
Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

A. Soft Nearest Neighbor Loss on Toy

distribution

This Figure complements Figure 1. It adds a second mode to

each class of the distribution, showing that minimizing en-

tanglement through the soft nearest neighbor loss preserves

the two modes in each class.

Figure 13. Data is generated for each class by sampling from two

Gaussians. As entanglement is minimized using gradient descent

on the (x, y) coordinates of the points, each class does not collapse

into a single point; instead, both initial modes are preserved.

B. Comparing the Soft Nearest Neighbor Loss

with the Triplet Loss

Other approaches have previously explored the use of im-

plicit nearest neighbor search as a regularization term in

the loss to handle noisy data (Azadi et al., 2015). Our soft

nearest neighbor loss is perhaps most similar to the triplet

loss (Hoffer & Ailon, 2015), in that both measure the rela-

tive distance between points from the same class and points

from different classes. The triplet loss is calculated by tak-

ing the maximum of 0 and the difference between (a) the

distance between an anchor point and a positive point (in the

same class) and (b) the distance between the anchor point

and a negative point (in a different class) for every anchor

point in a batch. Equation 4 presents the triplet loss where

xa
i denotes the anchor point, xa

i a positive sample, xn
i a

negative one and α the margin term:

L =

N
∑

i

(

||f(xa
i)−f(xp

i)||
2

2
−||f(xa

i)−f(xn
i)||

2

2
+α

)

(4)

Minimizing the triplet loss should have a similar effect on

learned representations as minimizing entanglement (by

minimizing the soft nearest neighbor loss) as both are im-

posing constraints on the relative distance between points

within a class and points in different classes. However, a

Figure 14. DKNN credibility over accuracy for white box FGSM

attacks with varying epsilons, plotted for MNIST. Maximizing the

triplet loss seems to have the opposite effect of maximizing the

soft nearest neighbor loss.

notable difference is that the triplet loss is calculated by sam-

pling positive and negative points to estimate the separation

of classes whereas the soft nearest neighbor loss uses all of

the points in a batch to measure the separation.

In Figure 2, we compare minimizing and maximizing these

two similar losses by visualizing the results of minimizing

and maximizing a random set of 2 dimensional points la-

beled in four classes. We see that both losses have similar

effects when the loss is minimized: the classes are separated

by a larger margin. However, when the loss is maximized,

the end results are not identical: the triplet loss chooses a

representation that densely projects the data around a cir-

cle whereas the soft nearest neighbor loss spreads out data

throughout the representation space.

We provide an additional point of comparison: the impact

of both losses on the calibration of DkNN credibility es-

timates. We train MNIST models with cross-entropy and

a regularizer maximizing either the triplet loss or the soft

nearest neighbor loss at each layer, as done in Section 5.1.

We report the accuracy of DkNN predictions with respect

to their credibility in Figure 14. We did not find improved

DKNN calibration for networks trained with the triplet loss

term—unlike models maximizing entanglement through the

soft nearest neighbor term.

C. Additional Entanglement Measurements

We report here entanglement measurements made with the

soft nearest neighbor loss on MNIST and CIFAR10 models.

They complement results presented in Section 3.1, which

demonstrated the use of the soft nearest neighbor loss as an

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 15. Soft nearest neighbor loss value per layer of a neural

network on MNIST. The loss decreases during training despite the

model being optimized to minimize cross-entropy only.

analytical tool to follow the evolution of similarity structures

during learning in models trained to minimize cross-entropy.

MNIST. We trained a neural network with one convolu-

tional layer and three fully-connected layers on MNIST and

measured the Soft Nearest Neighbor Loss of each training

batch at each layer during training. Note in Figure 15 how

the loss value decreases throughout training, unlike results

presented in Section 3. This is most likely because MNIST

is easier to separate in the input domain than other datasets

considered in our work.

CIFAR10. We repeat the experiment presented in Sec-

tion 3.1 but now looking at all residual blocks instead of

only the last one. In Figure 16, we report the average soft

nearest neighbor loss of the layers contained in each residual

block, across all of the training data throughout learning. Re-

sults are consistent with Section 3.1. Entanglement is fairly

constant or increases as training progresses in the first three

blocks; suggesting a large amount of feature co-adaptation

across classes in the corresponding layers. Instead, the final

block’s entanglement monotonically decreases as it extracts

discriminative features to classify the input. When measur-

ing Soft Nearest Neighbor Loss within a resnet with large

hidden layers, we use cosine distance (1−cos(xxx,yyy)) instead

of euclidean distance to ensure stable calculations.

