Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities

A. Proof of Theorem 1

Proof. We derived in the main text that r(Ag,) < d + 1.
In addition, Eckart-Young-Mirsky theorem gives:

IAp- =Blf >y /odp ... + 0y,

VB e RM*N st r(B)<d+1
Thus, our result follows for B = Ag,. O

B. Proof of Theorem 2

Proof. 1) Using the non-negativity property of the KL diver-
gence, one derives:

KL(R|Q) = H(R,Q) — H(R) = 0 (16)

for any probability distribution R. The result follows easily
by taking R = P*.

ii) Let Qn(z;) x exp({w;, h)). Then, for any probability
distribution R, it is straightforward to derive that

H(R,Qun) = —(Er[w],h) + log Z(® (17)

Moreover, if R € P* is any distribution satisfying the d-
dimensional linear constraints, one derives from eq. (17)
that

H(P*,Qn) = HR,Qn), YR € P* (18)

combining egs. (16) and (18), we get:
H(P*,Qu) > H(R), VR € P* (19)

thus
H(P*,Qn) > mazgep-H(R) (20)
which, since @)y, is arbitrary in the above exponential family,

implies that

minyH(P*,Qn) > mazgrep-H(R) 21)

We are only left with proving the reverse, namely that
minyH (P*, Qn) < maxgep~ H(R). We use the standard
derivations for the Maximum Entropy Principle, namely we
form the Lagrangian:

M
L(X\, B,h) := H(R)+j (Z R(x;) — 1) T

i=1

+ (A, Eg[w] — Ep«[w])

Setting its derivatives to 0, one gets that the optimal R* =
arg maxgrep+ H(R) has the form

R*(x;) o< exp({w;, A*)) (23)

for some A* € R? that is chosen by solving the d-linear
system [E g« [w]—E p«[w] = 0. One can observe that Qx~ =
R*, getting

minyH(P*,Qn) < H(P*,Qx«) = H(P*,R")
Finally, using eq. (18), we get:
H(P*,R*) = H(R*,R*) = H(R") = maxgep-H(R)

which concludes the proof. O

C. Proof of Theorem 3

Proof. Since f(A) has rank at least K, there exists at least
one submatrix M € REXX of A such that det(f(M)) # 0.
Let by < by < ... < by be all the distinct values of M.
Denote by € = %minbl |b; — b;—1|. We first prove the
following lemmas.

Lemma 8. Let P € R[ X1, ..., Xp| be a multivariate poly-
nomial with real coefficients. Assume there exist infinite
sets S, ..., St such that P vanishes on all the points of
S1 x Sy X ... x Sp. Then P vanishes on any point of R”.

Proof. We prove this by induction over 7. The result
easily holds for T = 1 since a real univariate non-zero
polynomial can only have a finite set of roots. Assume
now that the result holds for any polynomial in 7" — 1
variables. We can write P(X7, Xs,...,X7) as a uni-
variate polynomial in X; with coefficients polynomials
in R[Xs,...,X7| as follows: P(X1,Xo,...,X7) =
S, Qi(Xa, ..., Xr) X1, where d; is the maximum de-
gree of X;. For any arbitrary zo, ..., 27 € So X ... X S,
we know from the hypothesis that P(c,zo,...,z7) =
0,Vc € S;. Since 51 is infinite we have that the univariate
polynomial in X, is identical 0, i.e. P(X,xza,...,z7) =

0, which implies that Q;(z2,...,z7) = 0. How-
ever, Ts,..., o7 € Sy X ... X St were chosen arbi-
trarily, thus Q;(x2,...,x7) = 0,Vas,...,xp € Sy X

. x Sp. Applying the induction hypothesis for 7" — 1,

one gets that all @; vanish on the full RT-1. Thus,
P(X,z2,...,27) = 0,Y(z2,...,27) € RT~!, which
implies that P(z1, z2,...,27) = 0,Y(x1,22,...,27) €
RT. O

Lemma 9. There exist ¢; € [b;—e, b;+¢€],Vi € {1,...,T}
s.t. given any pointwise function h satisfying h(b;) =
¢i, V1 < i < T, we have det(h(M)) # 0.

Proof. Assume the contrary, that V¢; € [b; — €,b; + €],
det(h(M)) = 0.

