
Diagnosing Bottlenecks in Deep Q-learning Algorithms

Appendices

A. Benchmark Tabular Domains
We evaluate on a benchmark of 8 tabular domains, selected
for qualitative differences.

4 Gridworlds. The Gridworld environment is an NxN grid
with randomly placed walls. The reward is proportional to
Manhattan distance to a goal state (1 at the goal, 0 at the
initial position), and there is a 5% chance the agent trav-
els in a different direction than commanded. We vary two
parameters: the size (16×16 and 64×64), and the state rep-
resentations. We use a “one-hot” representation, an (X, Y)
coordinate tuple (represented as two one-hot vectors), and
a “random” representation, a vector drawn from N (0, 1)N ,
where N is the width or height of the Gridworld. The ran-
dom observation significantly increases the challenge of
function approximation, as significant state aliasing occurs.

Cliffwalk: Cliffwalk is a toy example from Schaul et al.
(2015). It consists of a sequence of states, where each state
has two allowed actions: advance to the next state or return
to the initial state. A reward of 1.0 is obtained when the
agent reaches the final state. Observations consist of vectors
drawn from N (0, 1)16.

InvertedPendulum and MountainCar: InvertedPendu-
lum and MountainCar are discretized versions of contin-
uous control tasks found in OpenAI gym (Plappert et al.,
2018), and are based on problems from classical RL liter-
ature. In the InvertedPendulum task, an agent must swing
up an pendulum and hold it in its upright position. The state
consists of the angle and angular velocity of the pendulum.
Maximum reward is given when the pendulum is upright.
The observation consists of the sin and cos of the pendulum
angle, and the angular velocity. In the MountainCar task,
the agent must push a vehicle up a hill, but the hill is steep
enough that the agent must gather momentum by swinging
back and forth within a valley in order to reach the top. The
state consists of the position and velocity of the vehicle.

SparseGraph: The SparseGraph environment is a 256-state
graph with randomly drawn edges. Each state has two edges,
each corresponding to an action. One state is chosen as the
goal state, where the agent receives a reward of one.

B. Fitted Q-iteration with Bounded
Projection Error

When function approximation is introduced to Q-iteration,
we lose guarantees that our solution will converge to the
optimal solution Q∗, because the composition of projection
and backup is no longer guaranteed to be a contraction under
any norm. However, this does not imply divergence, and in
most cases it merely degrades the quality of solution found.

This can be seen by recalling the following result from (Bert-
sekas & Tsitsiklis, 1996), that describes the quality of the
solution obtained by fitted Q-iteration (FQI) when the pro-
jection error at each step is bounded. The conclusion is that
FQI converges to an L∞ ball around the optimal solution
which scales proportionally with the projection error. While
this statement does not claim that divergence cannot occur
in general (this theorem can only be applied in retrospect,
since we cannot always uniformly bound the projection error
at each iteration), it nevertheless offers important intuitions
on the behavior of FQI under approximation error. For sim-
ilar results concerning µ-weighted L2 norms, see (Munos,
2005).

Theorem B.1 (Bounded error in fitted Q-iteration). Let the
projection or Bellman error at each iteration of FQI be
uniformly bounded by δ, i.e. ‖Q̂i+1 − T Q̂i‖∞ ≤ δ ∀ i.
Then, the error in the final solution is bounded as

lim
i→∞
‖Q̂i −Q∗‖∞ ≤

δ

1− γ

Proof. See of Chapter 6 of Bertsekas & Tsitsiklis (1996).

We can use this statement to provide a bound on the perfor-
mance of the final policy.

Corollary B.1.1. Suppose we run fitted Q-iteration, and let
the projection error at each iteration be uniformly bounded
by δ, i.e. ‖Q̂i+1 − T Q̂i‖∞ ≤ δ ∀ i. Letting η(π) denote
the returns of a policy π, the the performance of the final
policy is bounded as:

lim
i→∞

|η(πi)− η(π∗)| ≤ 2γδ

(1− γ)2

Proof. This result is obtained by substituting Thm. B.1 into
Propositon 6.1 of Bertsekas & Tsitsiklis (1996).

