
Supplemental Material for
DL2: Training and Querying Neural Networks with Logic

Here, we describe implementation details and hyperparame-
ters for our experiments. In all experiments, we used ξ = 1,
but we found the value not to have a large impact.

A. Details for Training Experiments
Supervised Learning For our experiments with super-
vised learning, we used a batch size of 128 and the Adam
optimizer with learning rate 0.0001. All experiments were
run for 200 epochs and the reported values in Table 3 are
for the model with the highest constraint accuracy times
prediction accuracy within the last 25 epochs. The average
time for one epoch is given in Table 4. All other parameters
are listed in Table 5. Additionally, for the CIFAR-10 experi-
ments, we used data augmentation with random cropping
and random horizontal flipping. Experiments with the Seg-
ment constraints were done by first embedding images in
40-dimensional space using PCA. In this lower dimensional
space, it is sensible to consider linear interpolation between
images which is not the case otherwise. This experiment
was not performed for CIFAR-10 because we did not ob-
serve good prediction accuracy with baseline model using
lower dimensional embedding. This is likely because the
dimensionality of CIFAR-10’s images is much higher than
that of MNIST or FASHION.

We used ResNet-18 (He et al., 2016) for the experiments on
CIFAR-10 and convolutional neural network (CNN) with 6
convolutional and 2 linear layers for MNIST and FASHION
(trained with batchnorm after each convolutional layer). The
layer dimensions of the CNN are (1, 32, 5x5) - (32, 32,
5x5) - (32, 64, 3x3) - (64, 64, 3x3) - (64, 128, 3x3) - (128,
128, 1x1) - 100 - 10 where (in, out, kernel-size) denotes a
convolutional layer and a number n denotes a linear layer
with n neurons.

We have implemented the SegmentG constraint as

∀z. ((z = λ · x+ (1− λ) · x′)
∧ (‖x− x′‖2 < ε)

∧ (y 6= y′)) =⇒
H(pθ(z), λ · pθ(x) + (1− λ) · pθ(x′)) < δ.

Which in addition to the constraint in the paper, only consid-

ers training samples that are close together (‖x−x′‖2 < ε)
and that have different labels (y 6= y′).

For the C-Similarity constraint we use the formulation as
in the body of the paper, but we not only apply it to the car-
truck-dog labels, but also deer-horse-ship, plane-ship-frog,
dog-cat-truck and cat-dog-car.

Semi-supervised Learning For this experiment, we use
the VGG-16 architecture (Simonyan & Zisserman, 2014)
and optimize the loss using Adam with learning rate 0.001
and a batch size of 128. For each labeled batch, we also
sampled one unlabeled batch and combined the losses before
back-propagating. We trained for 1600 epochs, although
stable results were observed after around 400 epochs. We
used λ = 0.6 as the weighting factor for the DL2 loss.

Unsupervised Learning Our model is the multilayer per-
ceptron with N ·N input neurons, three hidden layers with
1000 neurons each and an output layer of N neurons. N is
the number of vertices in the graph, in our case 15. The in-
put is the adjacency matrix of the graph and the output is the
distance for each node. The network uses ReLU activations
and dropout of 0.3 after each hidden layer. The network is
optimized using Adam with learning rate 0.0001.

B. Additional Details for Section 6.2
Here, we provide statistics on the networks and queries
used in the experiments of Section 6.2. Table 6 summarizes
the networks that we used, their architecture, and accuracy.
Each row shows the dataset, the type of the network (clas-
sifier, generator, or discriminator), the network signature,
and the architecture of the network. For example, the first
row describes a classifier that takes as input images of size
28 × 28 pixels, each ranging between 0–1, and returns a
probability distribution over ten classes.

Figure 4 shows the query templates, where the template
parts are colored in blue. In the queries, we use the fol-
lowing names for the template parts. Networks are named
N, N1, N2 for classifiers, G for generator, and D for dis-
criminator. A variable denoting an input image (e.g., deer
in Figure 1a) is var. Classes are c, c1, c2 or cv to
refer to the (known) class of a variable var. Masks are de-



DL2: Training and Querying Neural Networks with Logic

Table 4. Average time per epoch in seconds for the supervised training experiments in Table 3.
MNIST FASHION CIFAR-10

Baseline DL2 Baseline DL2 Baseline DL2

RobustnessT 7.34 13.11 7.24 12.58 40.04 100.97
RobustnessG 14.23 866.19 13.9 533.41 40.78 418.62
LipschitzT 7.37 12.45 7.53 12.13 40.63 75.72
LipschitzG 12.2 67.79 7.58 401.4 40.02 287.64
C-similarityT - - - - 40.13 83.85
C-similarityG - - - - 39.87 423.82
SegmentG 15.16 101.55 13.5 30.62 - -

