Off-Policy Deep Reinforcement Learning without Exploration

Scott Fujimoto ' > David Meger ' > Doina Precup ' 2

Abstract

Many practical applications of reinforcement
learning constrain agents to learn from a fixed
batch of data which has already been gathered,
without offering further possibility for data col-
lection. In this paper, we demonstrate that due to
errors introduced by extrapolation, standard off-
policy deep reinforcement learning algorithms,
such as DQN and DDPG, are incapable of learn-
ing without data correlated to the distribution un-
der the current policy, making them ineffective
for this fixed batch setting. We introduce a novel
class of off-policy algorithms, batch-constrained
reinforcement learning, which restricts the action
space in order to force the agent towards behaving
close to on-policy with respect to a subset of the
given data. We present the first continuous con-
trol deep reinforcement learning algorithm which
can learn effectively from arbitrary, fixed batch
data, and empirically demonstrate the quality of
its behavior in several tasks.

1. Introduction

Batch reinforcement learning, the task of learning from a
fixed dataset without further interactions with the environ-
ment, is a crucial requirement for scaling reinforcement
learning to tasks where the data collection procedure is
costly, risky, or time-consuming. Off-policy batch reinforce-
ment learning has important implications for many practical
applications. It is often preferable for data collection to
be performed by some secondary controlled process, such
as a human operator or a carefully monitored program. If
assumptions on the quality of the behavioral policy can
be made, imitation learning can be used to produce strong
policies. However, most imitation learning algorithms are
known to fail when exposed to suboptimal trajectories, or

"Department of Computer Science, McGill University, Mon-
treal, Canada Mila Québec Al Institute. Correspondence to: Scott
Fujimoto <scott.fujimoto@mail.mcgill.ca>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

require further interactions with the environment to com-
pensate (Hester et al., 2017; Sun et al., 2018; Cheng et al.,
2018). On the other hand, batch reinforcement learning of-
fers a mechanism for learning from a fixed dataset without
restrictions on the quality of the data.

Most modern off-policy deep reinforcement learning al-
gorithms fall into the category of growing batch learn-
ing (Lange et al., 2012), in which data is collected and
stored into an experience replay dataset (Lin, 1992), which
is used to train the agent before further data collection oc-
curs. However, we find that these “off-policy” algorithms
can fail in the batch setting, becoming unsuccessful if the
dataset is uncorrelated to the true distribution under the cur-
rent policy. Our most surprising result shows that off-policy
agents perform dramatically worse than the behavioral agent
when trained with the same algorithm on the same dataset.

This inability to learn truly off-policy is due to a funda-
mental problem with off-policy reinforcement learning we
denote extrapolation error, a phenomenon in which unseen
state-action pairs are erroneously estimated to have unre-
alistic values. Extrapolation error can be attributed to a
mismatch in the distribution of data induced by the policy
and the distribution of data contained in the batch. As a
result, it may be impossible to learn a value function for a
policy which selects actions not contained in the batch.

To overcome extrapolation error in off-policy learning, we
introduce batch-constrained reinforcement learning, where
agents are trained to maximize reward while minimizing
the mismatch between the state-action visitation of the pol-
icy and the state-action pairs contained in the batch. Our
deep reinforcement learning algorithm, Batch-Constrained
deep Q-learning (BCQ), uses a state-conditioned generative
model to produce only previously seen actions. This gen-
erative model is combined with a Q-network, to select the
highest valued action which is similar to the data in the batch.
Under mild assumptions, we prove this batch-constrained
paradigm is necessary for unbiased value estimation from
incomplete datasets for finite deterministic MDPs.

Unlike any previous continuous control deep reinforcement
learning algorithms, BCQ is able to learn successfully with-
out interacting with the environment by considering ex-
trapolation error. Our algorithm is evaluated on a series
of batch reinforcement learning tasks in MuJoCo environ-

Off-Policy Deep Reinforcement Learning without Exploration

ments (Todorov et al., 2012; Brockman et al., 2016), where
extrapolation error is particularly problematic due to the
high-dimensional continuous action space, which is impos-
sible to sample exhaustively. Our algorithm offers a unified
view on imitation and off-policy learning, and is capable
of learning from purely expert demonstrations, as well as
from finite batches of suboptimal data, without further ex-
ploration. We remark that BCQ is only one way to approach
batch-constrained reinforcement learning in a deep setting,
and we hope that it will be serve as a foundation for future
algorithms. To ensure reproducibility, we provide precise ex-
perimental and implementation details, and our code is made
available (https://github.com/sfujim/BCQ).

2. Background

In reinforcement learning, an agent interacts with its envi-
ronment, typically assumed to be a Markov decision pro-
cess (MDP) (S, A, par,r,7y), with state space S, action
space A, and transition dynamics pas(s’|s, a). At each dis-
crete time step, the agent receives a reward r(s,a,s’) € R
for performing action a in state s and arriving at the state
s’. The goal of the agent is to maximize the expectation
of the sum of discounted rewards, known as the return
Ry = 372, 1 7'r(si,a4,8:41), which weighs future re-
wards with respect to the discount factor v € [0, 1).

The agent selects actions with respect to a policy 7 : S — A,
which exhibits a distribution p"(s) over the states s € S
visited by the policy. Each policy 7 has a corresponding
value function Q7 (s, a) = E.[R:|s, al, the expected return
when following the policy after taking action a in state s.
For a given policy 7, the value function can be computed
through the Bellman operator 7 ™:

