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Abstract

Across the social sciences and elsewhere, practi-
tioners frequently have to reason about relation-
ships between random variables, despite lacking
joint observations of the variables. This is some-
times called an “ecological” inference; given sam-
ples from the marginal distributions of the vari-
ables, one attempts to infer their joint distribution.
The problem is inherently ill-posed, yet only a
few models have been proposed for bringing prior
information into the problem, often relying on
restrictive or unrealistic assumptions and lacking
a unified approach. In this paper, we treat the in-
ference problem generally and propose a unified
class of models that encompasses some of those
previously proposed while including many new
ones. Previous work has relied on either relax-
ation or approximate inference via MCMC, with
the latter known to mix prohibitively slowly for
this type of problem. Here we instead give a sin-
gle exact inference algorithm that works for the
entire model class via an efficient fixed point it-
eration called Dykstra’s method. We investigate
empirically both the computational cost of our
algorithm and the accuracy of the new models on
real datasets, showing favorable performance in
both cases and illustrating the impact of increased
flexibility in modeling enabled by this work.

1. Introduction

Reasoning about relationships between random variables is
fundamental in the sciences and in machine learning and
typically relies on joint observations of the variables simul-
taneously; supervised learning, for example, relates features
to labels using samples from their joint distribution. There
are settings, however, in which we do not have access to
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joint observations and instead must rely on observations of
the variables taken separately. Political scientists, for exam-
ple, often attempt to estimate the impact of demographics
on voting behavior, despite census data and vote counts be-
ing collected separately. Unsurprisingly, this inference is
ill-posed: many possible relationships exist that can account
for the observed data. Yet, by bringing prior information
into the problem, it is still possible to make meaningful in-
ferences. This is sometimes called cross-level or ecological
inference.

This type of inference appears in a variety of fields, some-
times with substantial social impact. Federal voting rights
cases in the U.S., which prevent the drawing of voting dis-
tricts that dilute a minority’s vote, depend critically on es-
tablishing a relationship between race and political prefer-
ence, by solving exactly this inference problem (King, 1997;
Greiner, 2006). Such inference is also carried out by epi-
demiologists (Morgenstern, 1995), biostatisticians (Jackson
et al., 2006; Wakefield, 2008), geographers (Johnston &
Pattie, 2006), ecologists (Martin et al., 2005), economists
(Honaker, 2008), and climate scientists (Piguet, 2010).

Despite its prevalence, only a handful of methods have been
proposed for solving the inference problem. This may be
due to its inherent computational challenges: It is, in fact, a
strict generalization of optimal transport (Villani, 2003),
which arises when one assumes perfectly-observed marginal
distributions and a particular linear cost criterion. Beyond
optimal transport, the few proposed methods rely either
on relaxing the problem (so that the result need not be a
probability distribution, for example) or on approximate
inference via MCMC.

In this paper, we expand the set of available methods sub-
stantially, by defining general-purpose inference algorithms
that work across a broad class of probability models. This
model class, in fact, includes some of the previous work as
special cases. Importantly, we show that maximum a poste-
riori inference within this class requires neither relaxation
nor MCMC, but rather can be done using a single exact
algorithm called Dykstra’s method.

The inference methods we propose are both computation-
ally efficient and applicable to real data, with new models
enabled by this work sometimes achieving more accurate
inferences than those previously available (Section 6).
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2. Preliminaries
2.1. The inference problem

Our goal is to estimate the joint distribution of two cat-
egorical random variables X : @ — {1,...,m} and
Y : Q@ — {1,...,n}, given data consisting of sam-
ples from their marginal distributions, {x(k)}évle ~ Px,
{y(e)}évzyl ~ Py.

We refer to the estimation target as the table of joint proba-
bilities, being a matrix 7 € RTX” whose row and column
marginals are the marginal densities of X and Y, respec-
tively. In the simplest case, we assume we are given per-
fect observations of the two marginal distributions: vectors
u € A™ and v € A" whose elements give the exact proba-
bilities of the categories over which X and Y are defined. In
this case, estimation entails finding a nonnegative matrix
satisfying marginal constraints 71 = u and 771 = v. This
is an ill-posed problem: there are in general many possible
joint distributions that match any given pair of marginals.
Prior information is needed to identify a unique solution.

