Supplementary Material for ‘Bayesian Action Decoder for Deep Multi-Agent
Reinforcement Learning’

Jakob N. Foerster “ ' 2 H. Francis Song > Edward Hughes® Neil Burch?® Iain Dunning® Shimon Whiteson !
Matthew M. Botvinick* Michael Bowling 3

1. Parameterising and Sampling from the
Distribution over Partial Policies

BAD requires us to parameterise a probability distribution
over partial policies using a deep neural network:

P(#[sBap) = Thap(7|sBaD)- (1)

The first insight is that we can trivially use a neural network
to map from public states, sgap, into probabilistic partial
policies. To do so, we simply start with a feedforward
policy that takes as input both sgap and f* and produces a
distributions over actions:

7 (spaps) — P(ulspap, f*). 2

Next, we note that if we fix a given sgap, we now have a
probabilistic partial policy which maps each private obser-
vation f¢ into a probability distribution over actions. This
partial policy is produced deterministically as a function of
SpaD Via the parameters 6:

m(ulf*) : {f*} = {PU)} |sBap, 3)
(ul f*) = 7 (ulsgap, f*). e

Now, this is close, but not quite what we want. Above we
have a deterministic map from sgap into probabilistic par-
tial policies, 7(u|f*). Instead, we require a differentiable
distribution over deterministic partial policies.

Perhaps surprisingly, this can be accomplished by condition-
ing the sampling from 7(u|f®) on a common knowledge

“Equal contribution 'University of Oxford, UK *Work done at
DeepMind. JF has since moved to Facebook Al Research, Menlo
Park, USA. 3DeepMind, London, UK. Correspondence to: Jakob
Foerster <jnf@fb.com>, Francis Song <songf@google.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

random seed, &:

#:{f* = U |spap, (5)
{f} = ur~m(ulf) €, (6)
{r} = u~7"(ulspan,) [€, (7

3)

Thus, when we sample & we are effectively sampling an
entire deterministic partial policy.

2. Hyperparameters and Training Details

For the toy matrix game, we used a batch size of 32 and the
Adam optimiser with all default TensorFlow settings; we
did not tune hyperparameters for any runs.

In the VO-LSTM and V1-LSTM BAD agents, all observa-
tions were first processed by an MLP with a single 256-unit
hidden layer and ReLLU activations, then fed into a 2-layer
LSTM with 256 units in each layer. The policy 7 was a
softmax readout of the LSTM output. The baseline network
was an MLP with a single 256-unit hidden layer and ReLU
activations, which then projected linearly to a single value.
Since the baseline network is only used to compute gradient
updates, we followed Foerster et al. (2018) in feeding each
agent’s own hand (i.e., the other agent’s private observation)
into the baseline by concatenating it with the LSTM output;
thus we make the common assumption of centralised train-
ing and decentralised execution. We note that the VO and
V1-LSTM agents differed only in their public belief inputs.

The Hanabi BAD agent consisted of an MLP with two 384-
unit hidden layers and ReL.U activations that processed all
observations, followed by a linear softmax policy readout.
To compute the baseline, we used the same MLP as the
policy but included the agent’s own hand in the input (this
input was present but zeroed out for the computation of the
policy).

For all agents, illegal actions (such as hint for a red card
when there are no red cards) were masked out by setting the
corresponding policy logits to a large negative value before
sampling an action. In particular, for the non-acting agent at

Bayesian Action Decoder

each turn the only allowed action was the ‘no-action’. For
Hanabi, we used the RMSProp optimiser with € = 10-19,
momentum 0, and decay 0.99. The RL discounting fac-
tor v was set to 0.999. The baseline loss was multiplied
by 0.25 and added to the policy-gradient loss. We used
population-based training (PBT) (Jaderberg et al., 2017;
2018) to ‘evolve’ the learning rate and entropy regulari-
sation parameter during the course of training, with each
training run consisting of a population of 30 agents. For the
LSTM agents, learning rates were sampled log-uniformly
from the interval [1,4) x 10~* while the entropy regularisa-
tion parameter was sampled log-uniformly from the interval
[1,5) x 10~2. For the BAD agents, learning rates were sam-
pled log-uniformly from the interval [9 x 107°, 3 x 10~%)
while the entropy regularisation parameter was sampled log-
uniformly from the interval [3,7) x 1072, Agents evolved
within the PBT framework by copying weights and hyper-
parameters (plus perturbations) according to each agent’s
rating, which was an exponentially moving average of the
episode rewards with factor 0.01. An agent was considered
for copying roughly every 200M steps if a randomly chosen
copy-to agent had a rating at least 0.5 points higher. To
allow the best hyperparameters to manifest sufficiently, PBT
was turned off for the first 1B steps of training.

