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Abstract

In classification with a reject option, the classi-
fier is allowed in uncertain cases to abstain from
prediction. The classical cost based model of an
optimal classifier with a reject option requires the
cost of rejection to be defined explicitly. An al-
ternative bounded-improvement model, avoiding
the notion of the reject cost, seeks for a classi-
fier with a guaranteed selective risk and maximal
cover. We prove that both models share the same
class of optimal strategies, and we provide an
explicit relation between the reject cost and the
target risk being the parameters of the two models.
An optimal rejection strategy for both models is
based on thresholding the conditional risk defined
by posterior probabilities which are usually un-
available. We propose a discriminative algorithm
learning an uncertainty function which preserves
ordering of the input space induced by the con-
ditional risk, and hence can be used to construct
optimal rejection strategies.

1. Introduction

In classification with a reject option the classifier is allowed
in uncertain cases to abstain from prediction. This setting is
essential e.g. in medical diagnosis, safety critical systems
and many other applications. The cost-based model of an
optimal classification strategy with the reject option was
proposed by Chow in his pioneering work (Chow, 1970).
The goal is to minimize the expected loss equal to the cost
of misclassification, if the classifier predicts, and to the re-
ject cost, if the classifier abstains from prediction. The well
known Bayes-optimal strategy rejects to predict whenever
the conditional risk exceeds the reject cost. Computation of
the conditional risk requires the class posterior probabilities
which are usually unavailable. A common solution is the
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plug-in rule obtained after replacing the posterior probabili-
ties by their estimates. A quality of the plug-in rule heavily
depends on the estimated probabilities (Fumera et al., 2000;
Herbei & Wegkamp, 2006). Discriminative methods instead
learn the reject option classification strategy directly without
the probability estimation, e.g. (Bartlett & Wegkamp, 2008;
Ramaswamy & Agarwal, 2016). Many works assume that
the uncertainty measure is known, e.g. obtained from re-
sponses of trained Neural Network (LeCun et al., 1990), and
the task is to find only the rejection thresholds (Tortorella,
2000; Kummert et al., 2016; Fischer et al., 2016). Most
existing methods, including this paper, account for aleatoric
uncertainty only, while literature dealing with the epistemic
uncertainty is scarce (Wang et al., 2017).

The cost-based model requires the reject cost to be defined
explicitly which is difficult in some applications like e.g.
medical diagnosis. An alternative bounded-improvement
model proposed by (Pietraszek, 2005) avoids explicit defi-
nition of the reject cost. The rejection strategy is evaluated
by two antagonistic quantities: i) the selective risk defined
as the expected misclassification cost on the non-reject re-
gion and ii) the coverage corresponding to the probability
mass of the non-reject region. An optimal strategy for the
bounded-improvement model maximizes the coverage under
the condition that the selective risk does not exceed a speci-
fied target value. In contrast to the cost-based model, it has
not been formally shown what is the optimal class of strate-
gies when the underlying model is known. The solution was
proposed only for special instances of the task. (Pietraszek,
2005) proposed a method based on ROC analysis applica-
ble when a score proportional to posterior probabilities is
known and the task is to find only the optimal thresholds.
(El-Yaniv & Wiener, 2010) proposed an algorithm learning
the optimal strategy in the noise-free setting, i.e. when a
perfect strategy with zero selective risk exists. (Geifman &
El-Yaniv, 2017) shows how to equip a trained classifier with
a reject option provided an uncertainty measure is known
and the task is to find a rejection threshold optimal under
the bounded-improvement model.

This paper describes three contributions:

1) We provide necessary and sufficient conditions for an op-
timal strategy of the bounded-improvement model when the
underlying distribution is known. We show that an optimal
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rejection strategy can be constructed based on thresholding
the class conditional risk, which corresponds to the optimal
strategy of the cost-based model. We show that in contrast to
the cost-based model, the rejection strategy cannot be arbi-
trary at the boundary cases. We provide an explicit relation
between the parameters of the two rejection models.

2) We propose a novel loss which evaluates the quality
of an uncertainty function associated to a given classifier.
We prove that any minimizer of an expectation of the loss
is a function which preserves ordering of the input space
induced by the true conditional risk. Hence, any minimizer
of the loss can be used to construct a strategy optimal for
cost-based and/or bounded-improvement model.

3) We propose a discriminative algorithm which for a given
classifier learns an uncertainty function by minimizing a
convex surrogate of the proposed loss. We show experimen-
tally that the learned rejection strategies outperform plug-in
rules constructed from logistic-regression model and rules
based on distance to the SVM decision boundary.

To our knowledge we are the first to propose a discrimina-
tive method learning an uncertainty function with a clear
connection to the conditional risk being the key quantity
for constructing the optimal reject-option strategies. Our
method is potentially most useful when modeling the poste-
rior distribution is difficult.

