Online Meta-Learning

A. Linear Regression Example

Here, we present a simple example of optimizing a collec-
tion of quadratic objectives (equivalent to linear regression
on fixed set of features), where the solutions to joint train-
ing and the meta-learning (MAML) problem are different.
The purpose of this example is to primarily illustrate that
meta-learning can provide performance gains even in seem-
ingly simple and restrictive settings. Consider a collection
of objective functions: {f; : w € R? — R}M which can
be described by quadratic forms. Specifically, each of these
functions are of then form

filw) = %WTAiW +wTb,.
This can represent linear regression problems as follows:
let (x7;,y7;) represent input-output pairs corresponding to
task 7;. Let the predictive model be h(x) = wlx. Here,
we assume that a constant scalar (say 1) is concatenated in x
to subsume the constant offset term (as common in practice).
Then, the loss function can be written as:

1

fiw) = 3By |

h(x) = yIP]

which corresponds to having A; = E,.7[xx’] and

b; = E(x y)~7; [x"y]. For these set of problems, we are
interested in studying the difference between joint training
and meta-learning.

Joint training The first approach of interest is joint train-

ing which corresponds to the optimization problem

: &
Inin, F(w), where F((w) = i ; filw). (6)

Using the form of f;, we have
1 1 1
_ T] T)
F(w) = W (;,1 Al> W+ w (g b,) .

Let us define the following:

~ 1 M - 1 M
A::M;Ai and b:= M;bi.

The solution to the joint training optimization problem
(Eq. 6) is then given by wi, = —A~'b.

Meta learning (MAML) The second approach of inter-
est is meta-learning, which as mentioned in Section 2.2
corresponds to the optimization problem:

weRd

~ ~ 1 M
min, F(w), where F(w) = - > FU(w). (D
=1

Here, we specifically concentrate on the 1-step (exact) gra-
dient update procedure: U;(w) = w — aV f;(w). In the
case of the quadratic objectives, this leads to:
1
fi(Ui(w)) = i(w — aA;w — ab)TAj(w — aA;w — ab;)
+ (W —adA;w— abi)Tbi

The corresponding gradient can be written as:

Vi(U(w)) = <I - aAZ-) <AZ- (w—ad;w — ab;) + bi>
— (I -aA)A(I - aA)w+ (I-aA,)’b;

For notational convenience, we define:
1 M 2
Ap= o7 Z (I -aA;) A,
=1
(I — OéAl) bl

Then, the solution to the MAML optimization problem
(Eq. 7) is given by wyjayg, = fAT_le.

Remarks In general, i, 7 Wya\y based on our anal-
ysis. Note that A is a weighed average of different A;, but
the weights themselves are a function of A;. The reason for
the difference between wi;, and Wy, is the difference
in moments of input distributions. The two solutions, Wi,
and wyyp » coincide when A; = A Vi. Furthermore, since
Wiam Was optimized to explicitly minimize F'(-), it would
lead to better performance after task-specific adaptation.

This example and analysis reveals that there is a clear sep-
aration in performance between joint training and meta-
learning even in the case of quadratic loss functions. Im-
proved performance with meta-learning approaches have
been noted empirically with non-convex loss landscapes in-
duced by neural networks. Our example illustrates that meta
learning can provide non-trivial gains over joint training
even in simple convex loss landscapes.

B. Proof of Theorem 1

In this section, we restate Theorem 1 and provide a proof.

Theorem 1. Suppose f and f : R? — R satisfy assump-
tions 1 and 2. Let f be the function evaluated after a one
step gradient update procedure, i.e.

f(w) = f(w—aVfw)).

If the step size is selected as o < min{ﬁ, SPLG}, then f

is convex. Furthermore, it is also § = 9/ /8 smooth and
i = /8 strongly convex.

Online Meta-Learning

Proof. First, the smoothness and strong convexity of f and
f implies u < ||V2f(0)|| < B V6. Thus,

(1—aB) < I —aV2f(9)]| < (1 — ap) V6.

