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A. Eliciting the Prior Dirichlet Process
A.1. Intuition of the Prior Fπ

The parameter of interest when model fitting (Walker, 2013) is

θ0(F0) = argmax
θ

∫
log fθ(y)dF0(y)

= argmin
θ

KL(f0||fθ).
(A.1)

The prior on F0 is
[F |α, Fπ] ∼ DP (α, Fπ) . (A.2)

The effects of the implicit prior on θ0 due to Fπ when model-fitting can be seen in the limit of α → ∞ under regularity
conditions:

θ0(F )
p→ argmin

θ
KL(fπ||fθ). (A.3)

In the limit, the prior collapses on one of the points that minimizes the KL divergence between the prior centering density
and the model. Intuitively, the prior regularizes θ0 towards (A.3), and α acts as weighting between Fπ and Fn = 1

n

∑
i=1 δyi .

It is thus a measure of belief that Fπ is the true sampling distribution.

A.2. Selecting α through the Mean Functional

We can tune α through the a priori variance of the mean functional

θµ(F ) = argmin
θ

∫
(y − θ)2dF (y)

=

∫
ydF (y).

(A.4)

If F ∼ DP(α, Fπ), then the a prior variance of (A.4) follows from the properties of the Dirichlet process (DP):

Var [θµ(F )] =
VarFπ [y]
1 + α

(A.5)

and so we can elicit α from a priori knowledge of Var [θµ(F )].
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B. Stopping Rules for Adaptively Selecting R
Although not explored in our paper, we can utilize heuristic stopping rules for adaptively selectingR for full mode exploration
when sampling from the NPL posterior. A simple example is to stop the repeats if there have been no improvements in the
optimized function value for the last m repeats, where m is the parameter of the stopping rule. More complex methods
involve estimating the missing probability mass due to local minima not being observed, and thresholding based on that.
See Betrò & Schoen (1987); Dick et al. (2014) for a comparison of some methods. Although there is no clear answer for
selecting R, we can also parallelize over restarts to alleviate the computation burden.

C. Stochastic Subsampling
For very large n, we can utilize stochastic gradient methods by subsampling to optimize the weighted loss. The full weighted
loss and gradient are defined as

L(θ) =
n∑
i=1

wil(yi, θ),

∇θL(θ) =
n∑
i=1

wi∇θl(yi, θ).
(C.1)

If we subsample a mini-batch ỹ1:m
iid∼ ∑n

i=1 wiδyi , we can then calculate the mini-batch gradient

∇θLm(θ) =
1

m

m∑
i=1

∇θl(ỹi, θ). (C.2)

The mini-batch gradient is unbiased:

E [∇θLm(θ)] = E [∇θl(ỹ, θ)] =
n∑
i=1

wi∇θl(yi, θ). (C.3)

Setting m = 1 allows use to use stochastic gradient descent (SGD) and its variants which improves scalability. Furthermore,
extensions to SGD such as ADAGRAD (Duchi et al., 2011) and ADAM (Kingma & Ba, 2014) help with escaping saddle
points, which can potentially reduce the number of R required for RR-NPL to obtain full mode exploration.

D. Selecting γ in Loss-NPL
For loss-NPL we can set the loss function to

l(y, θ) = − log fθ(y)− γ log π(θ). (D.1)

In this case, we recommend the scaling parameter to be γ = 1
n if we want roughly the same prior regularization of

π(θ) as in traditional Bayesian inference. This can be seen when we look at the expected of
∫
l(y, θ)dF for α = 0 (i.e.

F ∼ DP
(
n, 1

n

∑n
i=1 δyi

)
):

E
[∫

l(y, θ)dF

]
=− 1

n

n∑
i=1

log fθ(yi)− γ log π(θ). (D.2)

We obtain the same weighting as in Bayesian inference between the log-likelihood and log-prior for γ = 1
n .

E. Examples
E.1. Toy Example: Normal Location Model

We now empirically demonstrate the small sample performance of NPL and the role of the prior concentration α in a toy
normal location model problem. Suppose the model of interest is fθ(y) = N (y; θ, σ2) with known σ2. Our parameter of
interest is defined as

θ0(F0) = argmax
θ

∫
log fθ(y)dF0(y)

= argmin
θ

∫
(y − θ)2dF0(y).