The paper organization: Section 2 characterizes optimal
strategies of the bounded-improvement rejection model and
relation to the cost-based model. Section 3 proposes an algo-
rithm learning uncertainty function optimal for both models.
Related works are discussed in Section 4, experiments are
presented in Section 5 and a summary is given in Section 6.
Proofs are referred to a supplementary material.

2. Equivalence of Cost-based and
Bounded-improvement Rejection Models

Let X be a set of input observations and ) a finite set of
labels. Let us assume that inputs and labels are generated by
a random process with p.d.f. p(z, y) defined over X x Y. A
goal in the non-reject setting is to find a classifier h: X —
Y with a small expected risk

mmzLXmewmmmu
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where £: ) x Y — R, is a loss penalizing the predictions.

The expected risk can be reduced by abstaining from pre-
diction in uncertain cases. To this end, we use a selective
classifier ' (h, c) composed of a classifier h: X — ) and
a selection function c: X — [0,1]. When applying the

'The classifier with a reject option is more frequently denoted
by a single function h': X — Y U {reject}. Instead, we use the

selective classifier to input x € X it outputs

h(z)
reject

with probability ¢(x),
(h,e)(z) = { with probability 1 — ¢(z) .
In the sequel we introduce two models of an optimal selec-
tive classifier, the cost-based and the bounded-improvement
model, and we characterize their optimal strategies provided
the underlying model p(x, y) is known. While the solution
of the former model is well known the latter is novel.

Cost-based model secks for a selective classifier
(hp, cp) which for a given reject cost € > 0 minimizes

Rp(h,c) :/ Zp(m,y) (C(y, h(z))c(z)+(1—c(z))e) da.
Yyey

The well-known optimal strategy (i.e. the Bayes classifier)
reads

hp(x) € argmin Y p(y | @) €(y,9) (D
VEY ey
1 if r(z)<e,
cp(x)y=<¢ 7 if r*(z)=¢, (2)
0 if r(z)>e,

where 7*(2) = mingey >,y p(y | ) {(y, §) is the mini-
mal class conditional risk associated to the input x, and 7
is any number from the interval [0, 1]. Hence there is an in-
finite number of optimal selection functions parameterized
by 7 which yield the same risk Rz (h, ¢).

Bounded-improvement model characterizes the selec-
tive classifier by two antagonistic quantities: i) the coverage

M@zLM@d@M

corresponding to the probability mass of the non-reject re-
gion and ii) the selective risk

I 32 pla,y) Uy, h(z)) c(x) da
X yey
RS h7C = )
() 70
defined for non-zero ¢(c) as the expected classification loss
on the non-reject region X ;)0 2. Given a target risk

decomposition (h, ¢)(z) = h'(z), and the terminology selective
classifier from (El-Yaniv & Wiener, 2010) as it simplifies notation.
?For a function f: X — Rand a € RU {oc}, we define

Xf(z)ﬁa:{x € X|f(£l,’) < a}7 Xf(z)<a: {EE S X‘f(x) < a}7

Xf(z):a: {‘T € X|f(£l’) = a}7 Xf(z)>a: {LZ’ S X‘f(ﬂ?) > a}7
Xi(@)2a= {z € X|f(z) 2 a}.
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A > 0, the bounded-improvement model defines the optimal
selective classifier (hg, cg) as a solution to the problem

max ¢(c)  s.t.

,C

RS(h,C) < )\7 (3)

where we assume that both maximizers exist.

Theorem 1 Let (h,c) be an optimal solution to (3). Then,
(hp, c), where hp is the optimal Bayes classifier (1), is also
optimal to (3).

According to Theorem 1 the Bayes classifier hp is also
optimal for the risk-coverage task (3) which is not surprising.
Note the Bayes classifier is not a unique solution to (3)
because the predictions on the reject region X, (;)—o do not
count to the selective risk and hence they can be arbitrary.

Theorem 1 allows to solve the bounded-improvement
task (3) in two consecutive steps: First, set h to be the Bayes
classifier i g or to its best approximation, e.g. learned by a
discriminative method of choice. Second, when #h is fixed,
the optimal selection function c* is obtained by solving the
task (3) only w.r.t ¢ which boils down to

Cen[%z}ﬁx/xp(m)c(m)dx s.t. /Xp(sc)c(x)F(x)dacgo
“)

where 7(z) = r(z) — A measures how much the conditional
risk of the prediction h(z), defined as

= ply| =)Ly, b)), %)

yey

exceeds the target risk \. It is seen that for h = hp solv-
ing (4) yields ¢* which is a solution to the task (3), i.e.
¢* = cg. Indeed, using the definition of Rg(h,c) we can
rewrite the constraint of the task (3) as

/ 2)> ply | 2)l(y, ())c(x)dng/

yeY X

p(x)e(z) de
which after a simple rearrangement becomes the constraint

of the task (4), and objectives of both tasks are the same.