Figure 16. Entanglement loss averaged within each residual block

of a ResNet on CIFAR-10. Entanglement remains high throughout

learning for the lower blocks, as they extract features that help

discriminate classes, and only decreases in the final block.

D. Soft Nearest Neighbor Loss as an

Analytical Tool for Generative Models

In Section 3, we showed how the soft nearest neighbor loss

allows us to monitor the entanglement of synthetic data

with real training data when learning a generative model on

CIFAR10. Here, Figure 17 is the analog of Figure 5 for the

MNIST dataset: it plots the entanglement between synthetic

and real data, as measured by the soft nearest neighbor loss,

on three variants of GANs.

Note that the similar values of the soft nearest neighbor

loss for MNIST and CIFAR-10 are a coincidence. We can

calculate the entanglement a perfect generative model would

achieve by measuring the SNNL between batches of data

from the same distribution: e.g., the test and training sets.

These values are very close (0.698 for MNIST and 0.697 for

CIFAR-10) because of the data pre-processing we applied

to both datasets: we normalized all dimensions to have

pixel values in [0,1]. If we repeat the computation with

unnormalized test and training data, that is with integer

pixel values between 0 and 255, the optimal SNNL value

for MNIST is 11.5 and 4.95 for CIFAR-10.

E. Does Entanglement conflict with

Robustness?

We reproduce the adversarial training procedure from Madry

et al. (2017), where adversarial examples are generated with

projected gradient descent (that is with multiple gradient

steps and random restarts). The training objective only min-

imizes cross-entropy over these adversarial examples. Once

the model is trained, we measure the entanglement of its

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 17. Entanglement of synthetic and real data, as measured

by the soft nearest neighbor loss, on three different types of GAN

architectures trained on MNIST.

Layer Baseline model PGD model

Conv1 (after pool) 1.39 2.21

Conv2 (after pool) 0.75 1.97

Fully Connected layer 1.75 0.46

Logits 0.13 0.21

Table 2. Entanglement loss measured on models trained to mini-

mize cross-entropy on the original training data (baseline model)

or adversarial examples (PGD model). Measurements were made

at temperature T = 100 on a batch of 128 MNIST test points.

hidden layers using the soft nearest neighbor loss. The same

architecture, also trained to minimize cross-entropy but on

non-adversarial data, serves as a baseline to interpret these

entanglement measurements. As reported in Table 2, we

find that the adversarially trained model’s convolutional lay-

ers are more entangled than the baseline model’s, despite

not being explicitly constrained to maximize entanglement

during training. This further supports our hypothesis that in-

creased entanglement of representation spaces is beneficial

to the similarity structure of internal representations and can

support better (here, worst-case) generalization.

F. DkNN Uncertainty Calibration

We include here reports of the DkNN uncertainty calibra-

tion on entangled MNIST (Figure 18) and FashionMNIST

(Figure 20) models. The experiment performed is the one

described in Section 5.1, where the plot visualizes DkNN

credibility as a function of DkNN prediction accuracy.

G. Out-of-Distribution Test Inputs

This experiment complements results on SVHN and CI-

FAR10 in Section 5.3, where we showed that maximizing

entanglement leads to representations that better separate

test data from data sampled from a different distribution.

We repeat the experiment on MNIST and notMNIST.

We train a network on MNIST and see what its behavior

is like on notMNIST, a data set made up of MNIST-sized

typeface characters between letters A and J. Test examples

from the notMNIST dataset should thus be projected very

differently by a model trained on MNIST, when compared

to examples from the MNIST test set. This is indeed what

we observe in Figure 21, which uses t-SNE to visualize

how the logits project MNIST and notMNIST test inputs

when a model is trained with cross-entropy only or with the

soft nearest neighbor loss to maximize entanglement. We

observe that the vanilla model makes confident predictions

in the MNIST classes for the notMNIST inputs (because

they are projected close to one another), whereas the entan-

gled model separates all of the notMNIST data in a distinct

cluster and preserves the MNIST clusters.