T™Q(s,a) = Eu[r +7Q(s", 7(s))]. (D

The Bellman operator is a contraction for v € [0,1) with
unique fixed point Q™ (s, a) (Bertsekas & Tsitsiklis, 1996).
Q*(s,a) = max, Q7 (s, a) is known as the optimal value
function, which has a corresponding optimal policy obtained
through greedy action choices. For large or continuous
state and action spaces, the value can be approximated with
neural networks, e.g. using the Deep Q-Network algorithm
(DQN) (Mnih et al., 2015). In DQN, the value function Qg
is updated using the target:

r+ Qe (s, m(s")), m(s') = argmax, Qo (s, a), (2)
Q-learning is an off-policy algorithm (Sutton & Barto, 1998),
meaning the target can be computed without consideration
of how the experience was generated. In principle, off-
policy reinforcement learning algorithms are able to learn
from data collected by any behavioral policy. Typically, the
loss is minimized over mini-batches of tuples of the agent’s
past data, (s,a,r,s’) € B, sampled from an experience

replay dataset 3 (Lin, 1992). For shorthand, we often write
s € B if there exists a transition tuple containing s in the
batch B, and similarly for (s, a) or (s, a,s’) € B. In batch
reinforcement learning, we assume B is fixed and no further
interaction with the environment occurs. To further stabilize
learning, a target network with frozen parameters Qy-, is
used in the learning target. The parameters of the target
network 6’ are updated to the current network parameters
0 after a fixed number of time steps, or by averaging 6 +
76 + (1 — 7)0’ for some small 7 (Lillicrap et al., 2015).

In a continuous action space, the analytic maximum of
Equation (2) is intractable. In this case, actor-critic methods
are commonly used, where action selection is performed
through a separate policy network 74, known as the actor,
and updated with respect to a value estimate, known as the
critic (Sutton & Barto, 1998; Konda & Tsitsiklis, 2003).
This policy can be updated following the deterministic pol-
icy gradient theorem (Silver et al., 2014):

¢ «— argmax Esc5(Qp(s, m4(s))], 3)

which corresponds to learning an approximation to the max-
imum of Qg, by propagating the gradient through both 7
and Q9. When combined with off-policy deep Q-learning to
learn @y, this algorithm is referred to as Deep Deterministic
Policy Gradients (DDPG) (Lillicrap et al., 2015).

3. Extrapolation Error

Extrapolation error is an error in off-policy value learning
which is introduced by the mismatch between the dataset
and true state-action visitation of the current policy. The
value estimate Q(s,a) is affected by extrapolation error
during a value update where the target policy selects an
unfamiliar action o’ at the next state s’ in the backed-up
value estimate, such that (s, a’) is unlikely, or not contained,
in the dataset. The cause of extrapolation error can be
attributed to several related factors:

Absent Data. If any state-action pair (s, a) is unavailable,
then error is introduced as some function of the amount
of similar data and approximation error. This means that
the estimate of Qg (s’, w(s’)) may be arbitrarily bad without
sufficient data near (s, 7(s")).

Model Bias. When performing off-policy Q-learning with
a batch 5, the Bellman operator 7" is approximated by
sampling transitions tuples (s, a,, s’) from B to estimate
the expectation over s’. However, for a stochastic MDP,
without infinite state-action visitation, this produces a biased
estimate of the transition dynamics:

T™Q(s,a) ~ Eynplr +vQ(s, m(s"))],)

where the expectation is with respect to transitions in the
batch B, rather than the true MDP.

https://github.com/sfujim/BCQ

Off-Policy Deep Reinforcement Learning without Exploration

Training Mismatch. Even with sufficient data, in deep Q-
learning systems, transitions are sampled uniformly from the
dataset, giving a loss weighted with respect to the likelihood
of data in the batch:

%ﬁ > llr+4Qe (s w(s) = Qa(s,)l (5)

(s,a,r,s’)EB

If the distribution of data in the batch does not correspond
with the distribution under the current policy, the value
function may be a poor estimate of actions selected by the
current policy, due to the mismatch in training.

We remark that re-weighting the loss in Equation (5) with
respect to the likelihood under the current policy can still
result in poor estimates if state-action pairs with high like-
lihood under the current policy are not found in the batch.
This means only a subset of possible policies can be evalu-
ated accurately. As a result, learning a value estimate with
off-policy data can result in large amounts of extrapolation
error if the policy selects actions which are not similar to the
data found in the batch. In the following section, we discuss
how state of the art off-policy deep reinforcement learning
algorithms fail to address the concern of extrapolation error,
and demonstrate the implications in practical examples.

3.1. Extrapolation Error in Deep Reinforcement
Learning

Deep Q-learning algorithms (Mnih et al., 2015) have been
labeled as off-policy due to their connection to off-policy Q-
learning (Watkins, 1989). However, these algorithms tend
to use near-on-policy exploratory policies, such as e-greedy,
in conjunction with a replay buffer (Lin, 1992). As a result,
the generated dataset tends to be heavily correlated to the
current policy. In this section, we examine how these off-
policy algorithms perform when learning with uncorrelated
datasets. Our results demonstrate that the performance of
a state of the art deep actor-critic algorithm, DDPG (Lil-
licrap et al., 2015), deteriorates rapidly when the data is
uncorrelated and the value estimate produced by the deep
Q-network diverges. These results suggest that off-policy
deep reinforcement learning algorithms are ineffective when
learning truly off-policy.

Our practical experiments examine three different batch set-
tings in OpenAl gym’s Hopper-v1 environment (Todorov
et al., 2012; Brockman et al., 2016), which we use to train
an off-policy DDPG agent with no interaction with the en-
vironment. Experiments with additional environments and
specific details can be found in the Supplementary Material.

Batch 1 (Final buffer). We train a DDPG agent for 1 mil-
lion time steps, adding A/ (0, 0.5) Gaussian noise to actions
for high exploration, and store all experienced transitions.
This collection procedure creates a dataset with a diverse
set of states and actions, with the aim of sufficient coverage.