The BAD agent was trained with 100 self-consistent iter-
ations, a V1 mix-in of @« = 0.01, BAD discount factor
vBaD = 1, inverse temperature 1.0, and 3000 sampled hands.
Since sampling from card-factorised beliefs can result in
hands that are not compatible with the deck, we sampled 5
times the number of hands and accepted the first 3000 legal
hands, zeroing out any hands that were illegal.

3. Self-Consistent Belief Approximation for
Hanabi

We will use the same notation as in the main text: “fP*°
consists of a vector of ‘candidates’ C' containing counts
for all remaining cards, and a ‘hint mask’ HM, an AN}, x
Neolor Nrank binary matrix that is 1 if in a given ‘slot’ the
player could be holding a specific card according to the
hints given so far, and 0 otherwise”. Furthermore, L(f[i]),
is the marginal likelyhood.

Then the basic per-card belief is simply:

BO(fil) o C(f) x HM(F[i]) x £(f1i]). ©)
o O X HM(E) x £(7T])
BU = s Gy <@y < £y~

= B;(C(f) x HM(f[d]) x L(fli))). (D)

In the last two lines we are normalising the probability, since
the probability of the i-th feature being one of the possible
values must sum to 1. For convenience we also introduced
the notation ; for the normalisation factor.

Next we apply the same logic to the iterative belief update.
The key insight here is to note that conditioning on the
features f[-i], i.e., the other cards in the slots, corresponds
to reducing the card counts in the candidates. Below we use
M(f[i]) = HM(f[¢]) x L(f[¢]) for notational convenience:

B (ffi)

= > BE(f) Pl 27 uly 7<) (12)
fl=]

= 3" B (gl-i))5 (o<f> Y 1l = f))M(f[i])-
gl-1 i

(13)

In the last line we relabelled the dummy index f[-i] to g[-i]
for clarity and used the result from above. Next we sub-
stitute the factorised belief assumption across the features,

B (gl-il) = [T, B"(9ld)) :

B4 (f[0)
= 8t ()~ Xl =)M
gl-1] JFi
(14)
= S T84t (€t - X 1(alil = 1)) o)
gl i #i
(15)
=5 3 T8l (€1) - X 16ali) = 1)) (1
gl i #i
(16)

In the last line we have ommited the dependency of 5; on
the sampled hands f[-i]. It corresponds to calculating the
average across sampled hands first and then normalising
(which is approximate but tractable) rather than normalising
and then averaging (which is exact but intractable). We can
now use product-sum rules to simplify the expression.

B (1)
~ 5 (c<f> S8) S 1] = f>)M<fm>

gl i#i #i
(17)
5 (c<f> Y B gliel = f>)M<fm>
JjFi g as)
5 (c<f> B B’“(f[j])>M(f[i]) (19)
e
N (cm B B’“(f[j])>M(f[i])~ 0)

J#i

Bayesian Action Decoder

This concludes the proof.

4. Anecdotal Analysis

Below we present commentary from David Wu (https:
//github.com/lightvector/), the creator of the
FireFlower bot, on our BAD agent. While this is anecdotal
evidence, we believe it provides some interesting insights
into the gameplay that our BAD agent discovers. The com-
ments are taking verbatim from an email exchange with
David:

4.1. Communicating Playables

e As you observed before, the bot uses R and Y often to
hint newest-card-playability.

e In addition to the R and Y hints, it also often uses direct
hints to the newest card to indicate playability, in the
way that natural human conventions do, and I think
these include both color and number hints.

e When the R and Y hints or direct hints to the newest
card hit multiple cards, the bot often was indicating
multiple plays. In the small sample size of cases we
looked over, it tended to be the case that the R/Y hints
were more often “play in the order from newest to
oldest” while the direct hints were more often in the
order of “play from oldest to newest”. I think this
was not 100% consistent though, but in all cases when
looking at the direct beliefs, it was clear that in each
case there was a strong ordering convention was in
force for that hint, it’s just that we didn’t see enough
cases to be able to determine the precise rules for which
one when. Generally though, it makes a lot of sense to
vary the ordering convention in different parts of the
hint space to add flexibility in hinting.