We note that, using the Leibniz formula of the deter-
minant, one easily sees that det(M) can be written as
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P(b,...,br), where P € R[Xy,...,Xr] is a multi-
variate polynomial in T variables. It is then easy to see
that any pointwise h will change the determinant of M
as: det(h(M)) = P(h(b1),...,h(br)). Then, assuming
this lemma is not true is equivalent with P(cy,...,cr) =
0,Ve; € [b; —€,b; + ¢€],V1 < ¢ < T. Applying lemma 8
to sets S; = [b; — €, b; + €], one gets that P(cy,...,cr) =
0,Ve; € R, Vi € {1,...,T}. Taking ¢; = f(b;) one ob-
tains det(f(M)) = P(f(b1),..., f(br)) = 0 which is a
contradiction with our assumption on M and f. O

We now return to the proof of the main theorem. For each
i € {1,...,T}, let us denote by ¢; € [b; — €,b; + €] the
values from lemma 9 that guarantee a non-zero determinant.
We construct a pointwise bijective, piecewise differentiable,
continuous and strictly increasing function g : R — R
such that g(b;) = ¢;. It is obvious that det(g(M)) depends
only on the values g(b;), so we are free to assign any other
values to any other real input of g as long as the above
constraints on g are satisfied. One example of such g is a
piecewise linear function defined to match the following val-
ues: g(b;) = ¢, g(b; + 2€) =b; +2¢,¥1 < i < T,g(x) =
xz,Vx < by — 2¢ and g(z) = z,Vo > by + 2¢. It can
be easily seen that such a function is bijective, piecewise
differentiable, continuous and strictly increasing. O

D. Proof of Lemma 4

Proof. If (w;,h;,) are distinct from all the other entries
in the matrix A, one can design the following pointwise
function:

if dist.x= <W,L', h_h>

1
) = {0 else

Then, let B be the M x M submatrix of A consisting of all
its M rows and the M columns indexed by j;’s. It is then
clear that f(B) = I/, which is obviously full rank. O

E. Proof of Theorem 6

Proof. We will make use of the following folklore lemmas:

Lemma 10. Let M = U; M; be a finite union of Rieman-
nian manifolds of dimension m, embedded in R*, with Rie-
mannian metric g; inherited from R. Then, any finite union
S of submanifolds of the M;’s of dimensions strictly smaller
than m is a set of null measure®. In other words, any point
from M is almost surely not in S.

Proof. (sketch) any submanifold of M of strictly smaller

Sw.r.t. the volume form of the manifold, i.e. locally w.r.t. to the
m-dimensional Lebesgue measure.

dimension than m has volume or measure zero. The result
then follows from the fact that a finite union of sets of
measure zero has also measure zero.

O

Lemma 11. The set O,JCV of rank-k matrices of size N x N
with 0 < k < N is a Riemannian manifold of dimension
2kN — k? embedded in RV >N,

Proof. See e.g. (Shalit et al., 2012). The Riemannian metric
for embedded manifolds is simply the Euclidean metric
restricted to the manifold.

O

We now return to the main proof of the theorem. From
lemma 11 we have that dim(OY _;) = N2 — 1. We want to
prove that the subset of O | of rank N — 1 matrices for
which 22 is not increasing their rank has dimension strictly
smaller than dim(O%_,). In this case, using lemma 10,
the measure of all ill-behaved matrices would be 0, so any
matrix from O%_l is almost surely well-behaved, i.e. the
rank of A®? is almost surely full rank N for A € O%_;.

We begin by removing from OX_, the set of all matrices
that have two proportional columns, a set that we name ZV.
This is a finite” union of manifolds of dimension N (N —
1) 4+ 1, namely all sets of matrices for which column i is
proportional to column j, forall 1 < i < j < N %, Using
lemma 10, we derive that the measure or volume of =V is
0.

Now, for any arbitrary A € O%_l =N with columns
x(M . x) € RN one can easily derive that 3y; € R
not all equal to 0 s.t. vazl 7ix(® = 0. We know that at
least one 7; # O from the fact that A € OY_|; let us denote
by I' the set of such matrices A € O} _;. Since O _; is
the (finite) union of the I'*’s, we want to show that the set of
ill-behaved matrices in each I'? is contained in a manifold
of dimension strictly smaller than that of O%_l, which will
conclude, using the fact that a finite union of null measure
sets has null measure.

Without loss of generality, let us assume that A € TV, i.e.
that yx # 0. Let us note that

' ={AecOy ,:yw =1} (24)

by substituting each ~y; with ; /yn for1 <i < N — 1.
"More precisely, of w manifolds, one per each pair of
columns.
8The N (N—1)+1 dimension comes from the fact that there are
N-1 independent columns, plus a scalar, namely the multiplication
factor between column i and column j.



Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities

If A®2 is not full rank, there exist o1, ..., an € R such that

N-1 N-1 o2
Z ozi(x(z))®2 =an (Z 'yix(z)> . (25)
i=1 i=1

For fixed v, ...,y € R, denote by M, the subset of the
solutions {x(z)}lgig ~N—1 C RY of the above equation.

Define

0 (a:fcl), ...,x,(CNfl)) eRVN 1
N-1 A N-1 1\ 2
}jm@?ﬁ—aN<§jwﬁv. (26)
i=1 i=1

This can be re-written p(x) = x7 Gx with
Gij = dij (i — any]) — (1= dij)anyiv;

It can be easily shown that since A is not in 2V, G is not
the null matrix. Indeed, if G = 0, then either ay = 0 —
and then o; = « N’yiz = 0 for all ¢, which is excluded —
or ay # 0, and then anv;y; = 0 for all ¢ # j, meaning
only one 7;, is non-zero, i.e. xV) = —~; x(%0) and hence
A =N,

Note that since G is not the null matrix, dim(ker G) <
N — 1. Furthermore, let U := RV-! \ ker G. Invoking the
Pre-Image theorem, the set U N ¢~1({0}) is a submanifold
of RV~ of dimension (N — 1) — 1 = N — 2. There-
fore, p~1({0}) is a finite union of manifolds of dimensions
smaller than (or equal to) N — 2.

Since eq. (25) can be written as an intersection of IV equa-
tions as the one defined by ¢ (i.e. one per coordinate),
the set M, of solutions of eq. (25) is included in a finite
union of manifolds of dimensions smaller than (or equal to)
N(N —2).

Finally, the total set X of matrices we are after — i.e. of rank
N — 1 and which cannot be made full ranked by pointwise
square — can be defined as the union over « of all M, i.e.
X = Uy M,. As X has the structure of a fiber bundle, with
base space the set of a’s (of dimension V), X is a subset of
submanifolds of dimensions smaller than N + N (N —2) =
N2 - N < N2 —1for N > 1, which concludes the proof.

O

F. Proof of Theorem 7

Proof. Let h : [T, T] be any increasing function defined
on [—T,T]. Assume bounded derivatives, i.e. IR > 0
s.t. |[W/(x)] < R,Yx € [=T,T]. Then, for a fixed positive
integer K, we consider the knots [; = =T + %,VO <1<
K. Next, using standard linear interpolation, we define a

piecewise linear function fx : [-T,T] — Rs.t. fx(l;) =
h(l;),¥0 < i < K. Since h is increasing, one obtains that
fx is also increasing. It is then easy to see that fx is a PLIF
function. Moreover, the slopes are given by the formula:
_ hllig1)=h(l:)

- livi—l;

We define the additional function g (z) := fx(x) — h(x).
We wish to prove that lim g oo maX,c(—7,7) [9x (7)] = 0.
For this, we first use Cauchy’s theorem deriving that 3¢; €
(Lix1, L) st. s; = W = h'(¢;). Thus, since A/
is bounded by R, we get that |s;| < R,Vi. This further
implies that |¢} ()| < 2R,Vz € [T, T]. Moreover, from
the definition of fx we have that g ({;) = 0, Vi. Finally,
for any x € [T, T), let [l;4+1, ;] be the interval in which
lies. We have that:

Si

lgr (2)| = |gr (7) — g (li)| =

_ lgx (@) — gk (i)

|
e TS 27)

2T

<2R|x — ;] < 2Rf
where the first inequality happens from the same argument
derived from Cauchy’s theorem as above. It is now trivial

to prove that limg oo max,e—7 71 |9K (z)| = 0, which
concludes our proof.

O

G. Effect of the Dirichlet concentration
See fig. 5.

H. Additional Synthetic Experiments
See figs. 6 to 8.
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Figure 5. Distribution of M-class discrete distributions sampled from a Dirichlet prior. Larger concentration parameters result in close to
uniform distributions, while low values result in sparse or long-tail distributions.
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Figure 6. Percentage of contexts j for which the modes of true and parametric distributions match, i.e arg max; P*(z;|c;) =
arg max; Qe (zi|c;). Higher the better. Dirichlet concentration o« = 0.01.
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Figure 7. Average K L(P*||Qe) (across all contexts). Lower the better. Dirichlet concentration aw = 0.01.
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Figure 8. Percentage of contexts j for which the modes of true and parametric distributions match, i.e arg max; P*(z;|c;) =
arg max; Qe (z;|c;). Higher the better. Dirichlet concentration o = 1.