Sections 3 and 4 explore the perfectly-observed setting. Sec-
tion 5.2 discusses generalizations to noisy observations.

2.2. Existing methods

The simplest model for inferring a joint distribution from
marginals is the independent model, which assumes in-
dependence of the two random variables: given perfectly-
observed vectors of probabilities u € A™ and v € A", this
estimates their joint table as 7 = uvT.

Other existing models either are constrained to 2 x 2 tables
(notably King’s method (King, 1997)) or assume that one of
the two marginals is observed inexactly, as via limited sam-
ples from the marginal distribution or with noise. The latter
may be due to the difficulty of MCMC inference on the
set of joint distributions with perfectly-observed marginals:
the fastest mixing known algorithm is the Vaidya random
walk (Chen et al., 2017), whose complexity scales as O(n)
(n being the cardinality of the larger of the two categorical
spaces) — this is the subject of some recent interest (Kannan
& Narayanan, 2012; Lee & Vempala, 2017).

Note that a number of models for joint distributions, includ-
ing maximum entropy models (Della Pietra et al., 1997;
Dudik & Schapire, 2006), copulas (Sklar, 1959; Nelsen,
2007), and low-rank tensors (Kargas & Sidiropoulos, 2017),
have never (to our knowledge) been adapted to the prob-
lem studied here, which assumes we can only access the
marginal distributions of the variables.

For tables of general size, we note three methods: Good-
man’s regression, the multinomial-Dirichlet model, and reg-
ularized optimal transport. The latter two are special cases
of the model class proposed in this paper.

Goodman’s regression (Goodman, 1953) was among the
first proposed methods for this problem and, along with var-
ious generalizations (Kousser, 1973; Loewen, 1982; Klepp-
ner, 1985; Grofman et al., 1985; Achen & Shively, 1995),
has been widely used in practice (King et al., 2004). The
model assumes that one of the marginals is observed per-
fectly, while the other is observed with additive Gaussian
noise. If u is the perfect observation, the true joint table
7 decomposes as 7 = diag(u)p with p € R"*" a row-
stochastic matrix giving the conditional probabilities of the
column marginal’s categories. Under the Gaussian noise as-
sumption, we have a linear regression model for estimating
Ps

e~ N(0,0?), (1)
with v the observation of the second marginal. This is
straightforwardly solved via ordinary least squares. Note
that the problem is underdetermined, requiring either an
assumption of shared conditional probabilities p amongst
many observations or a prior on p. Note also that the esti-
mate is unconstrained, such that the estimated conditional
probabilities in fact need not lie in the range [0, 1], making
interpretation difficult.

v=plu-+eg,

The multinomial-Dirichlet model (Rosen et al., 2001;
Wakefield, 2004) also assumes that one marginal is observed
perfectly, and defines a hierarchical distribution on the his-
togram of sample counts for samples drawn from the other
marginal distribution. The model has the column marginal
histogram v multinomial distributed, with the conditional
probabilities p governed by a Dirichlet distribution. When
the Dirichlet distribution parameters are not specified, the
model includes a Gamma prior, yielding

Vv ~ Multinom(N, pTu),
pi,. ~ Dir(ey; .), Vi
a;; ~ Gamma(Ar, Aa), Vi, .

Inference is done with a Metropolis-within-Gibbs algorithm.

Optimal transport (Villani, 2003) is a special case of the
problem considered in this paper. The theory studies trans-
port plans that distribute the mass from one marginal dis-
tribution to match the other. The optimal transport plan
minimizes the total cost of moving the mass. Specifically,
for perfectly-observed marginal distributions u and v, the
optimal transport plan is exactly the soft assignment matrix
« that solves

minimize(w, C) z, 2)

7eU(u,v)
with C € R'*" the cost matrix having C;; the cost for
transporting a unit of mass from the ith to the jth category,
and U (u, v) the polytope of nonnegative matrices having u
and v as row and column marginals.

A regularized form of optimal transport has, in fact, been ap-
plied to the problem considered here (Muzellec et al., 2017)
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— this type of regularized transport falls within the model
class we propose in Section 3. Note also that Dykstra’s
method (Section 4) has been applied to optimal transport
problems, in (Benamou et al., 2015; Dessein et al., 2018).