= Off-Policy DDPG Behavioral -e- True Value

3500 3500 3500
£ 3000 3000 3000
2 2500 2500 2500
CC 2000 2000) 2000
%1500 1500 1500
& 1000 A 1000 1000

>
< 500 va 500 ,/\»A""\'-\/W 500
0 0 0

00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 0.1 0.2 0.3
Time steps (1e6) Time steps (1e6) Time steps (1e6)

(a) Final buffer (b) Concurrent (c) Imitation
performance performance performance

<10* 10¢

4 1500
2 1000}

500

Estimated Value

o =M w s o N

0|

400 02 04 06 08 10
Time steps (1e6)

(d) Final buffer
value estimate

00 02 04 06 08 1.0 0.0 0.1 0.2 0.3
Time steps (1e6) Time steps (1e6)

(f) Imitation
value estimate

(e) Concurrent
value estimate

Figure 1. We examine the performance (top row) and correspond-
ing value estimates (bottom row) of DDPG in three batch tasks on
Hopper-vl. Each individual trial is plotted with a thin line, with
the mean in bold (evaluated without exploration noise). Straight
lines represent the average return of episodes contained in the
batch (with exploration noise). An estimate of the true value of the
oft-policy agent, evaluated by Monte Carlo returns, is marked by
a dotted line. In all three experiments, we observe a large gap in
the performance between the behavioral and off-policy agent, even
when learning from the same dataset (concurrent). Furthermore,
the value estimates are unstable or divergent across all tasks.

Batch 2 (Concurrent). We concurrently train the off-policy
and behavioral DDPG agents, for 1 million time steps. To
ensure sufficient exploration, a standard A/(0,0.1) Gaus-
sian noise is added to actions taken by the behavioral pol-
icy. Each transition experienced by the behavioral policy is
stored in a buffer replay, which both agents learn from. As
a result, both agents are trained with the identical dataset.

Batch 3 (Imitation). A trained DDPG agent acts as an ex-
pert, and is used to collect a dataset of 1 million transitions.

In Figure 1, we graph the performance of the agents as
they train with each batch, as well as their value estimates.
Straight lines represent the average return of episodes con-
tained in the batch. Additionally, we graph the learning
performance of the behavioral agent for the relevant tasks.

Our experiments demonstrate several surprising facts about
off-policy deep reinforcement learning agents. In each task,
the off-policy agent performances significantly worse than
the behavioral agent. Even in the concurrent experiment,
where both agents are trained with the same dataset, there
is a large gap in performance in every single trial. This
result suggests that differences in the state distribution un-
der the initial policies is enough for extrapolation error to
drastically offset the performance of the off-policy agent.
Additionally, the corresponding value estimate exhibits di-

Off-Policy Deep Reinforcement Learning without Exploration

vergent behavior, while the value estimate of the behavioral
agent is highly stable. In the final buffer experiment, the
off-policy agent is provided with a large and diverse dataset,
with the aim of providing sufficient coverage of the initial
policy. Even in this instance, the value estimate is highly un-
stable, and the performance suffers. In the imitation setting,
the agent is provided with expert data. However, the agent
quickly learns to take non-expert actions, under the guise
of optimistic extrapolation. As a result, the value estimates
rapidly diverge and the agent fails to learn.

Although extrapolation error is not necessarily positively
biased, when combined with maximization in reinforcement
learning algorithms, extrapolation error provides a source of
noise that can induce a persistent overestimation bias (Thrun
& Schwartz, 1993; Van Hasselt et al., 2016; Fujimoto et al.,
2018). In an on-policy setting, extrapolation error may be a
source of beneficial exploration through an implicit “opti-
mism in the face of uncertainty” strategy (Lai & Robbins,
1985; Jaksch et al., 2010). In this case, if the value func-
tion overestimates an unknown state-action pair, the policy
will collect data in the region of uncertainty, and the value
estimate will be corrected. However, when learning off-
policy, or in a batch setting, extrapolation error will never
be corrected due to the inability to collect new data.

These experiments show extrapolation error can be highly
detrimental to learning off-policy in a batch reinforcement
learning setting. While the continuous state space and multi-
dimensional action space in MuJoCo environments are con-
tributing factors to extrapolation error, the scale of these
tasks is small compared to real world settings. As a result,
even with a sufficient amount of data collection, extrapola-
tion error may still occur due to the concern of catastrophic
forgetting (McCloskey & Cohen, 1989; Goodfellow et al.,
2013). Consequently, off-policy reinforcement learning
algorithms used in the real-world will require practical guar-
antees without exhaustive amounts of data.

4. Batch-Constrained Reinforcement
Learning

Current off-policy deep reinforcement learning algorithms
fail to address extrapolation error by selecting actions with
respect to a learned value estimate, without consideration
of the accuracy of the estimate. As a result, certain out-
of-distribution actions can be erroneously extrapolated to
higher values. However, the value of an off-policy agent can
be accurately evaluated in regions where data is available.
We propose a conceptually simple idea: to avoid extrapo-
lation error a policy should induce a similar state-action
visitation to the batch. We denote policies which satisfy
this notion as batch-constrained. To optimize off-policy
learning for a given batch, batch-constrained policies are
trained to select actions with respect to three objectives:

(1) Minimize the distance of selected actions to the data in
the batch.

(2) Lead to states where familiar data can be observed.

(3) Maximize the value function.

We note the importance of objective (1) above the others, as
the value function and estimates of future states may be arbi-
trarily poor without access to the corresponding transitions.
That is, we cannot correctly estimate (2) and (3) unless (1) is
sufficiently satisfied. As a result, we propose optimizing the
value function, along with some measure of future certainty,
with a constraint limiting the distance of selected actions
to the batch. This is achieved in our deep reinforcement
learning algorithm through a state-conditioned generative
model, to produce likely actions under the batch. This gen-
erative model is combined with a network which aims to
optimally perturb the generated actions in a small range,
along with a Q-network, used to select the highest valued
action. Finally, we train a pair of Q-networks, and take the
minimum of their estimates during the value update. This
update penalizes states which are unfamiliar, and pushes the
policy to select actions which lead to certain data.

We begin by analyzing the theoretical properties of batch-
constrained policies in a finite MDP setting, where we are
able to quantify extrapolation error precisely. We then in-
troduce our deep reinforcement learning algorithm in detail,
Batch-Constrained deep Q-learning (BCQ) by drawing in-
spiration from the tabular analogue.