B.1. Unbounded divergence in FQI

Because L2 norms are bounded by the L∞ norm, Thm. B.1
implies that unbounded divergence is impossible when
weighting distribution has positive support at all states and
actions (i.e. µ(s, a) > 0 ∀ (s, a) ∈ (S,A)), and the projec-
tion is non-expansive in the L2 norm (such as when using
linear approximators).

We can bound the µ-weighted L2 in terms of the L∞ as

follows: ‖·‖2,µ ≤
1

minµ(s,a) ‖·‖2 ≤
√
|S||A|

minµ(s,a)‖·‖∞. Thus,

we can apply Thm. B.1 with δ =

√
|S||A|

minµ(s,a) to show that
unbounded divergence is impossible. Note that because this
bound scales with the size of the state and action spaces,
it is fairly loose in many practical cases, and practitioners

Diagnosing Bottlenecks in Deep Q-learning Algorithms

may nevertheless see Q-values grow to large values (tighter
bounds concerning L2 norms can be found in (Munos, 2005),
which depend on the transition distribution). It also suggests
that distributions which are fairly uniform (so as to maxi-
mize the denominator) can perform well.

When the weighting distribution µ does not have support
over all states and actions, divergence can still occur, as
noted in the counterexamples such as Section 11.2 of Sutton
& Barto (2018). In this case, we consider two states (state
1 and 2) with feature vectors 1 and 2, respectively, and a
linear approximator with parameter w. There exists a single
action with a deterministic transition from state 1 to state 2,
and we only sample the transition from state 1 to state 2 (i.e.
µ(s, a) is 1 for state 1 and 0 for state 2). All rewards are 0.
In this case, the projected Bellman backup takes the form:

wt+1 = argmin
w

(w − 2γwt)2

Which will cause unbounded growth limt→∞ wt = ∞
when iterated, provided γ > 0.5. However, if we add a
transition from state 2 back to itself or to state 1, and place
nonzero probability on sampling these transitions, diver-
gence can be avoided.

C. α-smoothed Q-iteration
In this section we show that the α-smoothed Bellman
backup introduced in Section 6 is still a valid Q-iteration
method, in that it is a contraction (for 1 ≥ α > 0) and thus
converges to Q∗.

We define the α-smoothed Bellman backup as:

T αQ = αT Q+ (1− α)Q

Theorem C.1 (Contraction rate of the α-smoothed Bellman
backup). T α is a 1− α+ γα-contraction:

‖T αQ1 − T αQ2‖∞ ≤ (1− α+ γα)‖Q1 −Q2‖∞

Proof. This statement follows from straightforward applica-
tion of the triangle rule and the fact that T is a γ-contraction:

‖T αQ1 − T αQ2‖∞
= ‖(αT Q1 − (1− α)Q1)− (αT Q2 − (1− α)Q2‖∞
= ‖α(T Q1 − T Q2) + (1− α)(Q1 −Q2)‖∞
≤ α‖T Q1 − T Q2‖∞ + (1− α)‖Q1 −Q2‖∞
≤ αγ‖Q1 −Q2‖∞ + (1− α)‖Q1 −Q2‖∞
= (1− α+ αγ)‖Q1 −Q2‖∞

D. Adversarial Feature Matching (AFM):
Detailed Explanation and Practical
Implementation

As described in section 7.2, we devise a novel weighting
scheme for the Bellman error objective based on an adver-
sarial minimax game. The adversary computes weights
pφ(s, a) (representing the weighting distribution µ), for the
Bellman error: (Qθ,w(s, a) − y(s, a))2. Recalling from
Section 7.2, the optimization problem is given by:

min
θ,w

max
φ

Epφ(s,a)[(Qw,θ(s, a)− y(s, a))2]

s.t.
∣∣∣∣Epφ(s,a)[Φ(s)]−

∑
i Φ(si)

N
|| ≤ ε

where Φ(s) are the state features learned by the Q-function
approximator. Φ(s) is easy to extract out of the multiheaded
Q(s, a) (Q(s, a) = wTa Φ(s)) model typically used for dis-
crete action control, as one choice is to let Φ(s) be the
output of the penultimate layer of the Q-network. For con-
tinuous control tasks, however, we model Φ(s, a) (which
is a function of the actions as well) as state-only features
are unavailable, unless separately modeled. This can also
be interpreted as modelling a feature matching constraint
on the gradient of Q(s, a) with respect to the last linear
parameters wa. A possible extension is to take into account
the entire gradient as the features in the feature matching
constraint, that is,∇w,θQw,θ(s, a).