Theorem 2 A selection function ¢* : X — [0,1] is an
optimal solution to (4) if and only if it holds

[ we@d= [ ®

Xr(z)<b X2y <b
plx dl’ = ! )
/Xr(m)b () ( { ‘[X()D dx lf b:O,
)

[ e @i =o. ®)
Xr(z)>b

where p(X') = [, p x) dx is the expectation of T(x)
restricted to inputs in X ’ and
b= sup {a | P( r(w)<a) < 0} >0. )

Theorem 2 defines behaviour of optimal selection function
on the partition of the input space X into three regions
X () <b> Xr(a)=p a0d X5(5)>p. The condition (6) says that
the conditional expectation B, () [c*(z) —1 | 7(x) < b] is
zero, which is satisfied if for 7(x) < bweuse ¢*(z) = 1. Or
equivalently, by using the identity 7(x) = r(x) — \, we set
c*(z) = 1 whenever r(x) <  with the threshold y = b+ .
Analogically, setting ¢*(z) = 0 for r(x) > ~ satisfies
the condition (8). Finally, if we opt for a constant selecting
function ¢*(x) = 7 in the boundary region A% (,)—s, then the
condition (7) implies 7 = —p(X;i;;“) if b > 0, where py =
fx()  p(x)dz, and 7 = 1if b = 0. Using Xr(y)<p =

Xr(m)<’y and b- Po = p(XF(r):

. x % if p(Xr(x)zfy) =0,
= (X (o)< .
w1 (A=) > 0.

) = p(Xy(z)=~), We derive
(10)

Corollary 1 Let r: X — R be the conditional risk (5), T
the acceptance probability given by (10) and v = b + X\ the
rejection threshold given by the target-risk \ and b computed
by (9). Then the selection function

Lif r(z) <nv,
cx)=q¢ 7 if r(x)=r, (11)
0 if r(x) <7,

satisfies the optimality condition of Theorem 2.

It is seen that (11) coincides with the Bayes-optimal selec-
tion function (2) of the cost-based model. In case of the
cost-based model, the threshold ~y corresponds to the reject
cost € while the acceptance probability 7 can be arbitrarily
without affecting the risk Rp(h, ¢). In contrast, the optimal
threshold v = b + X of the bounded-improvement model is
defined implicitly by choosing the target risk A. In addition,
the acceptance probability 7 for the boundary cases cannot
be arbitrary in general. In practice, however, the impact
of 7 is negligible because py is usually small or even zero
as can be expect for continuous p(z) when the boundary
region A.(;)—- has probability measure zero. On the other
hand, setting the threshold ~ is crucial. Fortunately, (Geif-
man & El-Yaniv, 2017) shows how to find ~ from a finite
training set such that it is optimal solution of the bounded-
improvement model in PAC sense. The remaining issue
is thus the conditional risk r(z) because its computation
requires the posterior probabilities p(y | ). A common
solution is the plug-in rule obtained after replacing p(y | x)
in (5) by p(y | ) estimated from examples. In the next sec-
tion, we propose an alternative approach which completely
avoids the probability estimation.
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3. Discriminative Learning of Uncertainty

Assume a classifier h: X — ) has been fixed and we want
to endow it with a selection function ¢: X — [0,1]. We
have shown that regardless the rejection model, the optimal
selection function is based on thresholding the conditional
risk r(x) defined by (5). Hence, it is clear that r(z) can
be replaced by any uncertainty function s: X — R which
preserves ordering of inputs induced by the conditional
risk 7(x) 3. In this section, we show how to learn such
uncertainty functions from examples.

3.1. Order Enforcing Loss Function

Let 7, = {(z;,y;) € X x Y | i=1,...,n} be a set of
inputs and labels generated from n i.i.d. random variables
with distribution p(z, y). We define a loss function A : R™ x
X" x Y — Ry as

(5, T0) = 3 0 D by o) () < sl

i=1 j=1

12)

which has the following interpretation. Let us order the ex-
amples 7,, according to s(x) so that s(z(1)) < s(2x(2)) <
< s(wremy), where 7: {1,...,n} — {1,...,n}

is the permutation defining the order. Let R(i,s) =
w2 LYy Par))) [8(2;) < s(ar,)] be the empiri-
cal risk of the classifier h(x) computed on the examples
with uncertainty not higher than the uncertainty of the i-th
example. Then, the loss A(s, 7;) can be seen as the area
under the curve C = {(R(i,s),~) | i = 1,...,n}. The
curve C summarizes performance of the selective classifier
on 7T, when it rejects to predict based on thresholding the
uncertainty s(z). It is intuitively clear that the area is min-
imized by such s(z) which orders the examples as if they
were ordered according to the loss £(y;, h(x;)). Hence, by
minimizing the expectation of A(s,7,) we should get a
function preserving the ordering induced by the conditional
risk. In the sequel we will support the intuition by theorems.