4.1. Addressing Extrapolation Error in Finite MDPs

In the finite MDP setting, extrapolation error can be de-
scribed by the bias from the mismatch between the tran-
sitions contained in the buffer and the true MDP. We find
that by inducing a data distribution that is contained en-
tirely within the batch, batch-constrained policies can elim-
inate extrapolation error entirely for deterministic MDPs.
In addition, we show that the batch-constrained variant of
Q-learning converges to the optimal policy under the same
conditions as the standard form of Q-learning. Moreover,
we prove that for a deterministic MDP, batch-constrained
Q-learning is guaranteed to match, or outperform, the be-
havioral policy when starting from any state contained in
the batch. All of the proofs for this section can be found in
the Supplementary Material.

A value estimate () can be learned using an experience
replay buffer 5. This involves sampling transition tuples
(s, a,r,s") with uniform probability, and applying the tem-
poral difference update (Sutton, 1988; Watkins, 1989):

Q(s,a) « (1 —a)Q(s,a) + a(r +vyQ(s',7(s")). (6)

If 7(s") = argmax,, Q(s',a’), this is known as Q-learning.
Assuming a non-zero probability of sampling any possi-
ble transition tuple from the buffer and infinite updates,

Off-Policy Deep Reinforcement Learning without Exploration

Q-learning converges to the optimal value function.

We begin by showing that the value function () learned with
the batch B corresponds to the value function for an alter-
nate MDP Mpg. From the true MDP M and initial values
Q(s,a), we define the new MDP Mp with the same action
and state space as M, along with an additional terminal
state s Mp has transition probabilities pg(s'|s,a) =
%, where N(s,a,s’) is the number of times the
tuple (s, a,s') is observed in B. If 3. N(s,a, 3) = 0, then
B (Simit|s, @) = 1, where (s, a, Sini) is set to the initialized
value of Q(s, a).

Theorem 1. Performing Q-learning by sampling from a
batch B converges to the optimal value function under the
MDP Mp.

We define eypp as the tabular extrapolation error, which
accounts for the discrepancy between the value function
Q% computed with the batch B and the value function Q™
computed with the true MDP M:

Q™ (s,a) — Qf(s,a). @)

For any policy 7, the exact form of eypp(s, a) can be com-
puted through a Bellman-like equation:

empp(s, a) = Z (P (s'|s,a) — ps(s']s, a))

ry

(sas +vz a'|sHQE(S, a)) (8)
+ o (s \sa’yz

6MDP(& a) =

a'[s")empp (s, a’).

This means extrapolation error is a function of divergence
in the transition distributions, weighted by value, along with
the error at succeeding states. If the policy is chosen care-
fully, the error between value functions can be minimized by
visiting regions where the transition distributions are similar.
For simplicity, we denote

EMDP = Z fir(8) Z m(a

To evaluate a policy 7 exactly at relevant state-action pairs,
only eypp = 0 is required. We can then determine the
condition required to evaluate the exact expected return of a
policy without extrapolation error.

‘S)lEMDp(S,a”. (9)

Lemma 1. For all reward functions, €j,p = 0 if and only
ifp(s'|s,a) = pum(§'|s,a) forall s € S and (s,a) such
that p(s) > 0 and 7(a|s) > 0.

Lemma 1 states that if Mz and M exhibit the same tran-
sition probabilities in regions of relevance, the policy can
be accurately evaluated. For a stochastic MDP this may
require an infinite number of samples to converge to the true

distribution, however, for a deterministic MDP this requires
only a single transition. This means a policy which only
traverses transitions contained in the batch, can be evaluated
without error. More formally, we denote a policy 7 € Iz
as batch-constrained if for all (s, a) where 1 (s) > 0 and
m(als) > 0then (s,a) € B. Additionally, we define a batch
B as coherent if for all (s,a,s’) € Bthen s’ € B unless
s’ is a terminal state. This condition is trivially satisfied if
the data is collected in trajectories, or if all possible states
are contained in the batch. With a coherent batch, we can
guarantee the existence of a batch-constrained policy.

Theorem 2. For a deterministic MDP and all reward
Sunctions, €y,p = 0 if and only if the policy m is batch-
constrained. Furthermore, if B is coherent, then such a
policy must exist if the start state sy € B.

Batch-constrained policies can be used in conjunction with
Q-learning to form batch-constrained Q-learning (BCQL),
which follows the standard tabular Q-learning update while
constraining the possible actions with respect to the batch:

Q(s,a) « Q(s',a)).
(10)
BCQL converges under the same conditions as the standard

form of Q-learning, noting the batch-constraint is nonrestric-
tive given infinite state-action visitation.

(1—04)Q(S,a)+a(r—|—'y 1(na es

Theorem 3. Given the Robbins-Monro stochastic conver-
gence conditions on the learning rate o, and standard sam-
pling requirements from the environment, BCQL converges
to the optimal value function Q*.

The more interesting property of BCQL is that for a deter-
ministic MDP and any coherent batch B, BCQL converges
to the optimal batch-constrained policy 7* € Il such that
Q™ (s,a) > Q" (s,a) forall 7 € Tz and (s,a) € B.

Theorem 4. Given a deterministic MDP and coherent batch
B, along with the Robbins-Monro stochastic convergence
conditions on the learning rate o and standard sampling
requirements on the batch B, BCOL converges to Q%(s, a)
where T (s) = argmax,, ;, (s.a)ep Q5 (8, a) is the optimal
batch-constrained policy.

This means that BCQL is guaranteed to outperform any
behavioral policy when starting from any state contained
in the batch, effectively outperforming imitation learning.
Unlike standard Q-learning, there is no condition on state-
action visitation, other than coherency in the batch.

4.2. Batch-Constrained Deep Reinforcement Learning

We introduce our approach to off-policy batch reinforce-
ment learning, Batch-Constrained deep Q-learning (BCQ).
BCQ approaches the notion of batch-constrained through a
generative model. For a given state, BCQ generates plau-

Off-Policy Deep Reinforcement Learning without Exploration

sible candidate actions with high similarity to the batch,
and then selects the highest valued action through a learned
Q-network. Furthermore, we bias this value estimate to
penalize rare, or unseen, states through a modification to
Clipped Double Q-learning (Fujimoto et al., 2018). As a
result, BCQ learns a policy with a similar state-action visi-
tation to the data in the batch, as inspired by the theoretical
benefits of its tabular counterpart.