H. Intuition for Improved DkNN Calibration

In Figure 22, we visualize the activations of a hidden layer

on real and adversarial test data. In the non-entangled model

trained with cross-entropy, the adversarial data is projected

close to the real test data. Instead, on the entangled model,

the representation separates better the real and adversarial

data. This in turn, results in a better estimate of the number

of training neighbors that support the prediction made. As a

consequence, the DkNN is able to provide more calibrated

estimates of uncertainty on entangled representations.

I. Soft Nearest Neighbor GANs

In Section 3, we found that the entanglement loss can effec-

tively replace the discriminator in a GAN setup on MNIST.

However, we were unable to scale the same setup to train a

CIFAR10 model. We hypothesized that this is due to the fact

that the ℓ2 distance does not characterize CIFAR10’s input

domain as well as it does for MNIST. Hence, we run an

additional experiment restoring the discriminator but modi-

fying the typical losses used to train GANs: we constrain

the generator to entangle synthetic and real data in a 10

dimensional space using the soft nearest neighbor loss while

the discriminator is constrained to disentangle the synthetic

and real data. While this is simply a proof-of-concept on

MNIST, results summarized in Figure 23 demonstrate that

this approach deserves further investigation and may scale

to larger datasets given the discriminator’s ability to learn

how to compare points compared to a direct application of

the ℓ2 distance in the pixel space.

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 18. DkNN credibility (prediction support from the training data) as a function of prediction accuracy on MNIST. These plots were

created with the same methodology as Figure 9.

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 19. DkNN credibility (prediction support from the training data) as a function of prediction accuracy on FashionMNIST. These

plots were created with the same methodology as Figure 9.

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 20. DkNN credibility as a function of prediction accuracy on all three datasets, where the underlying model is trained with

cross-entropy only. Each point corresponds to a set of adversarial examples computed on an entangled model and are transferred to the

DkNN with a model trained on cross-entropy only. These plots were created with the same methodology as Figure 9. As explained in

Section 5.2, entangled models make poor source models for a black box attack based on transferability: the accuracy of the cross-entropy

baseline remains high on all three datasets; the attack is noticeably less effective than in previous settings considered above.

Figure 21. t-SNE visualization of representations of in-distribution (MNIST—blue) and out-of-distribution (notMNIST—dark) test data

learned by a vanilla (left) and entangled (right) model.

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 22. t-SNE visualization of the activations from the first hidden layer of a network trained on FashionMNIST. Real data points

are plotted in blue whereas adversarial data points are visualized in red. In the vanilla (non-entangled) model, the representations of

adversarial data and real data occupy a similar part of activation space. Instead, in the entangled model, the adversarial data is projected

into a separate area. This provide some intuition for why entangled models have better calibrated DkNN uncertainty estimates: it is easier

to evaluate support in a particular model prediction through a nearest neighbor search in the training data given a test point.

Figure 23. Training progression of a MNIST GAN in which the discriminator minimizes the Soft Nearest Neighbor Loss between real and

synthetic data in a learned 10 dimensional space, and the generator maximizes it. We replaced the output layer of the discriminator with a

10 dimensional vector. This proof-of-concept demonstrates that the soft nearest neighbor loss can be used in a learned space as well as the

pixel space, which is explored more thoroughly in the main text.

Analyzing and Improving Representations with the Soft Nearest Neighbor Loss

Figure 24. The kernels of the first convolutional layers of entangled models look quite a bit different than standard models. They look

considerably noisier and less coherent. This may be due to that fact that SNNL was maximized in the first layer as well as all other layers,

so the first level features will project the data into class independent clusters.

	Soft Nearest Neighbor Loss on Toy distribution
	Comparing the Soft Nearest Neighbor Loss with the Triplet Loss
	Additional Entanglement Measurements
	Soft Nearest Neighbor Loss as an Analytical Tool for Generative Models
	Does Entanglement conflict with Robustness?
	DkNN Uncertainty Calibration
	Out-of-Distribution Test Inputs
	Intuition for Improved DkNN Calibration
	Soft Nearest Neighbor GANs

