
Fast and Flexible Inference of Joint Distributions from their Marginals

A. MAP inference
Proposition 1 (MAP is divergence minimization). Let
Pr(π|C) be a prior density over tables π ∈ Rm×n, sat-
isfying the regularity properties (3). Define Q(π) ,
− log Pr(π|C) the negative log density. Then the poste-
rior density Pr(π|u,v,C) has a unique maximum π∗ which
satisfies

π∗ = argmin
π∈U(u,v)

DQ(π,∇Q∗(0)) (26)

with Q∗ the convex conjugate and DQ the Bregman diver-
gence with respect to Q.

Proof. We first note that Q attains its global minimum at
π∗ = ∇Q∗(0) ∈ int(domQ), as the assumptions A1, A3
and A4 from (3) imply that ∇Q(π∗) = 0 via the bijec-
tive relation (∇Q)−1 = ∇Q∗, and Q is strictly convex on
int(domQ), so the critical point is a global minimum.

The posterior density Pr(π|u,v,C) is the truncation of the
prior Pr(π|C) to the polytope U(u,v). Dessein (Dessein
et al., 2018) in Section 3.2, Lemma 2, shows that the restric-
tion of Q to U(u,v) attains its global minimum uniquely at
the Bregman projection of the unrestricted global minimum
π∗ = ∇Q∗(0) onto U(u,v). The Lemma holds so long
as ∇Q(π∗) = 0 and U(u,v) ∩ int(domQ) 6= ∅; the first
is satisfied as noted above, and the second is satisfied by
assumption A2 of (3).

B. ε-MAP inference
Proposition 2 (ε−MAP estimation). Let Pr(π|C) be a
prior density over tables π ∈ Rm×n, satisfying the reg-
ularity properties A1, A2 and A3 from (3). Define Q(π) ,
− log Pr(π|C) the negative log density, and suppose there
exists πε ∈ int(domQ) such that ‖∇Q(πε)‖2 < ε. Let π′ε
be its Bregman projection,

π′ε = argmin
π∈U(u,v)

DQ(π, πε). (27)

Then the posterior density Pr(π|u,v,C) has a unique max-
imum π∗ that satisfies

Q(π′ε)−Q(π∗) <
√

2ε. (28)

Proof. Let π′ε be the Bregman projection of πε onto U(u,v)
with respect to Q. U(u,v) is a closed, convex set, and
assumption A2 of (3) implies that U(u,v)∩ int(domQ) 6=
∅, so the Bregman projection is well-defined. The Bregman
projection is characterized by the relation

〈π − π′ε,∇Q(πε)−∇Q(π′ε)〉 ≤ 0, (29)

for all π ∈ U(u,v) ∩ int(domQ). From the definition of
the Bregman divergence, we have that DQ(π, π′ε) > 0 for

all π ∈ int(domQ), so

Q(π)−Q(π′ε) > 〈π − π′ε,∇Q(π′ε)〉
≥ 〈π − π′ε,∇Q(πε)〉,

with the second inequality deriving from (29). Q is strictly
convex on int(domQ) and U(u,v) is closed and convex,
so Q has a unique minimum on U(u,v)∩ int(domQ). Let
π∗ be this minimum. Inverting the previous inequality, we
have

Q(π′ε)−Q(π∗) < 〈π′ε − π∗,∇Q(πε)〉
≤ ‖π′ε − π∗‖2‖∇Q(πε)‖2,

by Cauchy-Schwarz. By assumption ‖∇Q(πε)‖2 < ε,
while π′ε and π∗ both lie in the simplex ∆m×n, meaning
that ‖π′ε − π∗‖2 ≤

√
2. Combining these yields the bound

(28).

C. MAP inference with noisy observations
Proposition 3 (MAP with noise is a generalized projection).
Let Q(π) , − log Pr(π|C), ψu(π) , − log Pr(u|π1),
and ψv(π) = − log Pr(v|πᵀ1) be the negative log densi-
ties. Then the posterior density Pr(π|u,v,C) has a unique
global maximum which satisfies

π∗ = argmin
π∈∆m×n

ψu(π) + ψv(π) +DQ(π,∇Q∗(0)), (30)

with Q∗ the convex conjugate of Q and DQ the Bregman
divergence with respect to Q.

Proof. Define f(π) = ψu(i)(π) + ψv(i)(π) +
DQ(π,∇Q∗(0)), with domain domψu(i) ∩ domψv(i) ∩
domQ. Expanding DQ, we see that

DQ(π,∇Q∗(0))

= Q(π)−Q(∇Q∗(0))− 〈∇Q(∇Q∗(0)), π −∇Q∗(0)〉
= Q(π)−Q(∇Q∗(0)),

(31)

because ∇Q∗(0) ∈ int(domQ) and Q is Legendre, so
that ∇Q and ∇Q∗ are inverses. So the restriction of
f to ∆m×n differs from the log posterior by a constant
− log Pr(u,v|C)−Q(∇Q∗(0)).