To maintain the notion of batch-constraint, we define a sim-
ilarity metric by making the assumption that for a given
state s, the similarity between (s,a) and the state-action
pairs in the batch B can be modelled using a learned state-
conditioned marginal likelihood P§ (als). In this case, it
follows that the policy maximizing P§ (a|s) would min-
imize the error induced by extrapolation from distant, or
unseen, state-action pairs, by only selecting the most likely
actions in the batch with respect to a given state. Given
the difficulty of estimating P§ (a|s) in high-dimensional
continuous spaces, we instead train a parametric generative
model of the batch G, (s), which we can sample actions
from, as a reasonable approximation to argmax, P§ (als).

For our generative model we use a conditional variational
auto-encoder (VAE) (Kingma & Welling, 2013; Sohn et al.,
2015), which models the distribution by transforming an un-
derlying latent space'. The generative model G.,, alongside
the value function (Qy, can be used as a policy by sampling n
actions from G, and selecting the highest valued action ac-
cording to the value estimate (Qy. To increase the diversity of
seen actions, we introduce a perturbation model £, (s,a,®),
which outputs an adjustment to an action a in the range
[-®, ®]. This enables access to actions in a constrained
region, without having to sample from the generative model
a prohibitive number of times. This results in the policy 7:

n(s) = argmax Qo(s,a; +&4(s,a;, P)),
ai+€4(s,aq,P) (11)

{ai ~ Guls)}i

The choice of n and ® creates a trade-off between an im-
itation learning and reinforcement learning algorithm. If
® = 0, and the number of sampled actions n = 1, then the
policy resembles behavioral cloning and as ® — amax — Gmin
and n — oo, then the algorithm approaches Q-learning, as
the policy begins to greedily maximize the value function
over the entire action space.

The perturbation model £, can be trained to maximize
Qo (s, a) through the deterministic policy gradient algorithm
(Silver et al., 2014) by sampling a ~ G, (s):

¢« argmax > Qu(s,a+&y(s,a,@)). (12)

(s,a)eB
To penalize uncertainty over future states, we modify

!See the Supplementary Material for an introduction to VAEs.

Algorithm 1 BCQ

Input: Batch B, horizon T, target network update rate
7, mini-batch size [N, max perturbation ®, number of
sampled actions n, minimum weighting A.
Initialize Q-networks Qg, , Qg,, perturbation network &g,
and VAE G, = {E.,, , D., }, with random parameters 61,
02, ¢, w, and target networks Qo:, Qg;, {r With 0]
91,9’2 — 92, (;5/ — ¢
fort =1toT do
Sample mini-batch of N transitions (s, a,r, s") from B
w0 =FE, (s,a), a=Dg(s,2), z~N(u,o)
w <« argmin,, Y (a — a)* + DxL(N (p, 0)||N(0,1))
Sample n actions: {a; ~ Gy, (s")}1
Perturb each action: {a; = a; + &4(s', a;,)},
Set value target y (Eqn. 13)
0 < argming > (y — Qg(s,a))
¢ < argmaxy > Qg, (5,0 +Ey(s,a,P)),a ~ Gy(s)
Update target networks: ¢} <— 760 + (1 — 7)8;
¢ 1o+ (1—-7)¢

end for

2

Clipped Double Q-learning (Fujimoto et al., 2018), which
estimates the value by taking the minimum between two Q-
networks {Qy, , Qo, }. Although originally used as a coun-
termeasure to overestimation bias (Thrun & Schwartz, 1993;
Van Hasselt, 2010), the minimum operator also penalizes
high variance estimates in regions of uncertainty, and pushes
the policy to favor actions which lead to states contained in
the batch. In particular, we take a convex combination of
the two values, with a higher weight on the minimum, to
form a learning target which is used by both Q-networks:

r+ymax |\ min Qg (s',a;) + (1 — X\) max Qg (s, a;)
a; 7j=1,2 J 7j=1,2 J

(13)
where a; corresponds to the perturbed actions, sampled
from the generative model. If we set A = 1, this update
corresponds to Clipped Double Q-learning. We use this
weighted minimum as the constrained updates produces less
overestimation bias than a purely greedy policy update, and
enables control over how heavily uncertainty at future time
steps is penalized through the choice of A.

This forms Batch-Constrained deep Q-learning (BCQ),
which maintains four parametrized networks: a generative
model G, (s), a perturbation model £4(s, a), and two Q-
networks Qy, (s, a), Qg, (s, a). We summarize BCQ in Al-
gorithm 1. In the following section, we demonstrate BCQ
results in stable value learning and a strong performance in
the batch setting. Furthermore, we find that only a single
choice of hyper-parameters is necessary for a wide range of
tasks and environments.

Off-Policy Deep Reinforcement Learning without Exploration

m BCQ DDPG == DQN m BC = VAE-BC mm Behavioral

HalfCheetah-v1 Hopper-v1 Walker2d-v1

8000 2500

Average Return
5 g
8 8
2
S

o
1]
3
o 3
a
=}
S
a o
S 3
SRS}

e)

0

0 02 04 06 08 1.0
Time steps (1e6)

0
00 02 04 06 08 1.0
Time steps (1e6)

00 02 04 06 08 10
Time steps (1e6)

(a) Final buffer performance

HalfCheetah-v1 Walker2d-v1

Hopper-v1

3000
2000
2500

1500 2000

1000 1500

N oA 9 ®
S o 8 9
8 8 8 8
S8 8 38 38

Average Return

0

00 02 04 06 08 1.0
Time steps (1e6)

0
0 02 04 06 08 10
Time steps (1e6)

0 02 04 06 08 1.0
Time steps (1e6)

(b) Concurrent performance

HalfCheetah-v1
10000l S cceammeng 00
3000 3000
2500
6000 2000

Hopper-vi Walker2d-v1

2000
1500
2000 1000 1000
500

0 0
0.0 0.1 0.2 03 00 0.1 0.2 03 00 0.1 0.2 0.3
Time steps (1e6) Time steps (1e6) Time steps (1e6)

Average Return
I
3
3
3

(c) Imitation performance

HalfCheetah-v1 Hopper-vi Walker2d-v1
3000
< 6000 2500
£ 2500
‘5‘:) 2000
4000 2000
o« 1500
o 1500
£ 2000 1000 1000
e
z 5001 500
o e

o
o

0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1

0.2 0.3
Time steps (1e6)

Time steps (1e6) Time steps (1e6)

(d) Imperfect demonstrations performance
Figure 2. We evaluate BCQ and several baselines on the experi-
ments from Section 3.1, as well as the imperfect demonstrations
task. The shaded area represents half a standard deviation. The
bold black line measures the average return of episodes contained
in the batch. Only BCQ matches or outperforms the performance
of the behavioral policy in all tasks.