Let us define the expectation of the loss A(s, 7y,) as

/ > Hp i, i) A(s, Tn)dz
" yeyni=1
f%/ ﬁ Zn:z r(x;) [s(x;) < s(z;)] dee
i=1 i=1 j=1

s(z)]dz dz

X2 [, [ el <

=Ammmm(@mawmsamw)m,

3f: X — R preserves ordering induced by g: X — R iff
V(a,a') € X x X, g(z) < g(a') = f(z) < f{@).

its minimizers are described by the following theorem *.
Theorem 3 A function s* : X — R is an optimal solution
to ming. xy g E(s) if and only if

// vy max{r(z),r(2)}p(z)p(z)dz de = 0, and
s (2)=s" (x)
13)

| [ reri 00 =G plodp(erdzdo = 0. 14)

s*(z)>s"(z)

The conditions (13) and (14) imply that the conditional
expectations B, () [max{r(z),r(2)} | z # vAs*(z) =
s*(2)] and By ;. poy [r(x) —7(2) [ 7(2) <7r(x) As*(z) >
s*(x)] are both zero. If combined it further implies that a
subset of input space X’ = {(z,2) € X x X | r(z) <
r(z) A s*(z) > s*(x)} on which the order is violated has
probability measure 0. In other words the optimal s*(z)
preserves the ordering induced by r(z) almost surely.

Corollary 2 Any function s : X — R fulfilling

V(z,2') € X x X 1z # 2’ = s(x) # s(2’), and (15)
V(z,2') € X x X :r(z) <r(2') = s(z) < s(a’) (16)
satisfies the optimality conditions of Theorem 3.
Corollary 2 suggests how to construct the optimal s* () if
we know the conditional risk r(z). More importantly, the

following corollary states that the optimal s*(x) can be used
instead of r(x) to construct the optimal selection function.

Corollary 3 Letr s* € argming y_,g E(s). The selection
function ¢* : X — |0, 1] defined by

Lif s*(x) <7,

cH(x)=< 7 if s*(x)=1r, (17)
0 if s (z) >,
where 7 = sup {a | p(Xs-(<a) < 0}, (18)
and + — x )1 if P( *(I):’Y):Oa
—way i p(Xew=) >0,
(19)

fulfills conditions (6), (7) and (8) of Theorem 2, therefore it
is an optimal solution to (4).

3.2. Algorithm

The expectation E(s) cannot be minimized directly because
p(zx,y) is unknown and the loss A(s, 7,,) is hard to opti-
mize due to the step function [0 < ¢] in its definition. We

fxf zF#T

sz)s(x

where X' = {2 € X |z#£z A s%(2)

f(z,2)dz dz stands for fxfx/f
=s"(x)}, ete.

(z,2)dz dx
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describe two standard techniques to minimize E'(s) approx-
imately given a training set 7, = {(z;,y;) € X x Y |
i =1,...,m} drawn i.i.d. from p(x,y). We assume that
uncertainty function sg: X — R is known up to parameters
0 € R™ which need to be learned from 7,,,.

Stochastic Gradient Approximation Starting from ini-
tial 8y € R, the new values are computed in iterative
fashion by 0,1 = 0; + k; g;, where k; is an appropriate
learning rate and g; is a sub-gradient evaluated at 6, of the
proxy-loss

- %ZZ (i, () w (sa(z;) — sa(z:))

(20)
where w(t) = max{0,1 + t} is a convex upper-bound of
[0 < t] used in definition of the original loss A(sg, 7).
The set 7,, denotes a mini-batch selected randomly from 7, .
It is seen that the true objective E(sg) is upper bounded by
the expectation (w.r.t. randomly generated 7;,) of A(O, Tn)
which we use as our proxy, and which can be optimized by
SGD (Kushner & Yin, 2003) or similar algorithms.

Regularized Empirical Risk Approximation We ap-
proximate E(s) by

P

Z A, 7% @1

k=1

C

g \

where 7' U T2 U---U TP is randomly generated partition
of the training set 7,, into P approximately equally sized
batches, and C' > 0 is a chosen regularization constant. It
is seen that the expectation (w.r.t. randomly generated 7,,,)
of F(0,T,,) upper bounds E(s). The objective F' (0, T,)
is convex in @ for uncertainty functions sg(z) = (0, ¢ (z))
linear in @ and then any convex solver can be used.