3. A General Class of Models
3.1. Well-behaved priors

Our model relies on a prior distribution over tables, which
we allow to come from a general class of distributions, be-
ing those that are separable and log-concave of Legendre
type, with support containing int(A™*™). With two addi-
tional technical assumptions, these distributions are suffi-
ciently well-behaved to enable the efficient optimization in
Section 4.

Let P, (C) be a family of distributions over int(A™*™),
parameterized by C € R™*", and let Pr(7|C) denote
the density with respect to the Lebesgue measure. Define
Q(m) = —log Pr(|C) the negative log density, for tables
m € dom @ C R™*". Formally, we assume the following.

Al) @ is separable and Legendre type.

(A1)

(A2) int(A™*™) C dom Q. 3)
(A3)

(A4)

A4

dom Q* is open.
0 € dom Q*.

Here Q* is the convex conjugate !. For certain priors (such
as the Dirichlet prior, Section 5.1) we will drop the assump-
tion A4.

We say Pr(w|C) is separable if it decomposes as
Pr(7|C) o [[,; f(mi;|Cyj), with f : R x R — [0, +00] a
one-dimensional density.

Pr(7w|C) is log-concave of Legendre type if its negative
log is convex of Legendre type. Namely, the negative log is
closed, proper, essentially smooth and strictly convex on the
interior of its domain 2. Separability and log-Legendreness
of Pr(x|C) are satisfied by a number of common distri-
butions, including the component-wise normal, gamma,
beta, chi-square, logistic, and Weibull distributions.

One property of Legendre-type functions we will exploit is
duality between the domain and range of the gradient V(.
Specifically, for a Legendre-type @), the gradient of @) and
that of the convex conjugate (Q* define a bijection between
int(dom Q) and int(dom Q*), with VQ* = (VQ)~ 1. We
formulate, for example, the MAP estimation procedure in

'The convex conjugate Q* : dom Q* — R is defined

Q" (w)= sup (u,x)-Q(x).

x€int(dom Q)

2Bauschke and Borwein (Bauschke et al., 1997) Def. 2.8 and
surrounding gives a formal treatment of Legendre type functions.

Section 4 as an optimization over the dual space dom Q*,
and recover the primal solution via the map VQ*.

3.2. Probability model

We assume a common prior distribution P (C) for N tables
7(1), which satisfies the regularity properties (3). The tables
represent different but related instances of the problem, cor-
responding for example to different geographic regions in
the voter preference example. We assume the distribution’s
parameters C € R™*™ are shared across instances. The
model specifies

7 ~ Pr(C),

4 . 4
7@ 1L 70 | C, Vi # . @

Conditioned on the observed vectors u(? € A™ and v(¥) ¢
A™, we will draw inferences about the posterior density
Pr(n|u®, v C). With perfect observations, the posterior
is the truncation of the prior to the polytope of nonnegative
tables that are exactly consistent with the observations.

3.3. Specifying the model in practice

In practice, we are combining two datasets, often collected
separately but describing the same population; these spec-
ify the marginals u(” and v(*) above. Political scientists,
for example, relate demographics to voting behavior by
combining census data and vote counts. Much recent work
attempts to use additional measurements of the population
to inform the inference problem: These may be voter regis-
tration records (Imai & Khanna, 2016) or exit polls (Greiner
& Quinn, 2010), for example, which measure a proxy for
the underlying joint distribution that is our target. In our
framework, the prior P, (C) may be fit to such proxy data
by maximum likelihood:

N
O — ~(3)
C mngPr(ﬂ |C),

i=1

with 7#(?) the estimated proxy for the joint distribution in the
ith instance (e.g. precinct).

4. Maximum A Posteriori Inference

In the perfectly-observed case, each observed vector de-
fines an affine constraint on the table 7(9); for marginals
u® and v, we have 791 = u® and 7911 = v®,
Together with the constraints that the entries of the table be
nonnegative, these affine constraints define a convex poly-
tope U (u(®, v()) of tables consistent with the observations.
Maximum a posteriori estimation reduces to finding a table
7r,(f) that maximizes the prior over this polytope:

) = Pr(#|C).

argmax
melU(ul®,v(®)
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4.1. MAP estimation is a Bregman projection

Key to the tractability of MAP estimation for priors satisfy-
ing the assumptions (3) is the fact that it can be formulated
as minimization of a Bregman divergence over the polytope
of marginal constraints. This is stated in Proposition 1.

