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7. Appendix
7.1. Positive mean-gap

Figure 3: Mean gap versus time. Assumption 4 holds: the mean
gap stays positive.

Figure 4: Mean gap versus time. Assumption 4 does not hold: a
switch occurs a time 7.

Assumption 4 trivially holds when the mean rewards do not
change. When the mean rewards change, Assumption 4
parts the small changes that do not imply a change of mean
gap (see Figure 3) from major changes where the mean gap
changes (see Figure 4). For more details see (Allesiardo et
al, 2017).

7.2. Additional Experiments

MEDIAN ELIMINATION is designed to be order optimal
in the worst case: its sample complexity is in O(K log 1

δ ).
However, in practice it is clearly outperformed by SUCCES-
SIVE ELIMINATION or UGAPEC on both problems (see
Figures 5, 6).

7.3. Proofs

Theorem 1. Using any ArmSelection subroutine, DE-
CENTRALIZED ELIMINATION is an (ε, η)-private algo-
rithm, that finds an ε-optimal arm with a failure probability
δ ≤ ηb

log δ
log η c and that exchanges at most b log δlog η cK − 1 mes-

sages.

Proof. The proof of Theorem 1 is composed of three parts.

Figure 5: Problem 1:Uniform distribution of players

Figure 6: Problem 2:50% of players generates 80% of events

Part 1: (ε, η)-privacy. Let Eln = {Kn(ln) ∩ Kε = ∅}
be the event denoting that there is no ε-optimal arm in the
remaining set of arm Kn(ln) at epoch ln, and ¬Eln be the
event denoting that there is at least an ε-optimal arm in the
remaining set of arm Kn(ln) at epoch ln.

As DECENTRALIZED EXPLORATION (A) performs an
ArmSelection subroutine on each player, Property 1 en-
sures that for any player at epoch ln:

P (Eln |Htn ,A,¬Eln) ≤ η × f(ln).

For the sake of simplicity, in the following we will omit the
dependence on A of probabilities.

The message λnk is sent by player n as soon as the arm k
is eliminated from Kn(ln) (see lines 17− 18 algorithm 2).
Hence, we have:

P (Eln |Mn,¬Eln) = P
(
Eln |Htn(ln),¬Eln

)
≤ η × f(ln),

where tn(ln) is the time where epoch ln has begun.

To infer what arm is an ε-optimal arm for player n on the
basis ofMn and A, we first consider the favorable case for
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the adversary, where player n has sent K − 1 elimination
messages which corresponds to epoch ln = L. Using Prop-
erty 1 of the subroutine used by A and the set of messages
Mn the adversary can infer that:

P ({Kn(L) 6⊆ Kε}|¬EL−1) =

L∑
ln=1

P (Eln |Mn,¬Eln)

≤ η
L∑

ln=1

f(ln) = η.

The previous equality holds since if at epoch ln the event
{Kn(ln) 6⊆ Kε} holds, then it holds also for all follow-
ing epochs. Then the inequality is obtained by applying
Property 1 to each element of the sum. Hence, if ln = L
knowing the set of messagesMn and Property 1, the adver-
sary cannot infer what arm is an ε-optimal arm for player n
with a probability higher that 1− η.

Otherwise if ln < L then Kn(L) ⊂ Kn(ln), which implies
that:

P ({Kn(ln) 6⊆ Kε}|Mn,¬Eln)

≥ P ({Kn(L) 6⊆ Kε}|Mn,¬EL−1) .

Hence, if ln < L the adversary cannot infer what arm is an
ε-optimal arm with a probability higher that 1− η.

Part 2: Low probability of failure. An arm is eliminated
when the events {k /∈ Kn(ln)} occur for b log δlog η c indepen-
dent players. Assumption 3 (∀n ∈ N , Px(x = n) 6= 0)
and Property 2 ensures that it exists a time t =

∑N
n=1 t

n

such that for K − 1 arms, there are b log δlog η c voting players.
Moreover, Property 1 implies that ∀n ∈ N , ∀ln:

P ({Kn(ln) 6⊆ Kε}|Mn,¬Eln) ≤ η × f(ln).