4. Related Works

The cost-based rejection model was proposed in (Chow,
1970) who also provides the optimal strategy in case the
distribution is known, analyzes the error-reject trade-off,
and proves basic properties of the error-rate and the reject-
rate, e.g. that both functions are monotone w.r.t. the reject
cost. The original paper considers the risk with 0/1-loss only.
The model with arbitrary prediction costs was analyzed e.g.
in (Tortorella, 2000; Schlesinger & Hlavac, 2002).

The bounded-improvement model was proposed
in (Pietraszek, 2005). He assumed that the classifier
score proportional to the posterior probabilities is known
and the task is to find only the optimal thresholds, which
is done numerically based on ROC analysis. The original
formulation assumes two classes and 0/1-loss. In our

paper we consider a straightforward generalization of the
bounded-improvement model, defined by task (3), which
allows arbitrary number of classes, arbitrary loss and
puts no constraint on the class of optimal strategies. We
show how to construct the optimal strategy provided the
underlaying distribution p(z, y) is known.

Learning of a selective classifier optimal for the bounded-
improvement model was discussed in (El-Yaniv & Wiener,
2010). Their method requires a noisy-free scenario, i.e.
there must exist a selective classifier with Rg(h,c) = 0.
They also provide a characterization of the lower and upper
bound of the risk-coverage curves in PAC setting. (Geifman
& El-Yaniv, 2017) proposed a method to find a threshold
optimal in PAC sense provided the uncertainty function s(z)
is known, which in their work is constructed from an output
of a trained Neural Network. We complement their work by
a method learning the uncertainty function s(x).

A common approach to construct a rejection strategy is
based on plug-in conditional risk #(x) obtained after replac-
ing p(y | =) in (5) by their estimate p(y | z). (Fumera
et al., 2000) shows that the plug-in Bayes-optimal strategy
is not optimal if the estimates p(y | x) are affected by errors,
in which case they propose to use class-related thresholds
instead of a single global threshold. Other methods trying
to improve the plug-in strategy by tuning multiple thresh-
olds were proposed in (Kummert et al., 2016; Fischer et al.,
2016). The statistically consistency of the plug-in reject
rules is discussed in (Herbei & Wegkamp, 2006). We use
the plug-in rule on top of logistic-regression model (McCul-
lagh & Nelder, 1989) as a baseline in our experiments.

Most prediction models come with at least an ordinal mea-
sure of uncertainty which can be used to construct the reject
strategies. E.g. (LeCun et al., 1990) proposed a reject strat-
egy for a Neural Network classifier based on thresholding
either i) the output of the maximally activated unit of the
last layer or ii) a difference between the maximal and runner
upper output units. In case of Support Vector Machine clas-
sifiers (Vapnik, 1998) the trained linear score, proportional
to the distance between the input and the decision hyper-
plane, is often used as the uncertainty measure (Fumera &
Roli, 2002). We consider this approach as a baseline in our
experiments. Other solutions involve fitting a probabilistic
model to the SVM outputs (Platt, 2000; Wu et al., 2004).

5. Experiments

We experimented with two methods to learn the classifier
h(z) and two baselines to compute the uncertainty mea-
sure: i) Logistic-Regression estimating p(y | x) so that the
plug-in Bayes classifier and the conditional risk can be com-
puted, ii) the SVMs, representing discriminative methods
without probabilistic output, in which case the classification
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dataset classes features examples
AVILA 12 10 20,867
COVTYPE 7 54 581,012
CODRNA 2 8 331,152
IJCNN 2 22 49,990
LETTER 26 16 20,000
PENDIGIT 10 16 10,992
PHISHING 2 68 11,055
SATTELITE 6 36 6,435
SENSORLESS 11 48 58,509
SHUTTLE 7 9 58,000

Table 1. Summary of benchmark classification problems.

score with the maximal response was used as an uncertainty
measure. Then, on top of the LR and SVM classifiers we
learned the uncertainty measure by minimizing the proposed
loss. We implemented both variants based on the stochastic
gradient approximation and the regularized empirical risk
minimization. The methods were evaluated on 10 classifica-
tion problems with different sizes, number of features and
number of classes. The goal was to minimize the classifica-
tion error, hence we used the 0/1-loss £(y, y') = [y # v']-

Logistic-regression (LR) learns parameters 6 =
((wy,b,) € REx R | y € V) of the posterior prob-
abilities pg(y | ) ~ exp((wy,x) + b,) by maximiz-
ing the regularized log-likelihood L(8) = $|6|> +
LS log (pe(yi|@;)). The optimal C' was selected
from {1, 10, 100, 1000} based on the validation classifica-
tion error. After learning 6, we used the plug-in Bayes
classifier hg(x) = argmax, .y pe(y | =) and the plug-in
class conditional risk 7#(x) = 1 — pg(h(x) | x) as the base-
line uncertainty measure. Note that both plug-in rules are
Bayes-optimal for the 0/1-loss.