Proposition 1 (MAP is divergence minimization). Let
Pr(w|C) be a prior density over tables m € R™*", sat-
isfying the regularity properties (3). Define Q(m) =
—log Pr(w|C) the negative log density. Then the poste-
rior density Pr(w|u, v, C) has a unique maximum m, which
satisfies

7 = argmin Dg(m, VQ*(0)) %)

el (u,v)

with Q* the convex conjugate and Dg the Bregman diver-
gence with respect to Q.

In other words, the MAP estimate exists and is unique, and
is a Bregman projection onto the set of constraints U (u, v).

4.2. Dykstra’s method

Casting MAP estimation as a Bregman projection (Proposi-
tion 1) suggests that we can apply efficient general methods
for Bregman projections to compute the solution. In particu-
lar, we will use the Dykstra-Bregman (“Dykstra’s’”) method
(Bregman, 1967) of alternating projections, which has been
applied in the matrix balancing (Sinkhorn & Knopp, 1967)
and optimal transport (Cuturi, 2013; Benamou et al., 2015;
Dessein et al., 2018) settings to obtain fast-converging itera-
tive solvers.

Dykstra’s method (Bregman, 1967) obtains the Bregman
projection (5) onto U (u, v) by decomposing the polytope
into the intersection of three convex sets defined by the
constraints,

Cy ={m e R™*" : 71 = u}, (6)
Cy={meR™": 7Tl =v},

such that U(u,v) = C4 N Cy N Cy. The method alternates
Bregman projections onto the constraints Cy, Cy, and Cy
taken individually. In this case, a theorem of Bauschke and
Lewis (Bauschke & Lewis, 2000) guarantees the alternating
projections converge linearly to the Bregman projection onto
U(u,v). Algorithm 1 gives the generic form of Dykstra’s
method for this problem, with Pg indicating the Bregman
projection onto C. Note that the initial table (whose pro-
jection we are computing) depends on the particular prior
density used: this is VQ™*(0) from (5).

Bregman projections are rarely computable in closed form,
but for affine constraints they have a form suitable for itera-
tive optimization. Write the Lagrangians for the projections

of a table 7’ onto C,, and Cy,

Lu(m,a) =Q(1) — (VQ(r'),m) + aT (71 —u), (7)
Ly(m,B) = Q(m) —(VQ(r'),m) + BT (171 —v). (8)

For () that is convex of Legendre type, the gradient map
VQ : int(dom Q) — int(dom Q™) is a bijection, with the
gradient of the conjugate VQ* being the inverse of V(.
Applied to the first order conditions for (7) and (8), we get

Ta=Pg 7 =VQ* (VQ(r') —alT),  (9)
T =PE ' =VQ* (VQ(r') —187T),  (10)

for my, the projection of 7’ onto Cy, and m, that onto C,.
Computing 7, reduces to finding « such that the original
constraint holds,

VQ* (VQ(r') —al™)1 =, (1)

and analogously for 7, and . Dhillon and Tropp (Dhillon
& Tropp, 2007) suggest a method for finding . As Q@ is
Legendre, Q™ is strictly convex, and « satisfying (11) is the
unique optimum for a strictly convex problem,

a, = argmin Jy(a) = Q* (VQ(7') — al™)+uTa, (12)

acR™

which can be addressed by standard iterative methods. The
gradient of (12) exists, and the first order condition is exactly
(11). When the Hessian of QQ* is available, for () that is
separable we have

V2 Ju(a) = diag (V2Q* (VQ(r') —alT)1). (13)

The analogous equations hold for optimizing .

The projection onto nonnegativity constraints C,, for @
separable, has a simple form. Projecting 7’ results in

Pe, ' = max {0, 7'} . (14)

Algorithm 2 gives a realization of Dykstra’s method as an
iteration on the dual variable © = VQ(~), alternating pro-
jections onto the affine constraints Cy,, C,, with the nonnega-
tivity constraint C. Note that the projections (9) and (10)
can be viewed as linearly updating the dual representation
of the original table 7/. We therefore need only represent ©
to compute the Dykstra iterations.

