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A. Proof of Theorem 1
Proof. We derived in the main text that r(AQΘ

) ≤ d + 1.
In addition, Eckart-Young-Mirsky theorem gives:

‖AP∗ −B‖2F ≥
√
σ2
d+2 + . . .+ σ2

M ,

∀B ∈ RM×N s.t. r(B) ≤ d+ 1

Thus, our result follows for B = AQΘ
.

B. Proof of Theorem 2
Proof. i) Using the non-negativity property of the KL diver-
gence, one derives:

KL(R‖Q) = H(R,Q)−H(R) ≥ 0 (16)

for any probability distribution R. The result follows easily
by taking R = P ∗.

ii) Let Qh(xi) ∝ exp(〈wi,h〉). Then, for any probability
distribution R, it is straightforward to derive that

H(R,Qh) = −〈ER[w],h〉+ logZ(h) (17)

Moreover, if R ∈ P∗ is any distribution satisfying the d-
dimensional linear constraints, one derives from eq. (17)
that

H(P ∗, Qh) = H(R,Qh), ∀R ∈ P∗ (18)

combining eqs. (16) and (18), we get:

H(P ∗, Qh) ≥ H(R), ∀R ∈ P∗ (19)

thus
H(P ∗, Qh) ≥ maxR∈P∗H(R) (20)

which, since Qh is arbitrary in the above exponential family,
implies that

minhH(P ∗, Qh) ≥ maxR∈P∗H(R) (21)

We are only left with proving the reverse, namely that
minhH(P ∗, Qh) ≤ maxR∈P∗H(R). We use the standard
derivations for the Maximum Entropy Principle, namely we
form the Lagrangian:

L(λ, β,h) := H(R)+β

(
M∑
i=1

R(xi)− 1

)
+

+ 〈λ,ER[w]− EP∗ [w]〉

(22)

Setting its derivatives to 0, one gets that the optimal R∗ =
arg maxR∈P∗ H(R) has the form

R∗(xi) ∝ exp(〈wi,λ
∗〉) (23)

for some λ∗ ∈ Rd that is chosen by solving the d-linear
system ER∗ [w]−EP∗ [w] = 0. One can observe thatQλ∗ =
R∗, getting

minhH(P ∗, Qh) ≤ H(P ∗, Qλ∗) = H(P ∗, R∗)

Finally, using eq. (18), we get:

H(P ∗, R∗) = H(R∗, R∗) = H(R∗) = maxR∈P∗H(R)

which concludes the proof.

C. Proof of Theorem 3
Proof. Since f(A) has rank at least K, there exists at least
one submatrix M ∈ RK×K of A such that det(f(M)) 6= 0.
Let b1 < b2 < . . . < bT be all the distinct values of M.
Denote by ε = 1

4 mini>1 |bi − bi−1|. We first prove the
following lemmas.

Lemma 8. Let P ∈ R[X1, . . . , XT ] be a multivariate poly-
nomial with real coefficients. Assume there exist infinite
sets S1, . . . , ST such that P vanishes on all the points of
S1 × S2 × . . .× ST . Then P vanishes on any point of RT .

Proof. We prove this by induction over T . The result
easily holds for T = 1 since a real univariate non-zero
polynomial can only have a finite set of roots. Assume
now that the result holds for any polynomial in T − 1
variables. We can write P (X1, X2, . . . , XT ) as a uni-
variate polynomial in X1 with coefficients polynomials
in R[X2, . . . , XT ] as follows: P (X1, X2, . . . , XT ) =∑d1