This choice of the constraint is suitable and can be inter-
preted in two ways. First, an adversary constrained in this
manner has enough power to exploit the Q-network at states
which get aliased under the chosen function class, thereby
promoting more separable feature learning and reducing
some negative aspects of function approximation that can
arise in Q-learning. This is also similar in motivation to (Liu
et al., 2018). Second, this feature constraint also bears a sim-
ilarity the Maximum Mean Discrepancy (MMD) distance
between two distributions P (x) and Q(x) that can be writ-
ten as MMD2(P,Q) := ||EP [Φ]−EQ[Φ]||H, where the set
of functions Φ is the canonical feature map, Φ : Rn → H
(from real space to the RKHS). In our context, this is analo-
gous to optimizing a distance between the adversarial distri-
bution pφ(s, a) and the replay buffer distribution prb(s, a)
(as the average is a Monte-Carlo estimator of the expected
Φ under the replay buffer distribution prb(s, a)). In the light
of these arguments, AFM, and other associated methods that
take into account the properties of the function approxima-
tor into account (for example, Φ here), can greatly reduce
the bias incurred due to function approximation in the due
course of Q-learning/FQI, as depicted in 1.

Comparision to Prioritized Experience Replay (PER):
While both AFM and PER tend to upweight samples in the
buffer with a high Bellman error, PER explicitly attempts

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Figure 10. Results for the α-smoothed Bellman backup experiment. Normalized L∞ norm error to Q∗ and normalized returns plotted for
different values of α and architectures. Values are averaged over all domains and 5 seeds. For large architectures, higher values of α result
in faster convergence and higher asymptotic returns. However, for smaller architectures, low values of α slightly outperform higher values.

to reduce distribution shift via importance sampling. As
we observed in Section 7, distributional shift is not actually
harmful in practice, and AFM dispenses with this goal, in-
stead explicitly aiming to rebalance the buffer to attain better
coverage via adversarial optimization. In our experiments,
this results in substantially better performance, consistent
with the hypothesis that coverage, rather than reduction
of distributional shift, is the most important property in a
sampling distribution.

Solving the optimization We solve this saddle point prob-
lem using alternating dual gradient descent. We first solve
the inner maximization problem, and then use its solution
to then solve the outer minimization problem. We first com-
pute the Lagrangian for the maximization, Linner(φ;λ, θ) by
introducing a dual variable λ,

Linner(φ;λ, θ) = −Epφ(s,a)[(Qθ(s, a)− y(s, a))2]+

λ
(
||Epφ(s,a)[Φ(s)]−

∑
Φ(s)

N
|| − ε

)
(Note that this Lagrangian is flipped in sign because we first
convert the maximization problem to standard minimization
form.) We now solve the inner problem using dual gradi-
ent descent. We then plug in the solutions (approximate
solutions obtained after gradient descent), (p∗, λ∗) into the
Lagrangian, to then solve the outside minimization over θ.
Note that while Φ depends on θ (as it is the feature layer
of the Q-network), we don not backpropagate through Φ

while solving the minimization. This improves stability of
the Q-network training in practice and to makes sure that
Q-function is only affected by FQI updates. In practice, we
take up to 10 gradient steps for the inner problem every 1
gradient step of the outer problem. The algorithm is sum-
marized in Algorithm 4. Our results provided in the main
paper and here don’t particularly assume any other tricks
like Optimistic Gradient (Daskalakis et al., 2018), using
exponential moving average of the parameters (Yazıcı et al.,
2019). Our tabular experiments seemed to benefit some
what using these tricks.