For solving (12), Algorithm 3 gives a Newton-Raphson
method to compute the projection onto C,. An analo-
gous method works for C,. Note that for some priors
int(dom Q*) is a bounded subset of R™*"™, in which case
backtracking can be used to ensure the bounds are respected.
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Algorithm 1 Dykstra’s method for MAP estimation

Input: u € A™,v € A", mg € int(dom Q)
7 < Pc, (7o)
repeat

7« Pe, (PG, )

m« P, (P 7)
until 7 converges

Algorithm 2 Dykstra’s method for MAP estimation, dual
parameterization

Input: u € A™, v € A", O € int(dom Q*)
© + max {VQ(0),0q}
repeat
Q4 argming,cpm Q@* (0 — alT) + uTo
O + max{VQ(0),0 — a,17}
By < argmingcg. Q* (© — 167) +v7f3
© + max{VQ(0),0 — 157}
until © converges
e < VQ*(O)

5. Expanding the Model Class

5.1. Expanding the class of priors: e-MAP estimation

Example: Dirichlet prior. The Dirichlet distribution is
a natural prior to use in the setting of probability table
estimation, as it is supported on the simplex A™*™, which
is exactly the set of valid probability tables.

The Dirichlet distribution, however, is not quite regular: it
fails assumption A4 from Section 3.1, and so Proposition
1 does not apply. The problem is that the negative log
density (which has domain R'[" ™) does not attain its global
optimum — there is no finite 7 € R' " such that VQ(r) =
0. We therefore have no starting point for the Bregman

projection in Proposition 1.

The Dirichlet distribution, along with certain others failing
Ad, is still tractable in the following sense. For any small
e > 0, we can find a table 7. € int(dom @) such that
IVQ(7e)||2 < e. This, it turns out, is sufficient to guarantee

Algorithm 3 Newton-Raphson method for the projection
P, onto a marginal constraint

Input: u € A™, © € int(dom Q*)™*"™, k > 0
a+0
repeat
@ — a -
V2Q* (0 —alT)1
until « converges
O,+ 6 —alT

K(u—-VQ*(©—-alT)1) ©

that the Bregman projection of 7. onto U (u, v) is e—close
to the MAP solution, for an appropriate €. This is stated
formally in Proposition 2.

Proposition 2 (¢—MAP estimation). Let Pr(w|C) be a
prior density over tables m € R™*"™, satisfying the reg-
ularity properties Al, A2 and A3 from (3). Define Q(m) =
—log Pr(n|C) the negative log density, and suppose there
exists w. € int(dom Q) such that ||VQ(w)||2 < €. Let 7’
be its Bregman projection,

7. = argmin Dg(m, 7). (15)

el (u,v)

Then the posterior density Pr(rn|u, v, C) has a unique max-
imum T, that satisfies

Q(r)) — Q(m,) < V2. (16)

We can therefore do MAP inference by Dykstra’s method
(Algorithm 1), using 7 as the initial table.

5.2. Extending to noisy observations

When we observe finite samples {x(V} and {y/)}_,
from the marginal distributions of X and Y, they specify
only imperfectly the true marginal distributions. Moreover,
there may be additional noise — errors in counting votes,
for example, in the voting preference case. To model both
of these effects, we replace the hard marginal constraints
7M1 =ul® and 7971 = v(») by noise models,

u® ~Pu(r®1), v ~ P, (x®T1),  (17)

whose densities we assume to be log-concave and log-
coercive, with domain containing int(A™*"), 3

With noise included in our model, the maximum a posteriori
table is now characterized by

7@ = argmax Pr(u®|71) Pr(v(?|zx71) Pr(n|C).
WeAan
(18)

Although the objective is more complex, MAP inference
nevertheless retains a geometric interpretation: It is a gener-
alized Bregman projection onto the probability simplex.

Proposition 3 (MAP with noise is a generalized projection).
Let Q(m) £ —logPr(n|C), Yu(n) = —logPr(ujnl),
and )y () = —log Pr(v|nT1) be the negative log densi-
ties. Then the posterior density Pr(rn|u, v, C) has a unique
global maximum which satisfies

T, = argmin ¢y (m) + Py () + Do (7, VQ™(0)), (19)

ﬂ-eAm Xn

with Q* the convex conjugate of () and D¢ the Bregman
divergence with respect to Q).

*Note that, rather than being normalized to lie in the simplex,
the observed vectors u'® and v(¥) here might contain the original
sample counts for each category, as the noise model can link the
marginal probabilities ("1 and 7(Y)71 to the observed counts.