Hence, the b log δlog η c independent voting players eliminate the
ε-optimal arm with a probability at most:

P ({K(l) 6⊆ Kε}|M,¬El) ≤ (η × f(l))
b log δlog η c ,

where K(l) denotes the shared set of remaining arms at
elimination epoch l (see line 7 of Algorithm 2), andM =
M1 ∪M2 ∪ ... ∪MN .

If the algorithm fails, then the following event occurs : at
stopping time, ∃k ∈ K(L), k /∈ Kε. Using the union bound,
we have:

P ({K(L) 6⊆ Kε}|M,¬EL−1) ≤
L∑
l=1

(η × f(l))
b log δlog η c

≤ ηb
log δ
log η c.

Finally notice that:

ηd
log δ
log η e ≤ δ = η

log δ
log η ≤ ηb

log δ
log η c.

Part 3: Low communication cost. The index of each
arm is sent to other players no more than once per player
(see line 17 of the algorithm 2). When b log δlog η c messages
have been sent for an arm, this arm is eliminated for all
players (see lines 4− 9 of the algorithm 2).

Thus b log δlog η c(K − 1) messages are sent to eliminate the

suboptimal arms. Then, at most b log δlog η c − 1 messages have
been sent for the remaining arm. Thus, the number of sent
messages is at most b log δlog η cK − 1.

Theorem 2. Using any ArmSelection(ε, η,K)
subroutine, with a probability higher than

(1 − δ)
(
1− I1−p∗

(
TPx,y − TPy , 1 + TPy

))b log δlog η c

DECENTRALIZED ELIMINATION stops after:

O

(
1

p∗

(
TPy +

√
1

2
log

1

δ

))
samples in Px,y,

where Ia(b, c) denotes the incomplete beta function evalu-
ated at a with parameters b, c.

Proof. Let Tn be the number of samples of player n at time
TPx,y when the algorithm stops. Tn is a binomial law of
parameters TPx,y , Px(x = n). We have:

EPx [Tn] = Px(x = n)TPx,y .

Let Bδ,η be the set of players that have the b log δlog η c highest
Tn. The algorithm does not stop, if the following event
occurs: E1 = {∃n ∈ Bδ,η, Tn < TPy}.

Applying Hoeffding inequality, we have:

P
(
Tn − Px(x = n)TPx,y ≤ −ε

)
≤ exp(−2ε2)

When ¬E1 occurs, ∀n ∈ Bδ,η we have with a probability at
most δ:

TPy − Px(x = n)TPx,y ≤ −
√

1

2
log

1

δ
.

Then, when ¬E1 occurs we have with a probability at most
δ:

TPx,y ≥
1

pδ,η

(
TPy +

√
1

2
log

1

δ

)
,

where pδ,η = minn∈Bδ,η Px(x = n).

Finally ifE1 does not occur, then we have with a probability
at least 1− δ:

TPx,y ≤
1

pδ,η

(
TPy +

√
1

2
log

1

δ

)
.
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Let NM bet the set of the M = b log δlog η c most likely play-
ers. Let n∗ = arg minn∈NM Px(x = n), and p∗ =
minn∈NM Px(x = n).

Now, we consider the following event: E2 = {n∗ /∈ Bδ,η}.
By the definition of Bδ,η, the event E2 is equivalent to the
event {Tn∗ < TPy}. Then, we have:

P
(
Tn∗ < TPy

)
= I1−p∗

(
TPx,y − TPy , 1 + TPy

)
,

where Ia(b, c) denotes the incomplete beta function evalu-
ated at a with parameters b, c.

Finally, with a probability at least (1 −
I1−p∗

(
TPx,y − TPy , 1 + TPy

)
)b

log δ
log η c, we have pδ,η = p∗.