e The bot uses certain other kinds of direct hints to older
cards to suggest that those cards are one step away
from playable, or something of that nature. Sometimes
the belief state shows that this is not absolutely certain,
but over time as other things happen the probability
mass sometimes gradually updates and concentrates
on the card on the truth, such that once the preceding
card is played, the bot may then play the formerly-one-
step-away card without any further suggestion.

e For these “delayed” one-step-removed hints to older
cards, there is also a similar variation in ordering con-
ventions in the case those hints hit more than one
card, sometimes they’re in “age-order” and sometimes
they’re in “reverse-age-order”.

e Commonly the R and Y hints also indicate other plays
or delayed plays besides the play of the newest card.

The bot chooses the manner of hinting the first card as
playable (R vs Y vs direct hint) to try to communicate
other useful information at the same time, if possible.

I think occasionally the bot seems to “single out” a card
by directly hinting all other cards in the hand *besides*
that card over successive turns, and sometimes this
implies that the singled-out unhinted card is playable.
I’m not sure on this one though, I’d need to see more
cases.

I think there seems to be some interesting other con-
ventions that seem to function to give information to
allow play of older red and yellow cards, which are
necessary since direct hints of R and Y mean to play
the newest card rather than the card hinted.

4.2. Communicating Protection

As you observed before, the bot discards its newest
card by default.

G hints that do not directly hit the first card appear
to mean that the newest card is dangerous and should
not be discarded. Possibly it is more specific, and
actually just means that it’s a 5, the examples I recall
all involved 5s. The bot also can just directly hint the
newest card in various ways.

The bot is very aggressive about protecting the newest
card if the newest card is a 5 or otherwise dangerous
(the last copy in the deck), whether by giving a G hint,
or a direct hint, or otherwise. This is so consistent
that pretty much any action other than an immediate
protection causes the other bot to infer that the newest
card is NOT a 5 or the last copy of a card whose first
copy has been lost.

However, the bot does *not* do this any longer if there
is a common-knowledge-extremely-safe discard in that
player’s hand (e.g. a redundant copy of a card already
played). In that case, it is understood that the bot will
prefer to discard that instead. Then, protection of the
newest card is not necessarily urgent any more, and
neither will a player necessarily infer that the newest
card is safe from a failure by their partner to protect it
immediately.

There seems to be some interesting dictionary of hints
that we haven’t worked out yet about ways to signal
to discard cards besides the newest, which prevents
junk from accumulating in the hand as non-playable
but useful-to-hold-on-to cards enter the hand.

Miscellaneous Communication

https://github.com/lightvector/
https://github.com/lightvector/

Bayesian Action Decoder

e Often the hints, and sometimes its other actions just
come “attached” with miscellaneous information. The
most extreme example is [observed one game where
as a result of the bots discarding, it was immediately
implied that a particular card in the other player’s hand
was almost certainly red. This information was not
immediately useful (the red card was not yet playable,
nor was it likely to have been discarded soon), it was
simply just extra information attached to the action of
discarding in that particular case. Presumably the bot
was by convention constrained to almost certainly do
some other action in that situation had that partner’s
card counterfactually not been red.

e This kind of extra not-immediately-useful “attached”
information is perhaps the most non-human part of the
bot’s convention set. But actually it doesn’t happen as
often as one might expect from a “nonhuman” agent.
For the most part I didn’t see this all that much for
plays and discards (that one extreme example notwith-
standing). This makes sense, as having too many such
conventions would overly constrain the ability of the
players to act, as discard/play are both critical actions
you need to take very frequently regardless of the other
player’s hand.

e Even for hint actions, most hints were very sensible
and humanly explainable, or clearly appeared that they
would be humanly explainable had we had a larger
sample size so that we could be surer about the general-
ity of its meaning and exactly how the bot had packed
different meanings into the hint space. There were only
a few hint actions that I found particularly “weird” in
what inference was made.

e A priori, there’s no particular reason why a bot’s con-
ventions couldn’t, for example, completely change
depending on the turn number modulo 3, and be ex-
tremely hard for humans to comprehend. But for the
most part, the conventions of this bot weren’t like that
- they were pretty understandable, or at least seemed
consistent and sensible even if we didn’t have all the
exact meanings mapped out.