Practical implementation with replay buffers We in-
corporate this weighting/sampling distribution into Q-
learning in the setting with replay buffers and with state-
action sampling. We evaluate the weighting version of our
method, AFM, where, we usually sample a large batch
B of state-action pairs from a usual replay buffer used
in Q-learning, but use importance weights to then match
pφ(s, a) in expectation. Thus, we use a parametric function
approximator to model pφ(s,a)

prb(s,a) – that is, the importance
weights of the adversarial distribution with respect to the
replay buffer distribution prb(s, a). Mathematically, we esti-
mate: Epφ(s,a)[δ(s, a)] := Eprb(s,a)[

pφ(s,a)
prb(s,a)δ(s, a)], where

δ(s, a) = (Qθ,w(s, a) − y(s, a))2. The latter expectation
is then approximated using a set of finite samples. It has
been noted in literature that importance sampling (IS) suf-
fers from high variance especially if the number of samples

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Algorithm 4 AFM with Exact-FQI

1: Initialize Q-value approximator Qθ,w(s, a), projection
distribution µφ(s, a), threshold ε

2: for step t in {1, . . . , N} do
3: Initialize Q-value approximator Qθ,w(s, a).
4: Evaluate Qθt,wt(s, a) at all states.
5: Compute exact target values at all states.

y(s, a) = r(s, a) + γEs′ [Vθt(s
′)]

6: Minimize the negative projection loss with respect to
φ subject to the feature Φ matching constraint exactly
over all states and actions

φt+1 ← arg min
φ
−Epφ [(Qθ,w(s, a)− y(s, a))2]

s.t. ||Eµ[Φ(s, a)]− Φ(s, a)

N
|| ≤ ε

Maximize the Dual Loss w.r.t. λ.

λt+1 ← arg max
λ≥0

λ(||Eµ[Φ(s, a)]−Φ(s, a)

N
||−ε)

7: Repeat Step 6 for K steps (K ∈ [1, 10]).
8: Minimize projection loss with respect to µ:

θt+1, wt+1 ← argmin
θ,w

Epφ [(Qθ,w(s, a)− y(s, a))2]

9: end for

is small. Hence, we use the self-normalized importance
sampling estimator, which averages the importance weights
in a set of samples or a large number of samples. That is,
let wp/prb =

pφ(s,a)
prb(s,a)) , then instead of using wp/prb as the

importance weights, we use w̃p/prb(x) =
wp/prb (x)∑
y∈B wp/prb (y)

(where x and y represent state-action tuples; concisely men-
tioned for visual clarity) as the importance weights. We
also regularize the second-order Renyi Divergence between
prb and pφ for stability. Mathematically, it can be shown
that this is a lower bound on the true expectation of δ under
pφ, which is being estimated using importance sampling.
This result has also been shown in (Metelli et al., 2018)
(Theorem 4.1), where the authors use this lower bound in
policy optimization via importance sampling. We state the
theorem below for completeness.

Theorem D.1. (Metelli et al., 2018) Let P and Q be two
probability measures on the measurable space (X,F) such
that P << Q and d2(P ||Q) < +∞. Let x1, x2, · · · , xN
be i.i.d. random variables sampled from Q, and f : X → R
be a bounded function. Then, for any 0 < δ ≤ 1 and N > 0

with probability at least 1− δ it holds that:

Ex∼Q[f(x)] ≥ 1

N

∑
wP/Q(xi)f(xi)−

||f ||∞

√
(1− δ)d2(P ||Q)

Nδ

where d2(P ||Q) ∝ EQ
[
(P (x)
Q(x))2

]
is the exponentiated

second-order Renyi Divergence between P and Q.

Hence, our objective for the inner loop now becomes:
maxφ Epφ(s,a)[δ(s, a)] = maxφ Eprb [

pφ(s,a)
prb(s,a)δ(s, a)] is

now computed using samples with an additional renyi reg-
ularisation term. Since, we end up modeling this ratio,
fφ(s, a) := pθ(s,a)

prb(s,a) through out parameteric model, we can
hence easily compute an estimator for the Renyi divergence
term. The overall lower bound inner maximization problem
is:

max
φ

1

N

∑
(s,a)∼prb

[fφ(s, a)(Qθ,w(s, a)− y(s, a))2]−

C

√
(1− δ)(

∑
fφ(s,a))2

N)

Nδ

s.t. ||
∑
s,a∈prb [fφ(s, a)Φ(s)]

N
−
∑
s,a∈prb Φ(s)