Fast and Flexible Inference of Joint Distributions from their Marginals

5.2.1. DYKSTRA’S METHOD FOR GENERALIZED
PROJECTIONS

Peyré (Peyré, 2015) has recently shown that generalized
projections of the form (19) can be solved by a generalized
Dykstra’s method. Analogous to the case of hard projec-
tions (Section 4), this involves alternating projections onto
the two soft constraints defined by v, and v, together with
the simplex constraint 71 € A™*™. We define each of these
projections by a proximal operator,

prox, ?(€) = argmin ¢(r) + Do(7,£).  (20)
ﬂ-eAnL Xn
The resulting generalized Dykstra’s algorithm is shown in
Algorithm 4.

(20) is evaluated similarly to the projections in Section 4.
For simplicity, we will separate out projection onto the
simplex, which can be alternated with the generalized pro-
jections onto v, and 1),,. For soft constraint v, the gener-
alized projection of table £ € R™*™ is

(VQ(), ™) + tu(m), (2D

Ty = argmin Q(mw) —
TERM XN
and analogously for 1)y.. This is a strictly convex, although
possibly nonsmooth (depending on %)y,), problem, with a
unique minimum. For smooth models, we can solve it via a
Newton’s method analogous to Algorithm 3.

For projecting £ € R™*™ onto the simplex, we can formu-
late the Lagrangian,

L(m, A e) =
Q(r) — (VQ(£),m) + A ij (e,m), @2
which is solved by
T = VQ* (VQ(E) — M1T +¢), (23)

with € > 0. X is found by solving

Av = argmin Q" (VQ(§) —

A€R

AM1T) 4+ A, (24)

while ¢ solves

g, = max{VQ(0) — VQ(§) + A\117,0}. (25)
As in Section 4.2, these generalized projections in practice
are computed in terms of a dual variable © € int(Q*),
which is related to the primal via 7 = VQ*(0©). Algorithm
5 shows the resulting algorithm.

5.3. Tertiary and higher-order relationships

Unlike prior work, the MAP inference methods we have
outlined generalize naturally to multidimensional tables re-
lating more than two marginals. We describe this for the

Algorithm 4 Generalized Dykstra’s method for MAP esti-
mation with noisy data

Input: u € A™, v € A", g € int(dom Q)

70 oy Liw, Ly < 0.

repeat
oD prox (VQ* (VQ(r9) + Zy,))
Lo < Zy +VQ( 0) = vQ(r+D)
alt+2) prox °(VQ* (VQ(r*“+Y) + Z,))
Zy — Zoy + VQ( Dy - vQ(r+2)

until 7(Y converges

Algorithm 5 Generalized Dykstra’s method for MAP esti-
mation with noisy data, dual parameterization

Input: u € A™,v € A", Qg € int(dom Q*)
0 + max {VQ(0),00}, Zy, Zy < 0.
repeat
(Alternate (¢, Z) = (Y, Zu), (U, Zy).)
Ty 4= argmin, cgmxn Q(1) — () + Z, 1) + (7).
Ay — argmin, cp Q*(VQ(m) — A11T) + A
O « max {VQ(0), VQ(m.) — A\, 11T}
Z+ Z+0H) —e®
until ©) converges
e < VQ*(0,)

perfectly-observed case, with the imperfect case directly
analogous. Noting that Dykstra’s method (Algorithm 1)
alternates projections onto two marginal constraints, we can
do the same, cycling through more than two constraints.
Let {ug} | be a be a set of K marginals given as in-
put data. Each marginal associates to an affine constraint
Cu, = {7T € Rmxemxmi Z Go bk T it sdier i =
(ug) ;. Vi }. With these K constraints, the interior of Algo-
rithm 1 becomes:

repeat
m+ Pe, (Pg w), ke 1+ (k+1) mod K
Uk
until 7 converges

This straightforward extension preserves the efficiency of
the two-marginal case, converging linearly to the MAP table
(Bauschke & Lewis, 2000).