(E.1)
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If we set the derivative of the objective to 0, we obtain

θ0(F0) =

∫
ydF0(y). (E.2)

If we believe our parametric model to be accurate, we can place a prior π(θ) = N (θ; 0, τ2) on θ. The centering measure on
our DP is thus

fπ(y) =

∫
fθ(y)dπ(θ) = N (y; 0, σ2 + τ2). (E.3)

When n = 0, our NPL prior π̃(θ) is approximately normal (Yamato, 1984) from the properties of the DP:

π̃(θ) ≈ N
(
θ; 0,

σ2 + τ2

1 + α

)
. (E.4)

E.1.1. IMPLEMENTATION AND RESULTS

We sample the observables y ∼ N (1, 12) and set our parametric prior variance to τ2 = 1. We simulate the NPL posterior
in Figure E.1 for various values of n and α = 1, and compare it to the tractable traditional Bayesian posterior with the
same model {fθ, π(θ)}. For the NPL posterior bootstrap sampler, we generate B = 10000 samples and truncate the DP at
T = 1000.

We see from Figure E.1 that the NPL prior is approximately normal (n = 0), with same mean and variance due to the choice
of α. For large n, the NPL posterior and Bayesian posterior are similar, due to the first order correctness of the weighted
likelihood bootstrap (Newton & Raftery, 1994). For smaller values of n, the NPL posterior is non-normal, as our prior is
not a conjugate prior on θ. For n = 1, the sample observed is close to 0 so the posterior uncertainty is small despite only
observing one sample; this suggests that NPL may be better suited to moderate to large values of n. Figure E.2 shows the
effect on the NPL posterior of increasing prior strength α for n = 1, which regularizes the posterior but also causes it to
concentrate about 0.
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Figure E.1. NPL posterior and Bayesian posterior for fixed α and increasing n in normal location model
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Figure E.2. NPL posterior and Bayesian posterior for increasing α and fixed n in normal location model
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E.2. Gaussian Mixture Model

E.2.1. OPTIMIZATION DETAILS

We derive the EM algorithm that maximizes the weighted likelihood of the diagonal-covariance GMM:

Lw(θ) =
n∑
i=1

wi log fθ(yi)

=

n∑
i=1

wi (log fθ(yi, zi)− log fθ(zi|yi)) .

Taking an expectation over the posterior fθ′(z1:n|y1:n), we obtain

Lw(θ) =
n∑
i=1

wi
∑
zi

fθ′(zi|yi) (log fθ(yi, zi))−
n∑
i=1

wi
∑
zi

fθ′(zi|yi) (log fθ(zi|yi))

=

n∑
i=1

wiQ
i(θ|θ′)−

n∑
i=1

wiH
i(θ|θ′).

Taking the difference of the weighted likelihood with θ′

Lw(θ)− Lw(θ′) =
n∑
i=1

wi
(
Qi(θ|θ′)−Qi(θ′|θ′)

)
+

n∑
i=1

wi
(
Hi(θ′|θ′)−Hi(θ|θ′)

)
.

From Gibbs’ inequality,
Hi(θ′|θ′) ≥ Hi(θ|θ′).

As all wi ≥ 0,

Lw(θ)− Lw(θ′) ≥
n∑
i=1

wi
(
Qi(θ|θ′)−Qi(θ′|θ′)

)
.

So by maximizing
∑n
i=1 wiQ

i(θ|θ′) w.r.t. θ, we cannot decrease the weighted log-likelihood. As a reminder, the log-
likelihood for each datapoint is

log fθ(yi) = log

(
K∑
k=1

πkN
(
yi;µk, diag

(
σ2
k

)))
. (E.5)

At the expectation step, we calculate

fθ(zi = k|yi) =
∏d
j=1N (yij ;µkj , σ

2
kj)πk∑K

k=1

∏d
j=1N (yij ;µkj , σ2

kj)πk
. (E.6)

The maximization step is then:

π̂k =

n∑
i=1

wifθ′(zi = k|yi),

µ̂kj =

∑n
i=1 wifθ′(zi = k|yi)yij

π̂k
,

σ̂2
kj =

∑n
i=1 wifθ′(zi = k|yi)(yij − µ̂kj)2

π̂k
.