N
|| ≤ ε

We found that this Renyi penalty helped stabilize training.
In practice, we model the importance weights: fφ(s, a) as
a parametric model with an identical architecture to the Q-
network. We use parameter clipping for fφ(s, a), where the
parameter are clipped to [−0.1, 0.1], analogous to Wasser-
stein GANs (Arjovsky et al., 2017). We also found that
self-normalization during importance sampling has a huge
practical benefit. Note that as the true L∞ norm of the
Bellman error is not known, for computing C in the Renyi
Divergence term, and hence we either replace it by constant,
or compute a stochastic approximation to the L∞ norm over
the current batch. We found the former to be more stable,
and hence, used that in all our experiments. This coefficient
of the Renyi divergence penalty is tuned uniformly between
[0.0, 0.25]. The learning rate for the adversary was chosen
to be 1e-4 for the tabular environments, and 5e-4 for TD3.
The batch size for our algorithm was chosen to be 128 for
the tabular environments and 500 for TD3/SAC. Note that
a larger batch size ensures smoothness in the minmax opti-
mization problem. We also found that instead of having a
1D Lagrange multiplier for the feature matching constraint,
having d Lagrange multipliers for constraining each of the
individual dimensions of the features Φ ∈ Rd also helps
very much. This is to ensure that the hyperparameters re-
main the same across different architectures regardless of the
dimension of the penultimate layer of the Q-network. The
algorithm in this case is exactly the same as the algorithm

Diagnosing Bottlenecks in Deep Q-learning Algorithms

before with a vector valued dual variable λ. We used TD3
and SAC implementations from rlkit (https://github.
com/vitchyr/rlkit/tree/master/rlkit)

Results on MuJoCo Domains: We find that in all 3 tested
domains (Half-Cheetah, Hopper and Ant), AFM yields sub-
stantial empirical improvement in the case of TD3 (Fig. 11)
and performs slightly better than entropy constrained SAC
(Fig. 12). Surprisingly, we found PER to not work very well
in these domains. In light of these results, we conclude that:
(1) the choice of sampling distribution is very important for
performance, and (2) considerations such as incorporating
knowledge about the function approximator (for example,
through Φ) into the choice of µ (the sampling/weighting
distribution) can be very effective.

https://github.com/vitchyr/rlkit/tree/master/rlkit
https://github.com/vitchyr/rlkit/tree/master/rlkit

Diagnosing Bottlenecks in Deep Q-learning Algorithms

(a) Ant-v2 (b) Hopper-v2 (c) HalfCheetah-v2

Figure 11. Average Return for rollouts performed with a trained the TD3 algorithm with/without AFM (Ours) and with Prioritized Replay
(PER). Note that on an average AFM performs better than the baseline and the Prioritized Replay. Each iteration on the x-axis corresponds
to 5000 environment steps.

(a) Ant-v2 (b) Hopper-v2 (c) HalfCheetah-v2

Figure 12. Average Return for rollouts performed with a trained SAC model with temperature auto-tuning (Tuomas Haarnoja & Levine,
2018) with/without AFM. Note that on an average AFM performs slightly better and is always atleast at par with SAC. Each iteration on
the x-axis corresponds to 1000 environment steps.

Diagnosing Bottlenecks in Deep Q-learning Algorithms

E. Function approximation analysis on Mujoco Tasks
As discussed in Section 4, we validate our findings on the effect of function approximation on 3 MuJoCo tasks from OpenAI
Gym with the SAC algorithm from the author’s implementation at (Tuomas Haarnoja & Levine, 2018). We observe that
bigger networks learn faster and better in general.

(a) HalfCheetah-v2 (b) Hopper-v2 (c) Ant-v2

Figure 13. Performance of different size architectures on 3 benchmark MuJoco tasks from OpenAI gym suite with the SAC algorithm.
Values are averaged over 3 different seeds. A bigger network performs better in terms of learning speed and performance measured in
terms of returns. Each epoch on the x-axis corresponds to 1000 environment steps.

F. Additional Plots

Figure 14. Normalized returns with Sampled-FQI, varying over architectures and number of on-policy samples.

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Figure 15. Performance on Half Cheetah and Hopper trained via TD3 with replay buffer of size 2e4 with increasing number of gradient
steps taken per environment step (N) on the critic and the actor. Note the clearly observable decay in performance of the agent with more
number of gradient steps – which clearly validates our claim of the presence of overfitting in Q-functions. Each iteration on the x-axis
corresponds to taking 5000 steps in the environment.