Also recall the earlier notation § = U (8) = 6 — oV f(6).
For @ < 1/, we have the following bounds:
(1—ap)l|0 -l < |[U0) -U()|| V(0,0)
1UO0) -U@)|| < (1 —ap)l6—¢ll V(0,e),
since we have U(0) — U (¢p) = (I — aV2f(1,b))(0 — @)

for some 1) that connects 8 and ¢ due to the mean value
theorem on V f. Using the chain rule and our definitions,

V() - Vf(g)=VU@B)VF(O)—VU(D)Vf(P)

= (VU(0) - VU(9)) Vf(6) + VU (¢) (Vf(8) — V()

Taking the norm on both sides, for the specified o, we have:

IVf(0) = V()| <[(VU(B) — VU()) Vf(O)]]
+|VU(¢) (Vf(8) — V()]
< (apG+ (1 —ap)p)||6 — ¢||

(5+5)l10-9l

95
2o - ¢l

IN

IN

Similarly, we obtain the following lower bound

IVf(0) = V(@) > |[VU(p) (V£(0) — V(o)) Il
—|[(VU(0) — VU(¢)) V£(0)]]

> (1-ap)?ul|0 — ¢l| — apGll0 - ¢l

B
> (22 _
> (5-%)e-el
7

> =10 —

> KJjo - ¢
which completes the proof. O
C. Proof of Corollary 2

In this section, we restate Corollary 2 and provide a proof.

Corollary 2. (inherited regret bound for FTML) Suppose
that for all t, f; and f; satisfy assumptions 1 and 2. Suppose
that the update procedure in FTML (Eq. 4) is chosen as
Ui (w) =w —aVfi(w) witha < min{%, 5t Then,
FTML enjoys the following regret guarantee

T T 2
Zft(Ut(Wt))_mviant(Ut(w)) = O<32’f 10gT>

Proof. From Theorem 1, we have that each function
fi(w) = fi(Uy(w)) is i = /8 strongly convex. The
FTML algorithm is identical to FTL on the sequence of
loss functions {f;}7~_,, which has a O(% log T') regret
guarantee (see Cesa-Bianchi & Lugosi (2006) Theorem 3.1).
Using i = /8 completes the proof. O

D. Additional Experimental Details

For all experiments, we trained our FTML method with 5
inner batch gradient descent steps with step size o = 0.1.
We use an inner batch size of 10 examples for MNIST and
pose prediction and 25 datapoints for CIFAR. Except for
the CIFAR NML experiments, we train the convolutional
networks using the Adam optimizer with default hyperpa-
rameters (Kingma & Ba, 2015). We found Adam to be
unstable on the CIFAR setting for NML and instead used
SGD with momentum, with a momentum parameter of 0.9
and a learning rate of 0.01 for the first 5 thousand iterations,
followed by a learning rate of 0.001 for the rest of learning.

For the MNIST and CIFAR experiments, we use the cross
entropy loss, using label smoothing with e = 0.1 as pro-
posed by Szegedy et al. (2016). We also use this loss for the
inner loss in the FTML objective.

In the MNIST and CIFAR experiments, we use a convolu-
tional neural network model with 5 convolution layers with
32 3 x 3 filters interleaved with batch normalization and
ReLU nonlinearities. The output of the convolution layers
is flattened and followed by a linear layer and a softmax,
feeding into the output. In the pose prediction experiment,
all models use a convolutional neural network with 4 convo-
lution layers each with 16 5 x 5 filters. After the convolution
layers, we use a spatial soft-argmax to extract learned fea-
ture points, an architecture that has previously been shown
to be effective for spatial tasks (Levine et al., 2016; Singh
et al., 2017). We then pass the feature points through 2 fully
connected layers with 200 hidden units and a linear layer
to the output. All layers use batch normalization and ReLU
nonlinearities.