i=0Qi(X2, . . . , XT )Xi
1, where d1 is the maximum de-

gree of X1. For any arbitrary x2, . . . , xT ∈ S2 × . . .× ST ,
we know from the hypothesis that P (c, x2, . . . , xT ) =
0,∀c ∈ S1. Since S1 is infinite we have that the univariate
polynomial in X1 is identical 0, i.e. P (X,x2, . . . , xT ) ≡
0, which implies that Qi(x2, . . . , xT ) = 0. How-
ever, x2, . . . , xT ∈ S2 × . . . × ST were chosen arbi-
trarily, thus Qi(x2, . . . , xT ) = 0,∀x2, . . . , xT ∈ S2 ×
. . . × ST . Applying the induction hypothesis for T − 1,
one gets that all Qi vanish on the full RT−1. Thus,
P (X,x2, . . . , xT ) ≡ 0,∀(x2, . . . , xT ) ∈ RT−1, which
implies that P (x1, x2, . . . , xT ) = 0,∀(x1, x2, . . . , xT ) ∈
RT .

Lemma 9. There exist ci ∈ [bi−ε, bi+ε],∀i ∈ {1, . . . , T}
s.t. given any pointwise function h satisfying h(bi) =
ci,∀1 ≤ i ≤ T , we have det(h(M)) 6= 0.

Proof. Assume the contrary, that ∀ci ∈ [bi − ε, bi + ε],
det(h(M)) = 0.

We note that, using the Leibniz formula of the deter-
minant, one easily sees that det(M) can be written as
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P (b1, . . . , bT ), where P ∈ R[X1, . . . , XT ] is a multi-
variate polynomial in T variables. It is then easy to see
that any pointwise h will change the determinant of M
as: det(h(M)) = P (h(b1), . . . , h(bT )). Then, assuming
this lemma is not true is equivalent with P (c1, . . . , cT ) =
0,∀ci ∈ [bi − ε, bi + ε],∀1 ≤ i ≤ T . Applying lemma 8
to sets Si = [bi − ε, bi + ε], one gets that P (c1, . . . , cT ) =
0,∀ci ∈ R,∀i ∈ {1, . . . , T}. Taking ci = f(bi) one ob-
tains det(f(M)) = P (f(b1), . . . , f(bT )) = 0 which is a
contradiction with our assumption on M and f .

We now return to the proof of the main theorem. For each
i ∈ {1, . . . , T}, let us denote by ci ∈ [bi − ε, bi + ε] the
values from lemma 9 that guarantee a non-zero determinant.
We construct a pointwise bijective, piecewise differentiable,
continuous and strictly increasing function g : R → R
such that g(bi) = ci. It is obvious that det(g(M)) depends
only on the values g(bi), so we are free to assign any other
values to any other real input of g as long as the above
constraints on g are satisfied. One example of such g is a
piecewise linear function defined to match the following val-
ues: g(bi) = ci, g(bi + 2ε) = bi + 2ε,∀1 ≤ i ≤ T, g(x) =
x, ∀x < b1 − 2ε and g(x) = x, ∀x > bT + 2ε. It can
be easily seen that such a function is bijective, piecewise
differentiable, continuous and strictly increasing.

D. Proof of Lemma 4
Proof. If 〈wi,hji〉 are distinct from all the other entries
in the matrix A, one can design the following pointwise
function:

f(x) =

{
1 if ∃i s.t. x = 〈wi,hji〉
0 else

Then, let B be the M ×M submatrix of A consisting of all
its M rows and the M columns indexed by ji’s. It is then
clear that f(B) = IM , which is obviously full rank.

E. Proof of Theorem 6
Proof. We will make use of the following folklore lemmas:

Lemma 10. LetM = ∪iMi be a finite union of Rieman-
nian manifolds of dimension m, embedded in Rk, with Rie-
mannian metric gi inherited from Rk. Then, any finite union
S of submanifolds of theMi’s of dimensions strictly smaller
than m is a set of null measure6. In other words, any point
fromM is almost surely not in S.

Proof. (sketch) any submanifold ofM of strictly smaller

6w.r.t. the volume form of the manifold, i.e. locally w.r.t. to the
m-dimensional Lebesgue measure.

dimension than m has volume or measure zero. The result
then follows from the fact that a finite union of sets of
measure zero has also measure zero.