5. Experiments

To evaluate the effectiveness of Batch-Constrained deep
Q-learning (BCQ) in a high-dimensional setting, we focus
on MuJoCo environments in OpenAl gym (Todorov et al.,
2012; Brockman et al., 2016). For reproducibility, we make
no modifications to the original environments or reward
functions. We compare our method with DDPG (Lillicrap
et al., 2015), DQN (Mnih et al., 2015) using an indepen-
dently discretized action space, a feed-forward behavioral
cloning method (BC), and a variant with a VAE (VAE-BC),
using G,,(s) from BCQ. Exact implementation and experi-
mental details are provided in the Supplementary Material.

We evaluate each method following the three experiments
defined in Section 3.1. In final buffer the off-policy agents

m BCQ DDPG == DQN

1000 2000 2000
1750) 1750

1500) 1500

600 1250) 1250
1000) 1000

400 750) 750
500) 500

250 250

-e- True Value

Estimated Value

0 00 02 04 06 08 1.0 0.0 0.1 0.2 0.3

00 02 04 06 08 1.0 }
Time steps (1e6) Time steps (1e6)

Time steps (1e6)

(a) Final Buffer (b) Concurrent (c) Imitation

Figure 3. We examine the value estimates of BCQ, along with
DDPG and DQN on the experiments from Section 3.1 in the
Hopper-vl environment. Each individual trial is plotted, with
the mean in bold. An estimate of the true value of BCQ, evaluated
by Monte Carlo returns, is marked by a dotted line. Unlike the state
of the art baselines, BCQ exhibits a highly stable value function
in each task. Graphs for the other environments and imperfect
demonstrations task can be found in the Supplementary Material.

learn from the final replay buffer gathered by training a
DDPG agent over a million time steps. In concurrent the
off-policy agents learn concurrently, with the same replay
buffer, as the behavioral DDPG policy, and in imitation, the
agents learn from a dataset collected by an expert policy.
Additionally, to study the robustness of BCQ to noisy and
multi-modal data, we include an imperfect demonstrations
task, in which the agents are trained with a batch of 100k
transitions collected by an expert policy, with two sources of
noise. The behavioral policy selects actions randomly with
probability 0.3 and with high exploratory noise A/ (0, 0.3)
added to the remaining actions. The experimental results
for these tasks are reported in Figure 2. Furthermore, the
estimated values of BCQ, DDPG and DQN, and the true
value of BCQ are displayed in Figure 3.

Our approach, BCQ, is the only algorithm which succeeds
at all tasks, matching or outperforming the behavioral policy
in each instance, and outperforming all other agents, besides
in the imitation learning task where behavioral cloning un-
surprisingly performs the best. These results demonstrate
that our algorithm can be used as a single approach for both
imitation learning and off-policy reinforcement learning,
with a single set of fixed hyper-parameters. Furthermore,
unlike the deep reinforcement learning algorithms, DDPG
and DQN, BCQ exhibits a highly stable value function in
the presence of off-policy samples, suggesting extrapolation
error has been successfully mitigated through the batch-
constraint. In the imperfect demonstrations task, we find
that both deep reinforcement learning and imitation learn-
ing algorithms perform poorly. BCQ, however, is able to
strongly outperform the noisy demonstrator, disentangling
poor and expert actions. Furthermore, compared to current
deep reinforcement learning algorithms, which can require
millions of time steps (Duan et al., 2016; Henderson et al.,
2017), BCQ attains a high performance in remarkably few
iterations. This suggests our approach effectively leverages
expert transitions, even in the presence of noise.

Off-Policy Deep Reinforcement Learning without Exploration

6. Related Work

Batch Reinforcement Learning. While batch reinforce-
ment learning algorithms have been shown to be conver-
gent with non-parametric function approximators such as
averagers (Gordon, 1995) and kernel methods (Ormoneit
& Sen, 2002), they make no guarantees on the quality of
the policy without infinite data. Other batch algorithms,
such as fitted Q-iteration, have used other function approx-
imators, including decision trees (Ernst et al., 2005) and
neural networks (Riedmiller, 2005), but come without con-
vergence guarantees. Unlike many previous approaches
to off-policy policy evaluation (Peshkin & Shelton, 2002;
Thomas et al., 2015; Liu et al., 2018), our work focuses on
constraining the policy to a subset of policies which can
be adequately evaluated, rather than the process of evalua-
tion itself. Additionally, off-policy algorithms which rely
on importance sampling (Precup et al., 2001; Jiang & Li,
2016; Munos et al., 2016) may not be applicable in a batch
setting, requiring access to the action probabilities under
the behavioral policy, and scale poorly to multi-dimensional
action spaces. Reinforcement learning with a replay buffer
(Lin, 1992) can be considered a form of batch reinforcement
learning, and is a standard tool for off-policy deep reinforce-
ment learning algorithms (Mnih et al., 2015). It has been
observed that a large replay buffer can be detrimental to
performance (de Bruin et al., 2015; Zhang & Sutton, 2017)
and the diversity of states in the buffer is an important factor
for performance (de Bruin et al., 2016). Isele & Cosgun
(2018) observed the performance of an agent was strongest
when the distribution of data in the replay buffer matched
the test distribution. These results defend the notion that
extrapolation error is an important factor in the performance
off-policy reinforcement learning.

