the entire set of labels then it can be used
to reconstruct a sufficiently small subset of the labels (and
predict the rest randomly). Hence we obtain the following
bound on achievable bias.

Corollary 4.6. For any k ≥ 40m ln(m), there exists an
attack A with access to points such that

acc(A) = min

{
1,

1

m
+ Ω

(
k ln(k/m)

n lnm

)}
.
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5. Experimental Evaluation
This section presents a variety of experiments intended (i) to
corroborate formal bounds, (ii) to provide a comparison to
previous attack in the binary classification setting, and (iii)
to explore the practical application of the NB attack from
Section 4.1.

To visualize the attack’s performance, we first simply sim-
ulate our attack directly on a test set of labels generated
uniformly at random from m classes. The attack assumes
the uniform prior over the same labels and Figures in the
supplemental material show the observed advantage of the
attack over the population error rate of 1/m, across a range
of query budgets, on test sets of size 10,000 and 50,000
respectively.1

In the binary classification setting, we compare to the
majority-based attack proposed by Blum & Hardt (2015),
under the same synthetic dataset. Recall that the NB attack is
based on a majority (more generally, plurality) weighted by
the per-query accuracies. The majority function is weighted
only by ±1 values, as a means of ensuring non-negative
correlation of each query with the test set labels. It does not
consider low- and high-accuracy queries differently, where
NB does. A figure in the supplemental material shows the
observed relative advantage of the NB attack. Note that sim-
ulating uniformly random binary labels places both attacks
on similar starting grounds: the attacks otherwise differ in
that NBπ̄ can incorporate a prior distribution π̄ over class
labels to its advantage.

Our remaining experiments aim to overfit to the ImageNet
test set associated with the 2012 ILSVRC benchmark. As a
form of prior information, we incorporate the availability of
a standard and (nearly) state of the art model. Specifically,
we train a ResNet-50v2 model over the ImageNet training
set. On the test set, this model achieves a prediction accu-
racy of 75.1% and a top-R accuracy of 85.3%, 91.0%, and
95.3% for R = 2, 4, and 10, respectively.

As is common practice in classification, the ResNet model is
trained under the cross-entropy loss (a.k.a. the multiclass lo-
gistic loss). That is, it is trained to output scores (logits) that
define a probability distribution over classes, from which
it predicts the maximally-probable class label. We use the
model’s logits—a 50,000 by 1000 array—as the sole source
of side information for attack. All results are summarized
in Figure 1, several highlights of which follow.

First, we consider plugging the model’s predictive distri-
bution in as the prior π̄ in the NBπ̄ attack, yielding modest
gains, e.g. a 0.42% accuracy boost after 5200 queries (aver-
aged over 10 simulations of the attack).

1The number of points in these synthetic test sets is chosen to
mirror the CIFAR-10 and ImageNet test sets.

Next, we observe that the model is highly confident about
many of its predictions. Recalling the dependence on the test
set size n in our upper bound, we consider a simple heuristic
for culling points. Namely, we select the 10K points for
which the model is least confident of its prediction in order
to attack a test set that is a fifth of the original size. This
heuristic presents a trade-off: one reduces n to 10K, but
commits to leaving intact the errors made by the model
on the 40K more confident points. Applying this heuristic
improves gains further, e.g. to a 1.44% accuracy boost after
5200 queries.

Finally, we consider another heuristic to reducem, the effec-
tive number of classes in the attack, per this paper’s focus
on the multiple class count. Observing that the model has
a high top-R accuracy (i.e. recall at R) for relatively small
values of R, it is straightforward to apply the NBπ̄ attack not
to the original classes, but to selecting (pointwise) which
of the model’s top-R predictions to take. This heuristic
presents a trade-off as well: one reduces m down to R, but
commits to perform no better than the top-R accuracy of
the model, a quantity that increases with R. Applying this
heuristic together with the previous improves the attacker’s
advantage further. For instance, at R = 2, we observe a
3.0% accuracy boost after 5200 queries.

To put these numbers in perspective, we compare to a
straightforward analytical baseline in supplemental mate-
rial: the expected performance of the “linear scan attack.”
Namely, this is an attack that begins with a random query
vector and successively submits queries by modifying the
label of one point at a time, discovering the label’s true value
whenever the observed test set accuracy increases.
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Erdos, P. and Rényi, A. On two problems of information
theory. Magyar Tud. Akad. Mat. Kutató Int. Közl, 8:
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