Table 5. Hyperparameters used for supervised learning experiment
MNIST, FASHION CIFAR-10

λ PGD Iterations Params λ PGD Iterations Params

RobustnessT 0.2 - ε1 = 7.8, ε2 = 2.9 0.04 - ε1 = 13.8, ε2 = 0.9
RobustnessG 0.2 50 ε = 0.3, δ = 0.52 0.1 7 ε = 0.3, δ = 0.52
LipschitzT 0.1 - L = 1.0 0.1 - L = 1.0
LipschitzG 0.2 50 Lmnist = 0.1, Lfashion = 0.3, ε = 0.3 0.1 5 L = 1.0, ε = 0.3
ClassesT - - - 0.2 - δ = 0.01
ClassesG - - - 0.2 10 δ = 1.0, ε = 0.3
SegmentG 0.01 5 ε = 100, δ = 1.5 - - -

noted by mask and their complementary mask by nm. Pixel
constraints (e.g., i in [0,255]) are pix_con, and their
range (e.g., [0,255]) is range. The shape of a variable
(e.g., 28, 28 for MNIST) is shape, and a constant denoting
a distance is dist.

The tested queries enable us to study various aspects of the
DL2 system. The first query runs a neural network on a
given input, which allows us to gauge the overheads of our
system (without the optimizer). This includes parsing, query
setup time and the call to PyTorch to run the neural network.
Queries 2-4 look for inputs satisfying constraints without an
init clause, while queries 5-11 look for adversarial exam-

ples. Queries 12-18 aim to find inputs classified differently
by the two networks, whereas queries 14-15 leverage gen-
erators and discriminators for this task. Table 7 shows the
average run-time and success rate of different queries.

C. Additional Query Experiments
Here, we provide further experiments to investigate the scal-
ability and run-time behavior of DL2. For all experiments,
we used the same hyperparameters as in Section 6.2.

Experiment I: Number of Variables We first study the
run-time behavior of DL2 as a function of the number of
variables. For this, we consider a simple toy query:

f i n d i[c]
where 1000 < sum(i), sum(i) < 1001
r e t u r n i

with different integer values for c. We execute this query for
a wide range of c values – 10 times for each value – and we
report the average run-time in Figure 5a. All runs completed
successfully and returned a correct solution. We observe
constant run-time behavior for up to 213 variables, and a
linear run-time in the number of variables afterwards.

Experiment II: Opposing Constraints We next study
the impact of (almost) opposing constraints. For this, we
consider another toy query:

f i n d i[1]
where i[0] < −c ∨ c < i[0]
r e t u r n i

for an integer c. This query requires optimizing two oppos-
ing terms until one of them is fulfilled. The larger c, the
more opposed the two objectives are – in the extreme case,
for c → ∞, we obtain an unsatisfiable objective. All runs
completed successfully and returned a correct solution. Fig-
ure 5b shows the average run-time over 10 runs for different
values of c.

Experiment III: Scaling to Many Constraints Lastly,
we study the scaling of DL2 as a function of the number of



DL2: Training and Querying Neural Networks with Logic

Table 6. The datasets and networks used to evaluate DL2. The reported accuracy is top-1 accuracy and it was either computed by the
TorchVision library (#), or by us (†).

Dataset Type Network Architecture Accuracy

MNIST

C M NN1: [0, 1]28×28 7→ [0, 1]10 small CNN, PyTorch Examples 0.990†

C M NN2: [0, 1]28×28 7→ [0, 1]10 small FFNN, PyTorch Examples 0.979†

G M G: [−1, 1]100 7→ [0, 1]28×28 DC-GAN -
D M D: [0, 1]28×28 7→ [0, 1] DC-GAN -
G M ACGAN G: [−1, 1]100 × {0, . . . , 9} 7→ [0, 1]28×28 AC-GAN -
D M ACGAN D: [0, 1]28×28 7→ [0, 1]× [0, 1]10 AC-GAN -