6. Empirical Evaluation
6.1. Computational cost

The proposed methods are significantly more efficient than
prior work. Figure 1 shows wall-clock times for inference in
models assuming perfect observations of the marginals and
in models assuming multinomial-distributed observations
for at least one of the marginals. We compare the proposed
method to two baselines, with the shown time being the total
for inferring 100 tables from randomly-generated marginals,
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Tsallis (q=0.5) TROT
Tsallis (9q=2) TROT
Tsallis (q=0.5) MAP
Tsallis (q=2) MAP
Normal MAP
Dirichlet MAP

Jo

bt

logio time (sec.)
o

(8,'8) (16,'16) (32,' 32) (64,'64)

table size

2. 2) @, 4)

(a) Models with perfectly-observed marginals.

Dirich. 1-mult. MCMC
Dirich. 1-mult. MAP
Dirich. 2-mult. MAP
Normal 2-mult. MAP
Entropic 2-mult. MAP
Tsallis (g=0.5) 2-mult. MAP
Tsallis (g=2) 2-mult. MAP

btetse

logio time (sec.)
o

(8,I 8) (16,I 16) (32,I 32) (64,I 64)

table size

(2,I 2) (4,I 4)

(b) Models with multinomial-distributed marginals.

Figure 1. Runtimes, inferring 100 tables. The proposed inference method (MAP) is significantly faster than TROT (Muzellec et al.,
2017) and MCMC (Rosen et al., 2001) for equivalent models. Inference for multinomial-distributed models is generally slower than for

perfectly-observed models.

using uniform (all 1) values for the prior parameters. The
proposed method (“MAP”) is run until convergence *. Fig-
ure 1 shows the median time over 10 runs of each algorithm,
with the shaded region the middle 80% °.

Comparison to TROT. Muzellec et al. (2017) propose two
methods for MAP inference, in the particular case of a
Tsallis-distributed prior and perfectly-observed marginals.
The first is for values of the Tsallis ¢ parameter less than 1,
the second for ¢ > 1. We try both methods, setting ¢ = 0.5
and ¢ = 2, and compare to the proposed MAP inference for
the same models 6. In both cases, our proposed method is
between one and two orders of magnitude faster.

Comparison to MCMC. Rosen et al. (2001) propose a
Metropolis-Hastings sampler for the model having a Dirich-
let prior, a single perfectly-observed marginal, and a single
marginal observed with multinomial noise (“Dirich. 1-mult.”
in Figure 1b). We compare MAP inference by our proposed
method to MCMC inference for this model, sampling a (rel-
atively short) chain of length 1000, with no thinning and no
burn-in. Note that, particularly for larger tables, a respon-
sible application of MCMC will use a much larger number
of samples, taking correspondingly longer to execute. Even
with this small number of samples, however, our proposed

* After each outer iteration we check the Frobenius norm of
the deviation of the dual variable © from its previous value, halt-
ing when this deviation is less than 1e-4. The inner Newton
optimization is run for 20 steps within each outer iteration.

5 All methods were implemented in Python using numpy, and
were run on a MacBook Pro with a dual-core 2.9GHz processor.
The TROT implementation is from the original author, available at
https://github.com/BorisMuzellec/TROT.

SWe set the parameter X from Muzellec et al. (2017) to 1.

method is faster by roughly a factor of three.

Relative efficiency of MAP inference for perfectly-
observed models. The fastest inference methods out of
all those evaluated are the proposed MAP algorithms for
models with perfectly-observed marginals. For models with
both marginals multinomial-distributed (“2-mult.” in Fig-
ure 1b), the proposed algorithms tend to be slower, due to
an additional projection onto the simplex at each iteration,
although they are still comparable to (and sometimes faster
than) the baselines.

6.2. Inference with real data

Unlike previous work, the inference methods described here
apply simultaneously to a broad range of models (outlined in
Sections 3 and 5). Here we demonstrate that this flexibility
matters for modeling real data, with models newly avail-
able in our framework often outperforming those proposed
previously.

We use five real datasets, each consisting of some number
of joint samples of two categorical variables, conditioned
on a geographic variable (such as a state or county). Each
geographic location determines a table of counts from these
samples, which we treat as the ground truth to be estimated,
given the table’s marginals as observed data. The datasets:

1. CDC cause of death by state, 1999-2016 (CDC,
2018): we relate cause of death amongst males (32
categories) to age group (11 categories).

2. Indian educational attainment by district, 2001 (In-
dia, 2018): we relate educational attainment (10 cate-
gories) to age group (22 categories).


https://github.com/BorisMuzellec/TROT
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Table 1. Median absolute error of inferred table entries, real data.