Imitation Learning. Imitation learning and its variants are
well studied problems (Schaal, 1999; Argall et al., 2009;
Hussein et al., 2017). Imitation has been combined with
reinforcement learning, via learning from demonstrations
methods (Kim et al., 2013; Piot et al., 2014; Chemali &
Lazaric, 2015), with deep reinforcement learning extensions
(Hester et al., 2017; Vecerik et al., 2017), and modified pol-
icy gradient approaches (Ho et al., 2016; Sun et al., 2017;
Cheng et al., 2018; Sun et al., 2018). While effective, these
interactive methods are inadequate for batch reinforcement
learning as they require either an explicit distinction be-
tween expert and non-expert data, further on-policy data
collection or access to an oracle. Research in imitation, and
inverse reinforcement learning, with robustness to noise is
an emerging area (Evans, 2016; Nair et al., 2018), but relies
on some form of expert data. Gao et al. (2018) introduced an
imitation learning algorithm which learned from imperfect
demonstrations, by favoring seen actions, but is limited to
discrete actions. Our work also connects to residual policy
learning (Johannink et al., 2018; Silver et al., 2018), where

the initial policy is the generative model, rather than an
expert or feedback controller.

Uncertainty in Reinforcement Learning. Uncertainty es-
timates in deep reinforcement learning have generally been
used to encourage exploration (Dearden et al., 1998; Strehl
& Littman, 2008; O’Donoghue et al., 2018; Azizzadenesheli
et al., 2018). Other methods have examined approximat-
ing the Bayesian posterior of the value function (Osband
et al., 2016; 2018; Touati et al., 2018), again using the vari-
ance to encourage exploration to unseen regions of the state
space. In model-based reinforcement learning, uncertainty
has been used for exploration, but also for the opposite
effect—to push the policy towards regions of certainty in the
model. This is used to combat the well-known problems
with compounding model errors, and is present in policy
search methods (Deisenroth & Rasmussen, 2011; Gal et al.,
2016; Higuera et al., 2018; Xu et al., 2018), or combined
with trajectory optimization (Chua et al., 2018) or value-
based methods (Buckman et al., 2018). Our work connects
to policy methods with conservative updates (Kakade &
Langford, 2002), such as trust region (Schulman et al., 2015;
Achiam et al., 2017; Pham et al., 2018) and information-
theoretic methods (Peters & Miilling, 2010; Van Hoof et al.,
2017), which aim to keep the updated policy similar to the
previous policy. These methods avoid explicit uncertainty
estimates, and rather force policy updates into a constrained
range before collecting new data, limiting errors introduced
by large changes in the policy. Similarly, our approach can
be thought of as an off-policy variant, where the policy aims
to be kept close, in output space, to any combination of the
previous policies which performed data collection.

7. Conclusion

In this work, we demonstrate a critical problem in off-
policy reinforcement learning with finite data, where the
value target introduces error by including an estimate of
unseen state-action pairs. This phenomenon, which we
denote extrapolation error, has important implications for
off-policy and batch reinforcement learning, as it is gen-
erally implausible to have complete state-action coverage
in any practical setting. We present batch-constrained rein-
forcement learning—acting close to on-policy with respect
to the available data, as an answer to extrapolation error.
When extended to a deep reinforcement learning setting, our
algorithm, Batch-Constrained deep Q-learning (BCQ), is
the first continuous control algorithm capable of learning
from arbitrary batch data, without exploration. Due to the
importance of batch reinforcement learning for practical
applications, we believe BCQ will be a strong foothold for
future algorithms to build on, while furthering our under-
standing of the systematic risks in Q-learning (Thrun &
Schwartz, 1993; Lu et al., 2018).

Off-Policy Deep Reinforcement Learning without Exploration

References

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International Conference on Ma-
chine Learning, pp. 22-31, 2017.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B.
A survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469—483, 2009.

Azizzadenesheli, K., Brunskill, E., and Anandkumar, A.
Efficient exploration through bayesian deep q-networks.
arXiv preprint arXiv:1802.04412, 2018.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena scientific Belmont, MA, 1996.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee,
H. Sample-efficient reinforcement learning with stochas-
tic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8234-8244, 2018.

Chemali, J. and Lazaric, A. Direct policy iteration with
demonstrations. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

Cheng, C.-A., Yan, X., Wagener, N., and Boots, B. Fast pol-
icy learning through imitation and reinforcement. arXiv
preprint arXiv:1805.10413, 2018.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems 31, pp. 4759-4770, 2018.

de Bruin, T., Kober, J., Tuyls, K., and Babuska, R. The
importance of experience replay database composition
in deep reinforcement learning. In Deep Reinforcement
Learning Workshop, NIPS, 2015.

de Bruin, T., Kober, J., Tuyls, K., and Babuska, R. Im-
proved deep reinforcement learning for robotics through
distribution-based experience retention. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems
(IROS), pp. 3947-3952. IEEE, 2016.

Dearden, R., Friedman, N., and Russell, S. Bayesian g-
learning. In AAAI/TIAAL pp. 761-768, 1998.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-
based and data-efficient approach to policy search. In

International Conference on Machine Learning, pp. 465—
472,2011.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329-1338, 2016.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6(Apr):503-556, 2005.

Evans, O. Learning the preferences of ignorant, inconsistent
agents. In AAAIL pp. 323-329, 2016.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. In Inter-
national Conference on Machine Learning, volume 80,
pp- 1587-1596. PMLR, 2018.

Gal, Y., McAllister, R., and Rasmussen, C. E. Improving
pilco with bayesian neural network dynamics models.
In Data-Efficient Machine Learning workshop, Interna-
tional Conference on Machine Learning, 2016.

Gao, Y., Lin, J., Yu, F, Levine, S., and Darrell, T. Rein-
forcement learning from imperfect demonstrations. arXiv
preprint arXiv:1802.05313, 2018.