(E.7)
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E.2.2. TOY EXAMPLE

We see the posterior KDE plots for (π1, π2), (µ1, µ2) and (σ2
1 , σ

2
2) in Figures E.3, E.4, E.5, and for increasing R in Figures

E.6, E.7, E.8. For RR-NPL, we observe multimodality in addition to symmetry about the diagonal due to label-switching.
Smaller values of R exhibit an over-representation of local modes/saddles, and the posterior accuracy increases for larger R.
We also show the run-times for different R for RR-NPL in Table E.1, and we see that the run-time increases roughly linearly
with R.

Table E.1. Run-time (seconds) for 2000 posterior samples on Azure for different values of R with RR-NPL

R = 1 R = 2 R = 5 R = 10

TOY SEP 4.9 ± 0.6 8.0 ±1.1 19.0± 2.1 37.2S ± 4.5S
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Figure E.3. Posterior KDE of (π1, π2) in K = 3 toy separable GMM problem
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Figure E.4. Posterior KDE of (µ1, µ2) in K = 3 toy separable GMM problem
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Figure E.6. Posterior KDE of (π1, π2) in K = 3 separable toy GMM problem for increasing R

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

RR-NPL, R = 1

0.00

0.02

0.04

0.06

0.08

0.10

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

RR-NPL, R = 2

0.00

0.02

0.04

0.06

0.08

0.10

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

RR-NPL, R = 5

0.00

0.02

0.04

0.06

0.08

0.10

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

RR-NPL, R = 10

0.00

0.02

0.04

0.06

0.08

Figure E.7. Posterior KDE of (µ1, µ2) in K = 3 toy GMM problem for RR-NPL with increasing R
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E.2.3. COMPARISON TO IMPORTANCE SAMPLING

As suggested by our helpful reviewers and meta-reviewer, we include a discussion and empirical comparison with importance
sampling (IS) here. The efficacy of IS hinges on finding a good approximating proposal density, which is in itself a
challenging research question. Generic proposals can lead to very large and difficult to detect errors (e.g. see Bishop (2006,
pg. 534)). Moreover, the variance of the IS approximation is driven by the variance of the importance weights p(x)/q(x),
for x ∼ q(x) approximating p(x). The proposal distribution needs to capture all aspects of the target distribution and not
just the modes, otherwise the ratio p(x)/q(x) may not be bounded. This makes IS challenging to apply in moderate to high
dimensional problems and especially when there is multimodality; we will now demonstrate this in our toy GMM example
from Section 3.1 of the main paper.

We set the task of estimating the mean log pointwise predictive density (LPPD) (Gelman et al., 2013) of the 250 held-out
test data points; the LPPD is defined in Section E.3.1. We use self-normalized importance sampling (SNIS) as the posterior
is unnormalized, so the estimate of the posterior predictive is defined as

p(ỹ|y1:n) ≈
∑B
b=1 wbf(ỹ|θb)∑B

b=1 wb
=

B∑
b=1

w̃bf(ỹ|θb), wb =
f(y1:n|θb)π(θb)

q(θb)
, θb ∼ q(θ) (E.8)

where θ = {π,µ,σ} is 9-dimensional, and {f(y|θ), π(θ)} is the GMM likelihood and prior as defined in (9) of the main
paper. The choice of the proposal is non-trivial, as both the posterior and the function being integrated are multimodal. We
use a broad proposal of the same form as the prior as shown below:

q(π) = Dir(0.1, . . . , 0.1), q(µkj) = N (0, 25), q(σkj) = logNormal(0, 1). (E.9)