Support Vector Machines (SVM) learn parameters 8 =
((wy,by) € R x R | y € V) of the linear classifier
he(x) = argmax,cy (wy, ) + b, by minimizing F'(0) =
gHHHQ + % 27;1 maxyey ([[y # yill + <wy - wyﬁwi))'
As the baseline uncertainty measure we use the maximal
score s(x) = maxycy(w,,x) + b, proportional to the
distance between input x and the decision hyper-plane.
For binary case || = 2, we used 8 = (w,b), hg(x) =
sgn((w, ) +b), F(0) = 0] + & S, max{0,1 -
yi((w, ;) + b)} and s(x) = |(w, ) + b|. The optimal C
was selected in the same way as for LR.

Proposed method for uncertainty learning We parame-
terized the uncertainty function as

where 1: R? — RY are features extracted from the vecto-
rial inputs € R%, and W = ((w,,b,) ERIxR |y € V)

are unknown parameters. We experimented with three differ-
ent feature maps: i) linear features v (x) = , i) quadratic
features 9 (x) = (z; - x; | (i,5) € {1,...,d}> AN j < i)
and iii) features extracted by multi-layer perceptron trained
from examples. For linear and quadratic features, 1) is fixed
and the unknown parameters & = W were learned by mini-
mizing the convex objective function (21) using the Bundle
Method for Risk Minimization (Choon et al., 2010). The
number of batches was P = 5, and the regularization con-
stant C was selected from {1, 10, 100, 1000} based on the
proposed loss (12) evaluated on the validation set. Finally,
we used MLP with 1, 5, or 10 layers (the optimal number
was selected based on the validation set) each having the
same number of neurons as the input dimension d. The
ReLU was used as the transfer function. The unknown
parameters @ = (1, W) comprised of the linear filters of
fully-connected layers v and parameters W of the rule (22)
put as the last layer. The parameters 8 were learned by
ADAM (Kingma & Ba, 2015) optimizing the convex loss
function (20). To speed up convergence, we used the batch-
normalization (Ioffe & C. Szegedy, 2015) placed after each
fully-connected layer.

5.1. Datasets

We selected 10 classification problems from UCI reposi-
tory (Dua & Taniskidou, 2017) and 1ibSVM datasets (Chang
& C.J.Lin, 2011). The datasets are summarized in Table 1.
We chose the datasets with sufficiently large number of
examples, as we need to learn both the classifier and the
uncertainty, and with a moderate input dimension d because
of using ¢ = d(d + 1)/2 explicitly computed quadratic
features. Each dataset was randomly split 5 times into 5
subsets, Trn1/Vall/Trn2/Val2/Tst, in ratio 30/10/30,/10/20
(up to COVTYPE with ratio 28/20/2/20/30). The subsets
Trnl/Vall and Trn2/Val2 were used for learning and model
selection of the classifier and the uncertainty function, re-
spectively. All features were normalized to have zero mean
and unit variance. The normalization coefficients were es-
timated using only the Trnl and Trn2 subsets, respectively.
The Tst subset was used solely to compute the test metrics.

5.2. Evaluation Protocol

Selective classifiers are evaluated based on Risk-Coverage
curve {(Rs(i,5), =) | i = 1,...,n} where Rg(i, s) is an
estimate of Rg(h, ¢) computed on test examples by

o 1<
Rs(i,s) = 7 Zg(yw(j)a h(xﬂ(j))) ’
=1

m(j) is the permutation obtained by sorting the exam-
ples according to s(x) in ascending order. We describe
the performance by the selective risk at coverage 90%,
defined as R@90 = Rg(i,s) where i = round(0.9n),
and by the Area Under risk-coverage Curve AUC(s) =
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I Rs(i, s). For each metric we report averages and
standard deviations computed over the 5 random splits. In
figures we show the mean curves.

5.3. Results

Figure 1 and Table 2 summarize results for the two base-
line selective classifiers, LR+plugin and SVM+maxscore,
and the selective classifiers which use uncertainty func-
tion learned by the proposed method, LR+learn(X) and
SVM-+learn(X), where X stands for the used feature map.
The table reports results only for the best features while the
figure shows all models. We can conclude that:

1) R@100 is always higher than RQ90 which shows that all
selective classifiers when accepting only 90% of inputs re-
duce the classification error of the non-rejecting classifiers.

2) The selective classifiers with uncertainty learned by the
proposed method outperform the baselines both in terms of
AUC and RQ90 consistently on all datasets. Up to a few
cases the improvement is significant.