Fashion
MNIST

C FM NN1 : [0, 1]28×28 7→ [0, 1]10 same as M NN1 0.876†

C FM NN2 : [0, 1]28×28 7→ [0, 1]10 same as M NN2 0.860†

G FM G: [−1, 1]100 7→ [0, 1]28×28 DC-GAN -
D FM D : [0, 1]28×28 7→ [0, 1] DC-GAN -

CIFAR

C C NN1 : [0, 1]32×32×3 7→ [0, 1]10 VGG-16 0.936†

C C NN2 : [0, 1]32×32×3 7→ [0, 1]10 Resnet-18 0.950†

G C G : [−1, 1]100 7→ [0, 1]32×32×3 DC-GAN -
D C D : [0, 1]32×32×3 7→ [0, 1] DC-GAN -

GTSRB C G NN1 : [0, 1]32×32×3 7→ [0, 1]10 VGG-16 0.985†

C G NN2 : [0, 1]32×32×3 7→ [0, 1]10 Resnet-18 0.995†

G G G : [−1, 1]100 7→ [0, 1]32×32×3 DC-GAN -
D G D : [0, 1]32×32×3 7→ [0, 1] DC-GAN -

ImageNet
C I V16 : [0, 1]224×224×3 7→ [0, 1]1000 VGG-16 from PytTorch Vision 0.716#

C I V19 : [0, 1]224×224×3 7→ [0, 1]1000 VGG-19 from PytTorch Vision 0.7248#

C I R50 : [0, 1]224×224×3 7→ [0, 1]1000 ResNet-50 from PytTorch Vision 0.764#

constraints. For this, we consider the following query which
looks for an adversarial example:

f i n d p[28, 28]
where c l a s s (M_NN1(clamp(p + M_nine,

0, 1))) = c
r e t u r n clamp(p + M_nine, 0, 1)

The query looks for an adversarial perturbation p to a given
image of a nine (M_nine) such that the resulting image
gets classifies as class c. The query returns the found per-
turbation and the resulting image. The clamp(I, a, b)
operation takes an input I and cuts its values such that they
are between a and b.

Additionally, we impose constraints on the rows and
columns of the image. For a row i, we want to enforce
that the values of the perturbation vector are increasing
from left to right:

p[i, 0] < p[i, 1],
p[i, 1] < p[i, 2],
p[i, 2] < p[i, 3], . . .

For one row this yields 27 constraints. We further consider
a similar constraint for a column j:

p[0, j] < p[1, j],
p[1, j] < p[2, j],
p[2, j] < p[3, j] . . .

We apply these constraints on the first k rows and columns
of the image independently and jointly. We vary the value

of k, and for each we execute the query over all possible
target classes c ∈ {0, . . . , 8}. We report the average time in
Table 8. Most queries could be solved. For Row & Column
constraints where k = 20 and k = 28, only 6 out of 9 and
1 out of 9 could be solved receptively. These queries hit the
300 s timeout. Figure 6 shows a resulting image.



DL2: Training and Querying Neural Networks with Logic

Query

1 e v a l N(var)

2 f i n d i[shape]
where c(N(i))=c

3 f i n d i[shape]
where c(N(i))=c,
pix con

4 f i n d i[shape]
where c(N(i))=c,
N(i).p[c] > 0.8,
pix con

5 f i n d i[shape]
where c(N(i))=c
i n i t i=var

6 f i n d i[shape]
where c(N(i))=c,
pix con,
‖i - var‖∞ < dist
i n i t i=var

7 f i n d i[shape]
where c(N(i))=c,
pix con
i n i t i=var

8 f i n d i[shape]
where c(N(i))=c,
i[mask] in range,
i[nm]=var[nm]
i n i t i=var

9 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8
i n i t i=var

Query

10 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8,
N(i).p[cv] < 0.1
i n i t i=var

11 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8,
N(i).p[cv] < 0.1,
‖i−var‖∞ < dist
i n i t i=var

12 f i n d i[shape]
where pix con,
c(N2(i))=c2,
c(N1(i))=c1

13 f i n d i[shape]
where pix con,
c(N2(i))=c,
‖i - var‖∞ < dist,
c(N1(i))=cv,
i n i t i=var

14 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.5,
N2(i).p[c1] < 0.1,
N2(i).p[c2] > 0.5,
N1(i).p[c2] < 0.1,
pix con,D(i) < 0.1

Query

15 f i n d i[100]
where i in [-1,1],
c(N1(G(i)))=c1,
N1(G(i)).p[c1]> 0.3,
c(N2(G(i)))=c2,
N2(G(i)).p[c2]> 0.3

16 f i n d i[shape]
where c(N1(i))=cv,
c(N2(i))=c,
i[mask] in range,
i[nm]=var[nm]
i n i t i=var

17 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.5,
N1(i).p[c2] < 0.1,
pix con

18 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.6,
N1(i).p[c2] < 0.1,
N2(i).p[c2] > 0.6,
N2(i).p[c1] < 0.1,
pix con

Figure 4. The template queries used to evaluate DL2. N1, N2 denote classifier neural networks, var an example input from the correspond-
ing dataset, c, c1, c2 are classes and c1 6= c2, pix con is a box constraint for pixels to be in the proper input range, D is a discriminator
neural network and G is a generator neural network.