The proposal has support in the true value of θ and thus should have support in regions of high f(ỹ|θ). As we are integrating
over ntest distinct likelihoods with varying multimodality, a broad proposal is appropriate. We carry out SNIS with B = 107

implemented on the same virtual machines, where this choice of B is determined by approximately matching the time
required to produce 2000 posterior samples with NPL. We repeat 10 runs with the same training and test set but vary the
seed for the samplers, and report the mean and standard error (SE) of the mean LPPD. For SNIS, we also report the effective
sample size, defined as ESS = 1/

∑B
b=1 w̃

2
b . This is shown below in Table E.2, and we see that the SE for SNIS is an order

of magnitude larger than that of RR-NPL. Furthermore, the ESS of SNIS is extremely poor, likely due to the difficulty in
selecting a good proposal in this 9-dimensional problem. We notice that most of the weights are very close to 0 except for a
few that dominate. These effects will be increasingly amplified in higher dimensions, and is thus why IS fails in problems of
even moderate dimensionality.

Table E.2. Performance on held-out test data for toy GMM

RR-NPL SNIS
MEAN OF LPPD ESTIMATE -1.7984 -1.8070

SE OF LPPD ESTIMATE 2× 10−4 4.4× 10−3

ESS 2000 1.75± 0.80
RUN-TIME 29.3S ± 0.5S 31.0S ± 8.7S

E.2.4. COMPARISON TO NPL WITH MIXTURE OF DIRICHLET PROCESSES PRIOR

As explained in the main paper, NPL with a mixture of DPs prior (MDP-NPL) as introduced in Lyddon et al. (2018) requires
accurate sampling of the Bayesian posterior, which MCMC and VB may not be able to provide. Another difference is the
meaning of the parameter α in the two NPL schemes, which is the concentration of the MDP and the DP. In MDP-NPL, the
concentration represents the strength of belief that the centering traditional Bayesian model is correctly specified, whereas in
NPL with a DP prior (DP-NPL) it is the strength of belief that Fπ is the true sampling distribution. We see in Section A.1
that the limit of α→∞ gives different results between the two NPL schemes, while α→ 0 gives the same limit.

As evident in Figure 1 of the main paper, NUTS and ADVI clearly fail at representing the multimodality in our toy GMM
problem, and as a result it is not possible to carry out MDP-NPL in that example. We thus compare DP-NPL to MDP-NPL
experimentally in an easier toy GMM problem in which NUTS can represent the posterior accurately. We carry out the same
experiment with alternative GMM parameters:

π0 = {0.1, 0.3, 0.6}, µ0 = {0, 1, 2}, σ2
0 = {1, 1, 1}.
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The means are closer together, and so NUTS can mix properly as shown in Figure E.9. For MDP-NPL, we center the MDP
with the Bayesian model given in (9) of the main paper, set α = 1000 and carry out the posterior bootstrap step using
the posterior samples generated by NUTS and maximizing the weighted likelihood. For DP-NPL, we elicit the centering
measure fπ(y) = N (y; 0, 1) and set α = 10. For both NPL schemes, we carry out 10 random restarts for each posterior
sample with the same initialization scheme as in the main paper.

The posterior KDE plots for (π1, π2), (µ1, µ2) and (σ2
1 , σ

2
2) are shown in in Figures E.9, E.10, E.11. The difference between

the DP-NPL and MDP-NPL posteriors is small, and both can represent the multimodality well. Predictively, DP-NPL and
MDP-NPL perform similarly as shown in Table E.3, but the run-times are much greater for MDP-NPL as shown in Table E.4.
This is because we first need to generate the Bayesian posterior samples via NUTS before we can proceed to the posterior
bootstrap, and so the run-time of NUTS is still the bottleneck.
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Figure E.9. Posterior KDE of (π1, π2) in K = 3 inseparable toy GMM problem 2
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Figure E.10. Posterior KDE of (µ1, µ2) in K = 3 inseparable toy GMM problem
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Table E.3. Mean LPPD on held-out test data for inseparable GMM
DP-NPL MDP-NPL NUTS ADVI

TOY -1.612 ± 0.038 -1.610 ± 0.037 -1.609±0.037 -1.613 ± 0.038

Table E.4. Run-time for 2000 samples for inseparable GMM
DP-NPL MDP-NPL NUTS ADVI