Corollary 1. With a probability higher than

(1 − δ)
(
1− I1−p∗

(
TPx,y − TPy , 1 + TPy

))b log δlog η c

DECENTRALIZED MEDIIAN ELIMINATION stops after:

O

(
1

p∗

(
K

b log δlog η cε2
log

1

δ
+

√
1

2
log

1

δ

))
samples in Px,y.

Proof. We have:

ηb
log δ
log η c ≤ δ = η

log δ
log η ≤ ηb

log δ
log η c

⇒ 1

δ
≥ 1

ηb
log δ
log η c

⇔ log
1

η
≤ 1

b log δlog η c
log

1

δ

MEDIAN ELIMINATION algorithm (Even-Dar et al, 2006)
finds an ε-optimal arm with a probability at least 1− η , and
needs at most:

TPy = O
(
K

ε2
log

1

η

)
≤ O

(
K

b log δlog η cε2
log

1

δ

)
samples in Py.

Then the use of Theorem 2 finishes the proof.

Corollary 2. With a probability higher than

(1 − δ)
(
1− I1−p∗

(
TPx,y − TPy , 1 + TPy

))b log δlog η c

DECENTRALIZED SUCCESSIVE ELIMINATION stops after:

O

(
1

p∗

(
K

ε2

(
logK +

1

b log δlog η c
log

1

δ

)
+

√
1

2
log

1

δ

))

samples in Px,y.

Proof. SUCCESSIVE ELIMINATION algorithm (Even-Dar
et al, 2006) finds an ε-optimal arm with a probability at least
1− η, and needs at most:

TPy = O
(
K

ε2
log

K

η

)
≤ O

(
K

ε2

(
logK +

1

b log δlog η c
log

1

δ

))
samples in Px,y. Then the use of Theorem 2 finishes the
proof.

Theorem 3. For K ≥ 2, δ ∈ (0, 0.5], for the sequences
of rewards where Assumption 4 holds, DSER3 is an (ε, η)-
private algorithm, that exchanges at most b log δlog η cK − 1
messages, that finds an ε-optimal arm with a probability

at least (1− δ)
(
1− I1−p∗

(
TPx,y − TPy , 1 + TPy

))b log δlog η c,
and that stops after:

O

(
1

p∗

(
K

ε2

(
logK +

1

b log δlog η c
log

1

δ

)
+

√
1

2
log

1

δ

))
samples in Px,y.

Proof. Theorem 3 is a straightforward application of Theo-
rem 2, where TPy is stated in Theorem 1 (Allesiardo et al,
2017).

Theorem 4. For K ≥ 2, ε ≥ η
K , ϕ ∈ (0, 1], for any se-

quences of rewards that can be splitted into sequences where
Assumption 4 holds, DSER4 is an (ε, η)-private algorithm,
that exchanges on average at most ϕT (b log δlog η cK − 1) mes-
sages, and that plays, with an expected probability at most

δ + ϕTI1−p∗
(
TPx,y − TPy , 1 + TPy

)b log δlog η c, a suboptimal
arm on average no more than:

O

 1

p∗

 1

ε2

√√√√√SK logK + 1
b log δlog η c

log 1
δ

δ
1

b log δ
log η

c

+

√
1

2
log

1

δ




times, where S is the number of switches of best arms, ϕ is
the probability of reset in SER4, T is the time horizon, and
the expected values are taken with respect to the randomiza-
tion of resets.

Proof. The upper bound of the expected number of times a
suboptimal arm is played by SER4, is stated in Corollary 2
(Allesiardo et al, 2017). Then this upper bound is used in
Theorem 2 to state the upper bound of the expected number
of times a suboptimal arm is played using DSER4. The
expected number of resets is ϕT . Theorem 2 provides the
success probability of each run of DECENTRALIZED ELIM-
INATION, which states the expected failure probability of
DSER4. Then using Theorem 1 the expected upper bound
of the number of exchanged messages is stated.