DATASET DEATH | EDUCATION | VOTING | INCOME | INSURANCE
N. TABLES 51 110 68 51 51
TABLE DIM. 11 x 32 22 x 10 7x3 11x9 20 x 4
SCORE SCALE le—4 le—4 le—3 le—4 le—3
Prior work

INDEPENDENT 3.94 2.17 1.39 14.0 4.93
GOODMAN 89.0 11.4 10.5 74.8 5.42
MULT. DIRICH. (MCMC) 6.48 49.9 1.05 67.7 10.1
MAP, perfect

ENTROPIC 3.39 0.48 4.40 11.8 5.23
TSALLIS (¢ = 0.5) 4.92 1.74 1.34 7.98 1.63
TSALLIS (¢ = 2) 4.85 1.68 4.14 12.9 5.83
NORMAL 1.58 0.82 3.54 5.72 0.92
DIRICHLET 6.32 1.56 3.76 51.7 1.02
MAP, multinomial

ENTROPIC 3.57 0.41 4.23 9.53 5.51
TSALLIS (¢ = 0.5) 15.9 8.63 3.58 6.17 2.69
TSALLIS (g = 2) 32.1 5.28 12.4 79.4 10.2
NORMAL 2.85 1.14 2.41 6.15 1.33
DIRICHLET 3.55 45.9 4.23 9.53 0.92

3. Florida voter registration by county, 2012 (Imai &
Khanna, 2016): we relate self-reported race (7 cate-
gories) to political affiliation (3 categories).

4. U.S. total personal income by state, 2016 (IPUMS,
2018): we relate educational attainment (11 categories)
to income (9 categories).

5. U.S. health insurance coverage by state, 2016
(IPUMS, 2018): we relate age group (20 categories)
to the class of health insurance provider (public vs.
private) (4 categories).

Table 1 shows the results of using various models to infer the
underlying table from its marginals, in terms of the median
absolute error of the inferred table entries with respect to
the true table entries 7. Bolded in each column is the best-
performing model, along with any models that were not
significantly worse — we discuss tests of significance for
differences in performance in Appendix D.

We test two types of models, using the proposed inference
methods (“MAP”): those assuming perfect observations of
the marginals and those assuming multinomial-distributed
observations. We also compare to the existing methods
described in Section 2.2 8. Note that the “entropic” prior is
the natural exponential family whose log-base measure is
given by the negative entropy function.

To test the ability of each model to capture the distribution

"We normalize each ground truth table to sum to 1, before
computing the absolute error.

8For the multinomial-Dirichlet (MCMC) model we sample a
chain of length 10° with burn-in of 10*, with no thinning. The
estimate is the mean. For the entropic and Tsallis models, we set
A = 1 (as defined in (Muzellec et al., 2017)). For normal models,
we fix 0 = 0.1.

of the data (and put all models on roughly equal footing),
we estimate the parameters of each prior distribution by
maximum likelihood, given a single table containing the
total proportions across each entire dataset. This is quasi-
realistic: In the electoral example, this would be equivalent
to a statewide poll providing the prior for subsequent infer-
ence at the county level.

Comparison to prior work. In only one case — the voter
registration dataset — is a model available from prior work
among the best-performing models. This is also the only
dataset for which the independence model is competitive
with the best, indicating that the two variables are relatively
well-modeled as being independent. Note that the entropic
and Tsallis models with perfectly-observed marginals have
previously been suggested for this problem (Muzellec et al.,
2017), but in the Tsallis case different inference algorithms
were used; one of these is only approximate (for ¢ < 1),
whereas the method we use here is exact. None of the
models with multinomial observations of both marginals
was available previous to the current work; neither were the
perfectly-observed models with normal and Dirichlet priors.
Note that these represent only a small sample of the possible
models within our framework (Sections 3 and 5).

7. Conclusion

The general-purpose inference methods presented here ap-
ply to a broad class of models, greatly extending the choices
available to practitioners. In addition to being computa-
tionally efficient, these methods can enable more accurate
modeling of real data than existing methods. The proposed
methods might be extended further to non-separable priors,
which can have correlated components, and to continuous
variables, leveraging ideas from regularized optimal trans-
port (Genevay et al., 2016).
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