By Assumption A2 of (3) and the assumption in Section
5.2, we have ∆m×n ∩ int(dom f) 6= ∅. Moreover, f is
closed, strictly convex and coercive, while ∆m×n is closed
and convex, so f has a unique minimum in ∆m×n, and the
same holds for the log posterior.

D. Significance of empirical error differences
Each of the datasets in Section 6.2 consists of a number
of tables whose values we attempt to infer, using the given
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models. Table 1 reports the median absolute error of these
inferred tables, across all tables and table entries, and high-
lights the best performing method for each dataset. Since
Table 1 only gives a single statistic for each set of inferred
tables, there remains a question of significance of the differ-
ences between the algorithms.

As a first measure of this significance, we report here the
percentage of tables for which each given method actually
matches or outperforms the best performing method from
Table 1, for each dataset. Specifically, for each table in
the dataset, we compare the median absolute error within
that table, for the given method, to the same for the best
performing method, and report the percentage of cases in
which the latter equals or exceeds the former.

Table 2 shows these percentages. They are very small (<
0.1) in the overwhelming majority of cases, with several
notable exceptions that approach or exceed 0.5 – of these,
all but one fail the Wilcoxon test (decribed below), and these
instances are bolded in the table.

As a second measure of significance, we compute p-values
under the hypothesis that a given method actually matches
or outperforms the best performing method from Table 1 on
average. For each table in the dataset, we take the differ-
ence between the median absolute error within that table,
for the given method, and the same for the best perform-
ing method. We test the hypothesis that the pseudomedian
of these differences (across tables) is actually nonpositive,
which would indicate that the differences are actually dis-
tributed significantly at or to the left of zero. This is the
one-sided Wilcoxon signed rank test (Wilcoxon, 1945).

Table 3 shows the resulting log10 p-values. These p-values
are very small, with a handful of exceptions, indicating that
in the overwhelming majority of cases the differences in
accuracy between the different algorithms are significant.
The exceptions are bolded in this table and in Table 1 in the
main text, indicating cases where we cannot say definitively
that the best-performing method in Table 1 outperformed
the given method.
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Table 2. Percentage of tables for which the median absolute error equals or is lower than that for the best performing method from Table 1.
Bolded are instances that fail the Wilcoxon test (Table 3).

DATASET DEATH EDUCATION VOTING INCOME INSURANCE
N. TABLES 51 110 68 51 51
Prior work
NEIGHBORHOOD 0 0.01 0.31 0.02 0
GOODMAN 0 0 0 0 0
MULT. DIRICH. (MCMC) 0 0.01 – 0 0
MAP, exact
ENTROPIC 0.04 0.6 0 0.04 0
TSALLIS (q = 0.5) 0 0.05 0.28 0.27 0.06
TSALLIS (q = 2) 0 0.05 0.04 0 0
NORMAL – 0.16 0.07 – –
DIRICHLET 0 0.05 0.09 0 0.39
MAP, multinomial
ENTROPIC 0.12 – 0.01 0.18 0
TSALLIS (q = 0.5) 0 0.01 0.07 0.51 0.04
TSALLIS (q = 2) 0 0.02 0 0 0
NORMAL 0.02 0.09 0.21 0.59 0.18
DIRICHLET 0.12 0.01 0.01 0.18 0.51

Table 3. log10 p-value, Wilcoxon signed rank test (one-sided), differences between median absolute errors per-table, for given method vs.
the best performing method from Table 1. Bolded are instances that fail the test (p > 1e−3).

DATASET DEATH EDUCATION VOTING INCOME INSURANCE
N. TABLES 51 110 68 51 51
Prior work
NEIGHBORHOOD -9.59 -18.1 -3.02 -9.36 -9.59
GOODMAN -9.59 -19.4 -12.4 -9.59 -9.59
MULT. DIRICH. (MCMC) -9.59 -19.2 – -9.59 -9.59
MAP, exact
ENTROPIC -9.26 -8.42 -12.4 -6.88 -9.59
TSALLIS (q = 0.5) -9.59 -17.6 -3.39 -3.78 -7.48
TSALLIS (q = 2) -9.59 -17.9 -11.6 -9.59 -9.59
NORMAL – -15.3 -11.5 – –
DIRICHLET -9.59 -17.3 -10.2 -9.59 -1.54
MAP, multinomial
ENTROPIC -7.91 – -12.2 -6.88 -9.59
TSALLIS (q = 0.5) -9.59 -17.6 -11.4 -0.07 -8.98
TSALLIS (q = 2) -9.59 -18.1 -12.4 -9.59 -9.59
NORMAL -9.56 -17.8 -7.77 -0.21 -6.06
DIRICHLET -7.87 -19.0 -12.2 -6.92 -0.27