3) LR and SVM classifiers have statistically similar error
R@100 on 7 datasets while on 3 datasets (letter, shuttle,
sensorless) SVM performs better. However, on the same
3 datasets the baseline selective classifier SVM-+maxscore
is worse than the baseline LR+plugin in terms of R@90,
probably due to non-probabilistic output used as uncertainty
by SVMs. At the same time, when the learned uncertainty
is used the SVM-based selective classifier becomes better.

4) In 6 versus 4 cases the uncertainty functions on top of the
learned MLP features outperform the hand-crafted quadratic
features. While the linear features were never optimal they
perform in most cases better than non-learned baselines.

6. Conclusions

We proved that the cost-based and bounded-improvement
rejection models share the same optimal strategies. In both
cases an optimal reject strategy can be constructed by thresh-
olding the conditional risk. We provided formulas relat-
ing parameters of the two models. We proposed a new
loss function whose minimizer is an uncertainty function
which preserves ordering induced by the conditional risk,
and hence can be used to construct an optimal reject strategy
for both models. We experimentally showed that Logistic-
Regression and SVM-based selective classifiers with uncer-
tainty function learned by minimizing a convex-surrogate of
the proposed loss outperform commonly used reject rules.

Open questions involve e.g. i) analysis of the statistical
consistency of the proposed convex proxy-loss (20) and ii)
investigating the possibility to simultaneously learn both the
uncertainty and the prediction rule instead of using the data
demanding two-stage approach.

classi selection AUC R@90 R@100
fier  function x 100 x100 x100
LR  plugin 27.2 +£0.6 40.9 +0.5
§ LR  learnM) 17.3 £0.4 38.0 £0.4 43.7+04
>| SVM maxscore 31.7 £0.8 41.0 0.7
<ISVM learn(M) 16.9 +0.7 37.4 +0.8 P2 F07
<|LR  plugin 0.9 +£0.0 2.0+0.0
ZILR  lean(M) 0.4+0.0 1.3+0.1 48 £0.1
2| SVM maxscore 0.9 £0.1 2.0+0.1
8 SVM learnM) 04 +0.0 1.3 40.1 4.8 £0.1
MILR  plugin 16.5 £0.1 25.1 0.2
o
E LR learnM) 10.0 £0.1 21.6 £0.2 27.6 0.2
>|SVM maxscore 25.7 £0.8 26.8 £0.1 274401
8 SVM learn(M) 9.8 £0.1 21.5 £0.1 ’ ’
LR  plugin 1.3+0.0 3.8+0.1
ZILR  leam™M) 03+00 04401 2 *01
O| SVM maxscore 1.4 +0.0 3.740.2 76409
~|SVM learn(M) 0.4 +0.0 0.4 +0.1 ’ ’
LR lugin 7.4 +0.4 18.3 +0.6
~ plug
EILR  learn(Q)  4.1+0.1 154 +0.6 23.3£0.6
=
0 SVM maxscore 10.2 +0.2 19.1 0.4 221 +0.7
~| SVM learn(Q) 3.9 +0.3 14.0+0.8
=~ LR  plugin 0.7 £0.0 1.9=+£0.1
% LR learn(Q) 0.7 £0.1 0.8 £0.2 3.3 404
Z|SVM maxscore 2.8 +0.4 39+04
E SVM learn(Q) 0.8 £0.1 0.7 £0.2 4.9 £0.6
~| LR plugin 0.8 £0.1 2.9=+0.3 6.3 404
E LR learn(Q) 0.8+0.3 18+04 ’
E SVM maxscore 0.8 +0.1 3.0+0.3 6.4 +0.4
A& SVM learn(Q) 0.7 £0.2 1.7+0.3
M| LR  plugin 0.6 £0.1 1.0+£0.1
E LR learnM) 0.1 £0.1 0.0=+0.0 34402
2| SVM maxscore 1.3 +0.5 1.540.3 2.0 +0.1
% SVM learn(M) 0.1 £0.0 0.0 £0.0 ’ ’
LR  plugin 20+£0.1 49=+0.3
% LR learnM) 0.4 =+0.0 0.6+0.2 8.2+04
Z2ISVM maxscore 3.7£0.2 6.9 £0.3
0 6.9 +0.2
»n| SVM learnM) 0.4 £0.0 0.5 £0.1
~|LR  plugin 3.84+0.3 11.1 +0.3
—
E LR learn(Q) 3.2+0.3 9.8+0.9 15.1£0.5
z SVM maxscore 4.8 +£0.6 11.4 +0.5 154 +0.4
| SVM learn(Q) 3.3 +£0.2 10.2 £0.6 ’ )

Table 2. Area Under risk-coverage Curve (AUC), selective risk at
coverage 90% and 100% are shown for selective classifiers built
from the non-rejection LR or SVM models. The baseline selective
function for LR model uses the plug-in conditional risk and the
max-score for SVM. Below each baseline we report results for the
selective classifiers with learned confidence measure. We report
results only for model with the best features ((L)inear, (Q)uadratic
and (M)ulti-layer perceptron) selected based on the validation set.