TOY 52.6S± 6.3S 3M2S ± 13S 2M12S ± 12S 0.8S ± 0.1S

E.3. Logistic Regression with Automatic Relevance Determination Priors

E.3.1. PREDICTIVE PERFORMANCE

For all the following measures of predictive performance on held-out test data, we can use a Monte Carlo estimate of the
predictive distribution of a test data point (ỹ, x̃):

p(ỹ|x̃, y1:n, x1:n) =
∫
f(ỹ|x̃,β)dπ̃(β|y1:n, x1:n)

≈ 1

B

B∑
b=1

f(ỹ|x̃,βb),

βb ∼ π̃(β|y1:n, x1:n),

(E.10)

where f(y|x,β) is the likelihood, π̃(β|y1:n, x1:n) is the NPL or Bayesian posterior, B is the number of posterior samples,
and (y1:n, x1:n) is the training set. We evaluate the mean LPPD of held-out test data as a measure of predictive performance:

Mean LPPD =
1

ntest

ntest∑
i=1

log p(ỹi|x̃i, y1:n, x1:n). (E.11)

Below, we additionally include the mean squared error (MSE) here on held-out test data, defined

MSE =
1

ntest

ntest∑
i=1

(p(ỹi|x̃i, y1:n, x1:n)− ỹi)2. (E.12)

Finally, we also report the percentage accuracy, defined

P.a. =
1

ntest

ntest∑
i=1

ŷỹii (1− ŷi)(1−ỹi),

ŷi = I(p(ỹi|x̃i, y1:n, x1:n) > 0.5)

(E.13)

where I is the indicator function.

E.3.2. SPARSITY MEASURE

For the sparsity results, we simply calculate the posterior mean β̂ = 1
B

∑B
b=1 βb, where βb ∼ π̃(β|y1:n, x1:n) as above.

We then report the percentage of components of β̂ that have absolute value less than ε.

E.3.3. OPTIMIZATION DETAILS

L-BFGS-B (Zhu et al., 1997) is a quasi-Newton method which requires the gradient, which for the marginal Student-t
distribution is defined for j ∈ {1, . . . , d} as

∂l(y, x,β, β0)

∂βj
= − (y − η)xj + γ

(
2a+ 1

2b+ β2
j

)
βj ,

∂l(y, x,β, β0)

∂β0
= − (y − η) .

(E.14)
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E.3.4. ADDITIONAL RESULTS

We can see in Tables E.5, E.6 that loss-NPL performs equally or better than NUTS and ADVI predictively in MSE and
classification accuracy as well as LPPD. A posterior marginal density plot for β13 in the ‘Adult’ dataset is shown in Figure
E.12 for reference.

Table E.5. MSE on held-out test data

DATA SET LOSS-NPL NUTS ADVI
ADULT 0.104 ± 0.001 0.104 ± 0.001 0.105± 0.002
POLISH 0.056 ± 0.011 0.524 ±0.236 0.058 ± 0.011
ARCENE 0.134±0.026 0.152± 0.014 0.143 ±0.020

Table E.6. Predictive accuracy % on held-out test data

DATA SET LOSS-NPL NUTS ADVI
ADULT 84.92 ± 0.29 84.92± 0.30 84.84 ± 0.30
POLISH 93.65 ± 1.68 37.27± 23.81 93.51± 1.56
ARCENE 81.73 ±3.79 77.80±4.22 79.70± 3.40
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Figure E.12. Posterior marginal KDE of β13 for ‘Adult’ dataset

E.4. Bayesian Sparsity-path-analysis

E.4.1. VALUES OF β

We follow the setting of β in Lee et al. (2012): the 5 non-zero indices and their respective values are

I = {10, 14, 24, 31, 37},
βI = {−0.2538, 0.4578,−0.1873,−0.1498, 0.0996}.

E.4.2. VARIABLE SELECTION

We see more clearly from Figure E.13 that β10, β14 and β24 have early predictive power, with one other null-coefficient
showing early predictive importance. The other two non-zero coefficients are masked.
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Figure E.13. Lasso-type plot for absolute posterior medians of β against log(c) from genetic dataset with non-zero components in colour
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