
Distributional Multivariate Policy Evaluation and Exploration with the
Bellman GAN - Supplementary Material

Dror Freirich 1 Tzahi Shimkin 1 Ron Meir 1 Aviv Tamar 2

A. The Wasserstein-1 Distance
Let X be a Polish space with a complete metric d, and let
B(X) ⊂ 2X denote the σ-algebra of Borel subsets. Denote
byP(X) the set of probability measures on (X ,B(X)). For
µ1, µ2 ∈ P(X), Π(µ1, µ2) is the set of joint distributions
whose marginal distributions correspond to µ1, µ2. Let
p ∈ [1,∞). The Wasserstein-p distance w.r.t. the metric d
is defined by

Wp(µ1, µ2) = (inf
γ∈Π(µ1,µ2)

E(X,Y)∼γd
p(X,Y))

1
p . (1)

An important special case is the Earth Mover’s distance,
also commonly called the Kantorovich–Rubinstein distance,
or simply, Wasserstein-1 (Villani, 2008), where X = Rn
and

W1(µ1, µ2) = inf
γ∈Π(µ1,µ2)

E(X,Y)∼γ‖X − Y ‖. (2)

The Wasserstein-1 distance has the following duality prop-
erty (Villani, 2008). For any µ1, µ2 ∈ P(X) with∫
X d(x0, x)dµi < ∞, i = 1, 2 (here x0 is an arbitrary

point), the W1 distance has the following dual integral prob-
ability metric (IPM; Müller (1997)) form

W1(µ1, µ2) = sup
f∈1−Lip

{∫
X
f(x)dµ1 −

∫
X
f(x)dµ2

}
,

(3)
where 1−Lip is the class of Lipschitz functions f : X → R,
with a best admissible Lipschitz constant smaller or equal
to 1.

B. 2-Face Climber Testbench
Consider the following problem: A climber is about to
conquer the summit of a mountain. There are two possible
ways to reach the top. The South Face is mild and easy
to climb, while the north face is steep and much harder to

1The Viterbi Faculty of Electrical Engineering, Technion - Israel
Institute of Technology 2Berkeley AI Research Lab, UC Berkeley.
Correspondence to: Dror Freirich <drorfrc@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

climb, but the track is shorter, and reaching the top bears a
greater reward.

The climb starts at base-camp (s0 = 0), where the
climber chooses the face to climb by taking an action
a0 ∈ {North, South}. When simulation starts, 2 random
bit strings are chosen (a string for each face, 1 digit for every
possible state). By seq(s|face) we denote the bit chosen
for state s on each face .‘Climbing’ a face is made by taking
an action at ∈ {0, 1} and comparing to the digit of current
state. We can write transition rule for st 6= 0 as



(
st+1

facet+1

)
=

(
st + 1

facet

)
,

at =

seq(st|facet)(
st+1

facet+1

)
=

(
(st − fall) ∨ 0

facet

)
,

at 6=
seq(st|facet)

(4)

where facet ∈ {North, South}, fall ∼
unif{0, . . . , slope(facet)}. For st = 0 (Camp) we
have



(
st+1

facet+1

)
=

(
1

South

)
, at = 1(

st+1

facet+1

)
=

(
1

North

)
, at = 0

. (5)

Simulation is terminated when reaching the top, i.e.

st+1 = sterminal(facet). (6)

B.1. Rewards

We have a negative reward (cost) for every climb step (re-
gardless of action),

r(st, at, st+1, facet+1) = Cface < 0,

for st+1 6= sterminal(facet) where ‘climbing’ the North
face typically costs a little more than the South.

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN - Supplementary Material

Figure 1. 2-Face Climber. The South Face is easy to climb. The North face is harder to climb, but the route is shorter. Choosing the right
action progresses the climber towards the summit (bold edges), while the other action causes her to slip with some probability (light
edges).

We also have a reward for reaching the top (st+1 =
sterminal(facet)),

r(st, at, st+1, facet+1) = Rface � 0.

B.2. Parametric Setup

We set sterminal(North) = 10, sterminal(South) =
20, slope(North) = 4, slope(South) = 1, CNorth =
−0.02, CSouth = −0.01, RNorth = 10, RSouth = 1.