On Discriminative Learning of Prediction Uncertainty

AVILA
0.4 0.4
0.35 0.35
é 0.3 _(3 0.3
0.25 0.25
—LR+plugin —SVM-+maxscore
0.2 —LR+learn(linear) 0.2 —SVM+learn(linear)
: —— LR+learn(quad) ) ——SVM+learn(quad)
— LR+learn(mlp) —SVM+learn(mlip)
0.15 0.15
05 06 07 08 09 05 06 07 08 09
cover cover
COVTYPE
0.25 0.25
0.2 0.2
x x
2 K]
0.15 0.15
—LR+plugin — SVM+maxscore
— LR+learn(linear) ——SVM+learn(linear)
0.1 ——LR+learn(quad) 0.1 ——SVM+learn(quad)
—LR+learn(mip) — SVM-+learn(mlp)
05 06 07 08 09 05 06 07 08 09
cover cover
LETTER
—LR+plugin — SVM+maxscore
0.2 [ |[—LR+learn(linear) 0.2 | |—SVM+learn(linear)
—— LR+learn(quad) —— SVM+learn(quad)
—LR+learn(mlp) — SVM+learn(mlp)
0.15 0.15
X X
@ 2
0.1 0.1
0.05 0.05
05 06 07 08 09 05 06 07 08 09
cover cover
PHISHING
0.06 —LR+plugin 0.06 | [——sVM+maxscore
—LR+learn(linear) — SVM+learn(linear)
0.05  |——LR+learn(quad) 0.05 | |——SVM+learn(quad)
—LR+learn(mlp) — SVM-+learn(mlp)
0.04
&
= 0.03
0.02
0.01
05 06 07 08 09 05 06 07 08 09
cover cover
SENSORLESS
0.08 0.08
—LR+plugin — SVM+maxscore
0.07  |[—LR+learn(linear) 0.07 | |— SVM+learn(linear)
——LR+learn(quad) —— SVM+learn(quad)
0.06 1 |—(R+learn(mip) 0.06 || — svM+learn(mip)
0.05 0.05
x x
-2 0.04 -2 0.04
0.03 0.03
0.02 0.02
0.01 0.01
05 06 07 08 09 05 06 07 08 09
cover cover

CODRNA
—LR+plugin — SVM-+maxscore
0.04 | |—LR+leamn(linear) 0.04 | |— SVM+learn(linear)
——LR+learn(quad) —— SVM+learn(quad)
— LR+learn(mlp) — SVM-+learn(mlp)
0.03 0.03
x x
2 8
0.02 0.02
0.01 0.01
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
cover cover
0.07  [—LR+plugin 0.07 | |[—SVM+maxscore
—LR+learn(linear) — SVM-+learn(linear)
0.06 | |—LR+learn(quad) 0.06 | |— sVM-+learn(quad)
0.05 —LR+learn(mlp) 0.05 — SVM+learn(mlip)
3 0.04 3 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
cover cover
0.05 —LR+plugin 0.05 | [——gVM+maxscore
—LR+learn(linear) — SVM+learn(linear)
——LR+learn(quad) —— SVM+learn(quad)
0.04 —LR-+learn(mlp) 0.04 — SVM-+learn(mlp)
~ 0.03
o
0.02
0.01
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
cover cover
SATTELITE
0.14 | [—LR+plugin 0.14 | |— SVM+maxscore
—LR+learn(linear) — SVM+learn(linear)
0.12  |—LR+learn(quad) 0.12 | |~ SVM+learn(quad)
— LR+learn(mlp) — SVM-+learn(mlp)
0.1 0.1
x x
-2 0.08 -2 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
cover cover
— LR+plugin — SVM+maxscore
0.03 1\ __ LR+learn(linear) 008 1 SVM-+learn(linear)
—— LR+learn(quad) —— SVM+learn(quad)
0025 r__ LR+learn(mlp) 0.025 — SVM+learn(mip)
0.02 0.02
x x
2 2
=0.015 = 0.015
0.01 0.01
0.005 0.005
05 06 07 08 0.9 05 06 07 08 09
cover cover

Figure 1. The risk-coverage curves for different selective classifiers evaluated on 10 datasets. X-axis is the coverage and y-axis is the
selective risk corresponding to the misclassification error on the non-reject area. The classifier is either LR (left sub-figure) or SVM (right
sub-figure). The curves for baseline selective functions shown in black correspond to the the plug-in conditional risk for LR and to the
max-score for SVM. Colored curves correspond to selective functions learned by the proposed algorithm on top of linear features (red),
quadratic features (green) and features extracted by multi-layer perceptron (blue).
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