DL2: Training and Querying Neural Networks with Logic

Table 7. Results for queries: (#3) number of completed instances (out of 10),	 is the average running time in seconds, and	3the
average running time of successful runs (in seconds).

MNIST FASHION CIFAR-10 GTSRB ImageNet

Nr. #3 	 	3 #3 	 	3 #3 	 	3 #3 	 	3 #3 	 	3

1 10 0.03 0.03 10 0.03 0.03 10 0.03 0.03 10 0.03 0.03 10 0.04 0.04
2 10 0.16 0.16 10 0.15 0.15 10 0.39 0.39 10 0.30 0.30 10 5.71 5.71
3 10 0.21 0.21 10 0.19 0.19 10 0.43 0.43 10 0.54 0.54 10 9.58 9.58
4 10 0.31 0.31 10 0.21 0.21 10 0.61 0.61 10 0.69 0.69 10 18.81 18.81
5 10 0.15 0.15 10 0.15 0.15 10 0.19 0.19 10 0.53 0.53 10 2.95 2.95
6 10 6.38 6.38 10 1.76 1.76 10 6.59 6.59 9 40.94 32.15 1 109.20 12.01
7 10 0.18 0.18 10 0.18 0.18 10 0.33 0.33 10 0.54 0.54 10 8.30 8.30
8 10 1.39 1.39 10 0.24 0.24 10 0.34 0.34 9 12.52 0.57 10 11.83 11.83
9 10 0.20 0.20 10 0.21 0.21 10 0.31 0.31 10 0.96 0.96 10 8.75 8.75

10 10 0.22 0.22 10 0.22 0.22 10 0.41 0.41 9 12.71 0.79 10 10.21 10.21
11 9 13.57 1.74 10 6.32 6.32 10 5.58 5.58 9 33.18 23.53 1 109.22 12.17
12 10 0.38 0.38 10 0.34 0.34 10 0.96 0.96 10 0.80 0.80 10 20.52 20.52
13 10 7.23 7.23 10 2.33 2.33 10 7.04 7.04 8 55.68 39.61 0 120.00 0.00
14 10 0.53 0.53 10 0.53 0.53 10 1.92 1.92 10 1.93 1.93 - - -
15 10 3.17 3.17 8 34.53 13.16 10 11.15 11.15 4 91.90 49.74 - - -
16 9 13.95 2.16 10 0.52 0.52 10 1.33 1.33 10 1.21 1.21 10 18.39 18.39
17 10 0.63 0.63 10 0.35 0.35 10 1.14 1.14 10 1.67 1.67 9 47.43 39.37
18 10 0.71 0.71 10 0.37 0.37 10 1.27 1.27 10 1.24 1.24 10 33.69 33.69

21 24 27 210 213 216 219 222

Number of Variables

0

1

2

3

4

5

6

7

8

9

Time [s]

(a) Run-time for experiment 1. Runs up to 213 variables
take less than 0.01 s and don’t show increase with number of
variables.

21 24 27 210 213 216 219 222

c

0

1

2

3

4

5

6

7

8

9

Time [s]

(b) Run-time for experiment 2. All runs up to c = 212 take
less than 0.01 s.

Figure 5. Experimental results for Experiments 1 and 2. Results are averaged over 10 runs with different random seed. All runs succeed.



DL2: Training and Querying Neural Networks with Logic

Table 8. Run-times for additional constraints on adversarial perturbation. #3is the number of successful runs out of 9 and	3is the
average run-time over the successful runs in seconds. k row or column constraints corresponds to 27 individual constraints in DL2 each.
Thus, the right most column adds 756 constraints for the first two settings and 1512 for the last.

Row constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.24 3.25 6.36 24.82 67.25 101.49
#3 9 9 9 9 9 9 9

Column constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.00 3.22 5.83 21.44 71.87 270.83
#3 9 9 9 9 9 9 9

Row & Column constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.89 6.14 11.06 89.02 213.30 270.83
#3 9 9 9 9 9 6 1

(a) The found perturbation p, scaled such that −0.3 corresponds
to black and 0.3 to white.

(b) The resulting image.

Figure 6. Found results for the full 28 row & column constraints and target class 6.