B.3. Results

Figure 2 shows results of W-1ME exploration using differ-
ent values of η in (21a), where we used reward-systematic
exploration (Sec. 6.1). For policy improvement in Algo-
rithm 2 we used DQN, where we refer to the full algorithm
as W-1ME+DQN. η = 0 is for DQN, where we applied an
ε-greedy exploration (ε = 0.05). Average and median are
over 100 independent seeds, where we run 1000 episodes
on each experiment. Shaded areas represents the ±σ (std)
range for reward averages, and min/max range for medians.
We also present the state-space visit counts for the different
η’s. Here we can see that indeed, higher exploration η’s
increment the visit rate to the North face states, resulting in
higher average returns.

C. LQR Testbench
We consider the LQR problem

st+1 = Ast +Bat, (7)

where st ∈ Rns and at ∈ Rna . A,B are the system
matrices with appropriate dimensions and S0 is Normally

distributed. We consider a Gaussian reward r(s, a) ∼
N (−sTQs−aTRa, 1). Q,R are positive-definite matrices.

C.1. Parametric Setup

In our experiments, we set ns = 64, na = 2. The ma-
trices A,B,Q,R were randomly set for each independent
experiment (seed).

C.2. Results

Figure 3 shows the median of the averaged cumulative re-
ward (at each iteration) on a fixed set of 20 random seeds.
Shaded areas represent the interquartile range. We used
η = 10−7 for both exploration methods. Here we can see
that W-1ME exploration outperforms both VIME and plain
TRPO.

D. Reward-Systematic Exploration
Here we evaluate the contribution of using reward system-
atic exploration (described in Section 6.1).
Figure 4 presents the results obtained on Cartpole Swingup
sparse task using scalar setting, where we predict the value
distribution, and using reward systematic exploration, where
we learn the transition model together with the value distri-
bution. The Figure shows that exploring using learned state
transition results in improved median performance.

E. Implementation
We use the following architecture for both generator and
discriminator (Figure 5(a)). DNN0 and DNN1 are con-
structed by a sequence of fully connected linear layers fol-

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN - Supplementary Material

Figure 2. W-1ME exploration on 2Face climber. Left: Improvement in average and median return using W-1ME+DQN with different η
parameters. Right: Histograms present the number of visits to each state. Observe that higher η’s incremented the visit rate to the North
face states, resulting in higher average returns. This shows the utility of our exploration method.

0 100 200 300 400 500

Iteration

−12500

−10000

−7500

−5000

−2500

0

C
u

m
.

R
ew

ar
d

TRPO

TRPO+VIME

TRPO+W1ME

100 200 300 400 500

Iteration

−3000

−2500

−2000

−1500

−1000

−500
C

u
m

.
R

ew
ar

d

TRPO

TRPO+VIME

TRPO+W1ME

(a) (b)

Figure 3. W-1ME vs. VIME and TRPO on LQR testbench. (a) The full learning session, (b) The final stages of learning.

lowed by Leaky ReLU activation. The generator’s input is a
Normal-distributed noise, and output dimension is the same
as the return vector. Discriminator output is 1-dimensional.
We optimize (14a) using the Adam optimizer.

We implemented DQN using the Double DQN algorithm
(Van Hasselt et al., 2016), based on an action and a target
network. Networks are implemented using the same archi-
tecture (Figure 5(b)). DNN is constructed by a sequence of
fully connected linear layers followed by ReLU activation.
We train DQN using the Adam optimizer with the Huber
loss (Mnih et al., 2015).

In Adam optimizers (Kingma & Ba, 2014) we used hyper-
parameters β1 = 0.9, β2 = 0.999.

In the policy evaluation scenario (Multi-reward maze) we
used DQN as part of generator structure (4.1), where in
the exploration (Climber) scenario it was used for policy

improvements in Algorithm 2.

In the continuous control domains we used TRPO (Schul-
man et al., 2015) with Normally distributed policy. Policy
mean is state-dependent and represented by a DNN. We used
the Rllab framework (Duan et al., 2016) to run experiments.