Goodfellow, 1. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Gordon, G. J. Stable function approximation in dynamic
programming. In Machine Learning Proceedings 1995,
pp. 261-268. Elsevier, 1995.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep Reinforcement Learning that
Matters. arXiv preprint arXiv:1709.06560, 2017.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Dulac-
Arnold, G., et al. Deep g-learning from demonstrations.
arXiv preprint arXiv:1704.03732, 2017.

Higuera, J. C. G., Meger, D., and Dudek, G. Synthesizing
neural network controllers with probabilistic model based
reinforcement learning. arXiv preprint arXiv:1803.02291,
2018.

Ho, J., Gupta, J., and Ermon, S. Model-free imitation learn-
ing with policy optimization. In International Conference
on Machine Learning, pp. 2760-2769, 2016.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):21, 2017.

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. arXiv preprint arXiv:1802.10269, 2018.

Off-Policy Deep Reinforcement Learning without Exploration

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11(Apr):1563-1600, 2010.

Jiang, N. and Li, L. Doubly robust off-policy value evalua-
tion for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 652-661, 2016.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A.,
Loskyll, M., Ojea, J. A., Solowjow, E., and Levine, S.
Residual reinforcement learning for robot control. arXiv
preprint arXiv:1812.03201, 2018.

Kakade, S. and Langford, J. Approximately optimal approxi-
mate reinforcement learning. In International Conference
on Machine Learning, volume 2, pp. 267-274, 2002.

Kim, B., Farahmand, A.-m., Pineau, J., and Precup, D.
Learning from limited demonstrations. In Advances in
Neural Information Processing Systems, pp. 28592867,
2013.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Konda, V. R. and Tsitsiklis, J. N. On actor-critic algorithms.
SIAM journal on Control and Optimization, 42(4):1143—
1166, 2003.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6(1):
4-22, 1985.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45-73.
Springer, 2012.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293-321, 1992.

Liu, Y., Gottesman, O., Raghu, A., Komorowski, M., Faisal,
A. A., Doshi-Velez, F., and Brunskill, E. Representa-
tion balancing mdps for off-policy policy evaluation. In

Advances in Neural Information Processing Systems, pp.
2644-2653, 2018.

Lu, T., Schuurmans, D., and Boutilier, C. Non-delusional
g-learning and value-iteration. In Advances in Neural
Information Processing Systems, pp. 9971-9981, 2018.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation,
volume 24, pp. 109-165. Elsevier, 1989.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054-1062, 2016.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 6292-6299. IEEE, 2018.

O’Donoghue, B., Osband, 1., Munos, R., and Mnih, V. The
uncertainty Bellman equation and exploration. In Infer-
national Conference on Machine Learning, volume 80,
pp- 3839-3848. PMLR, 2018.

Ormoneit, D. and Sen, S. Kernel-based reinforcement learn-
ing. Machine learning, 49(2-3):161-178, 2002.

Osband, 1., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. In Advances in Neural
Information Processing Systems, pp. 4026-4034, 2016.

Osband, 1., Aslanides, J., and Cassirer, A. Randomized prior
functions for deep reinforcement learning. In Advances
in Neural Information Processing Systems 31, pp. 8626—
8638, 2018.

Peshkin, L. and Shelton, C. R. Learning from scarce experi-
ence. In International Conference on Machine Learning,
pp. 498-505, 2002.

Peters, J. and Miilling, K. Relative entropy policy search.
In AAAI pp. 1607-1612, 2010.

Pham, T.-H., De Magistris, G., Agravante, D. J., Chaud-
hury, S., Munawar, A., and Tachibana, R. Constrained
exploration and recovery from experience shaping. arXiv
preprint arXiv:1809.08925, 2018.

Piot, B., Geist, M., and Pietquin, O. Boosted bellman resid-
ual minimization handling expert demonstrations. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pp. 549-564. Springer,
2014.

Precup, D., Sutton, R. S., and Dasgupta, S. Off-policy
temporal-difference learning with function approxima-
tion. In International Conference on Machine Learning,
pp. 417-424, 2001.

Off-Policy Deep Reinforcement Learning without Exploration

Riedmiller, M. Neural fitted q iteration—first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317—
328. Springer, 2005.

Schaal, S. Is imitation learning the route to humanoid
robots? Trends in Cognitive Sciences, 3(6):233-242,
1999.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889-1897, 2015.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International Conference on Machine Learning, pp.
387-395, 2014.

Silver, T., Allen, K., Tenenbaum, J., and Kaelbling, L. Resid-
ual policy learning. arXiv preprint arXiv:1812.06298,
2018.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
In Advances in Neural Information Processing Systems,
pp- 3483-3491, 2015.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309—
1331, 2008.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imita-
tion learning for sequential prediction. In International
Conference on Machine Learning, pp. 3309-3318, 2017.

Sun, W., Bagnell, J. A., and Boots, B. Truncated horizon
policy search: Combining reinforcement learning & imi-
tation learning. arXiv preprint arXiv:1805.11240, 2018.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9—44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. High
confidence policy improvement. In International Confer-
ence on Machine Learning, pp. 2380-2388, 2015.

Thrun, S. and Schwartz, A. Issues in using function approx-
imation for reinforcement learning. In Proceedings of the
1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, 1993.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
5026-5033. IEEE, 2012.

Touati, A., Satija, H., Romoff, J., Pineau, J., and Vincent, P.
Randomized value functions via multiplicative normaliz-
ing flows. arXiv preprint arXiv:1806.02315, 2018.

Van Hasselt, H. Double g-learning. In Advances in Neural
Information Processing Systems, pp. 2613-2621, 2010.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In AAAI pp. 2094-
2100, 2016.

Van Hoof, H., Neumann, G., and Peters, J. Non-parametric
policy search with limited information loss. The Journal
of Machine Learning Research, 18(1):2472-2517, 2017.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O.,
Piot, B., Heess, N., Rothorl, T., Lampe, T., and Riedmiller,
M. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

Watkins, C.J. C. H. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. Algorithmic
framework for model-based reinforcement learning with
theoretical guarantees. arXiv preprint arXiv:1807.03858,
2018.

Zhang, S. and Sutton, R. S. A deeper look at experience
replay. arXiv preprint arXiv:1712.01275, 2017.