Overall Quality of Play and Game Flow

e The bot is *very* strong in the early game, and there
its convention set is overall far more efficient than “nat-
ural” human convention sets (although not-necessarily
human convention sets that were constructed to be
more artificial and encoding-like). It’s really quite
beautiful.

e The bot is superhumanish at tracking inferred informa-
tion over time, e.g. on the one hand inferring that a

card is not scary in first position, then as it drifts back
later in the hand, inferring this or that other property
incidentally, and inferring based on the “aging” of the
card that it is probably not this or that, and so on, until
only a couple possibilities remain. It’s not uncommon
that in the midgame, both players know almost all the
relevant things about their hands.

The bot might be tactically weak in occasional situa-
tions on or near 0 hints, where the ensuing sequence of
actions is heavily constrained. It seems to have a very
strong preference to discard and get away from O hints,
even when as far as we can tell based on its convention
set it should be possible to just stay at O hints and play
out some cards, and where discarding at that moment
is suboptimal. For example if the ensuing sequence
of plays would result in a few 5s being played thereby
recovering some hints for free, and the partner’s im-
mediate discard is also completely safe in the event
that the partner wants to discard, whereas one’s own
discard unnecessarily loses a copy of a card that could
be useful in the future. (If I read the paper right, there
is no explicit lookahead in this bot?).

The bot makes a few seemingly-clear mistakes in the
endgame (as far as we can tell), although only slight
ones. For example, one of the games we looked at:

— The players were in a close-to-winning state - they
both knew all the playable cards in their hands or
had inferred them with high confidence, and all
they needed to do was play those cards and wait
to draw the few remaining cards to play.

— They had plenty enough hints and headroom
to theoretically execute essentially-perfect play
thereafter (i.e. getting plays out in a timely man-
ner, collectively never discarding any card that
could be useful thereafter, optimizing who draws
the next card for parity, etc), and by my under-
standing of their conventions, nothing stopping
them from doing so.

— But instead of playing, the bot wasted a turn giv-
ing their partner a hint. When you inspected the
V2 belief state, it gave no useful information - the
dominant effect of the hint was actually to con-
centrate probability mass *away* from the truth
giving the partner a misleading belief about a card,
and had almost no other effects.

— Their partner then proceeded to also not play and
instead discarded their newest card, which unnec-
essarily lost one of the copies of a useful 4. There
was a copy of the 4 left in the deck, but such a dis-
card is still bad. If the remaining copy of that card
is the very bottom card of the deck, it guarantees

Bayesian Action Decoder

that you cannot get 25 points, so every unneces-
sary discard of the first copy of any card loses you
EV due to the chance for the other copy to be the
last card.

Speculating a little here - perhaps something about the bot’s
policy or convention set hasn’t converged as sharply in the
endgame? It’s certainly the case that the gradient there is
much smaller - even a clear mistake near the end tends to
cost you only a little in EV if you’re measuring by score,
whereas near the start of the game it can cost you a lot.
And the expected penalty for discarding the first copy of a
useful 4 when otherwise well ahead is slight, since it then
usually only harms you when that 4 is precisely the last card
in the deck which only happens 1/N times, so one might
imagine the average gradient there for good behavior to be
very small.

References

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradi-
ents. In The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), pp. 2974-2982, 2018.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dun-
ning, 1., Simonyan, K., Fernando, C., and Kavukcuoglu,
K. Population Based Training of Neural Networks.
arXiv:1711.09846,2017. URL http://arxiv.org/
abs/1711.09846.

Jaderberg, M., Czarnecki, W. M., Dunning, 1., Marris, L.,
Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., Sonnerat, N., Green,
T., Deason, L., Leibo, J. Z., Silver, D., Hassabis, D.,
Kavukcuoglu, K., and Graepel, T. Human-level perfor-
mance in first-person multiplayer games with population-
based deep reinforcement learning. arXiv:1807.01281,
2018. doi: arXiv:1807.01281. URL http://arxiv.
org/abs/1807.01281.

http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1807.01281
http://arxiv.org/abs/1807.01281