In the SwimmerGather scenario, the agent should collect
“apples” while avoiding “bombs”, gaining positive or neg-
ative reward, respectively. We used the reward signal

r̃ =

[
rapples

rbombs

]
∈ R2 (where rapples = 1 when apple

is collected and 0 otherwise, and similarly for bombs) as in-
put to BellmanGAN. Pay attention that policy improvement
is still considered w.r.t the scalar reward signal.

Test-specific parameters are stated below.

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN - Supplementary Material

0 100 200 300 400 500

Iteration
0

50

100

150

200

250

300

350

400

C
u

m
.

R
ew

ar
d

TRPO

TRPO+W1ME

0 100 200 300 400 500

Iteration
0

50

100

150

200

250

300

350

400

C
u

m
.

R
ew

ar
d

TRPO

TRPO+W1ME

(a) (b)

Figure 4. Evaluation of reward-systematic exploration (Section 6.1) on Cartpole Swingup sparse task. (a) W-1ME using scalar settings
(without 6.1). (b) W-1ME exploration where 6.1 is applied. We can see that under both settings W-1ME outperforms plain TRPO, where
reward-systematic exploration improves median performance. This shows the contribution of Section 6.1 to performance.

(a) (b)

Figure 5. NN architecture
(a) discriminator and generator, and (b) DQN

E.1. Multi-Reward Maze

• DDQN:

– Layers size: DNN [16,16,16], output [1].

• Generator:

– Layers size: DNN0 [8,8,8] , DNN1 [128,128],
output [8].

– Activation function: Leaky ReLU, Output activa-
tion: Linear.

– Input noise dim: 8.

• Discriminator:

– Layers size: DNN0 [8,8,8] , DNN1 [256,128],
output [1].

– Activation function: Leaky ReLU, Output activa-
tion: Linear.

• Train parameters: λ = 0.1, γ = 0.95, minibatch size
64, learning rate 0.001.

E.2. 2-Face Climber

• DDQN:

– Layers size: DNN [16,16,16], output [1].

• Generator:

– Layers size: DNN0 [4,4,4] , DNN1 [128,64], out-
put [2].

– Activation function: Leaky ReLU, Output activa-
tion: Linear.

– Input noise dim: 2.

• Discriminator

– Layers size: DNN0 [4,4,4] , DNN1 [256,256,16],
output [1].

– Activation function: Leaky ReLU, Output activa-
tion: Linear.

• Train parameters: λ = 0.1, γ = 0.9, minibatch size
64, learning rate 0.0001.

• Exploration parameters: Nexplore = 4, T = 32.

E.3. Continuous Control Tasks

• Normally distributed policy, with state-dependent µ
represented by a DNN with one hidden layer of size 32
(LQR and CartpoleSwingup), or two hidden layers of
sizes [63,32] (SwimmerGather), with tanh activation.

• Horizon: T = 200 for LQR, T = 500 for sparse tasks.

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN - Supplementary Material

• Generator:

– Layers size: DNN1 [32].
– Output size: [65] for LQR, [5] for Cart-

poleSwingup, [35] for SwimmerGather.
– Activation function: Leaky ReLU, Output activa-

tion: Linear.
– Input noise dim: [65] for LQR, [5] for Cart-

poleSwingup, [35] for SwimmerGather.

• Discriminator:

– Layers size: DNN1 [64], output [1].
– Activation function: Leaky ReLU, Output activa-

tion: Linear.

• Train parameters: λ = 0.1, γ = 0.99, minibatch
size 10 (500 minibatches per iteration), learning rate
0.0001.

• Exploration parameters: Nexplore = 10.

References
Duan, Y., Chen, X., Houthooft, R., Schulman, J., and

Abbeel, P. Benchmarking deep reinforcement learning
for continous control. ICML, 2016.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness,
J., Bellemare, M., Graves, A., Riedmiller, M., Fidjeland,
A., Ostrovski, G., et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in Applied Probability, 29
(2):429–443, 1997.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI, volume 2,
pp. 5. Phoenix, AZ, 2016.

Villani, C. Optimal transport: old and new. Springer
Science & Business Media, 2008.