Lemma 11. The set ONk of rank-k matrices of size N ×N
with 0 < k < N is a Riemannian manifold of dimension
2kN − k2 embedded in RN×N .

Proof. See e.g. (Shalit et al., 2012). The Riemannian metric
for embedded manifolds is simply the Euclidean metric
restricted to the manifold.

We now return to the main proof of the theorem. From
lemma 11 we have that dim(ONN−1) = N2− 1. We want to
prove that the subset of ONN−1 of rank N − 1 matrices for
which x2 is not increasing their rank has dimension strictly
smaller than dim(ONN−1). In this case, using lemma 10,
the measure of all ill-behaved matrices would be 0, so any
matrix from ONN−1 is almost surely well-behaved, i.e. the
rank of A�2 is almost surely full rank N for A ∈ ONN−1.

We begin by removing from ONN−1 the set of all matrices
that have two proportional columns, a set that we name ΞN .
This is a finite7 union of manifolds of dimension N(N −
1) + 1, namely all sets of matrices for which column i is
proportional to column j, for all 1 ≤ i < j ≤ N 8. Using
lemma 10, we derive that the measure or volume of ΞN is
0.

Now, for any arbitrary A ∈ ONN−1 \ ΞN with columns
x(1), . . . ,x(N) ∈ RN , one can easily derive that ∃γi ∈ R
not all equal to 0 s.t.

∑N
i=1 γix

(i) = 0. We know that at
least one γi 6= 0 from the fact that A ∈ ONN−1; let us denote
by Γi the set of such matrices A ∈ ONN−1. Since ONN−1 is
the (finite) union of the Γi’s, we want to show that the set of
ill-behaved matrices in each Γi is contained in a manifold
of dimension strictly smaller than that of ONN−1, which will
conclude, using the fact that a finite union of null measure
sets has null measure.

Without loss of generality, let us assume that A ∈ ΓN , i.e.
that γN 6= 0. Let us note that

ΓN = {A ∈ ONN−1 : γN = 1}, (24)

by substituting each γi with γi/γN for 1 ≤ i ≤ N − 1.

7More precisely, of N(N−1)
2

manifolds, one per each pair of
columns.

8TheN(N−1)+1 dimension comes from the fact that there are
N-1 independent columns, plus a scalar, namely the multiplication
factor between column i and column j.
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If A�2 is not full rank, there exist α1, ..., αN ∈ R such that

N−1∑
i=1

αi(x
(i))�2 = αN

(
N−1∑
i=1

γix
(i)

)�2

. (25)

For fixed α1, ..., αN ∈ R, denote by Mα the subset of the
solutions {x(i)}1≤i≤N−1 ⊂ RN of the above equation.

Define

ϕ : (x
(1)
k , ..., x

(N−1)
k ) ∈ RN−1 7→

N−1∑
i=1

αi(x
(i)
k )2 − αN

(
N−1∑
i=1

γix
(i)
k

)2

. (26)

This can be re-written ϕ(x) = xTGx with

Gij = δij(αi − αNγ2
i )− (1− δij)αNγiγj

It can be easily shown that since A is not in ΞN , G is not
the null matrix. Indeed, if G = 0, then either αN = 0 −
and then αi = αNγ

2
i = 0 for all i, which is excluded −

or αN 6= 0, and then αNγiγj = 0 for all i 6= j, meaning
only one γi0 is non-zero, i.e. x(N) = −γi0x(i0) and hence
A ∈ ΞN .

Note that since G is not the null matrix, dim(kerG) <
N − 1. Furthermore, let U := RN−1 \ kerG. Invoking the
Pre-Image theorem, the set U ∩ ϕ−1({0}) is a submanifold
of RN−1 of dimension (N − 1) − 1 = N − 2. There-
fore, ϕ−1({0}) is a finite union of manifolds of dimensions
smaller than (or equal to) N − 2.

Since eq. (25) can be written as an intersection of N equa-
tions as the one defined by ϕ (i.e. one per coordinate),
the set Mα of solutions of eq. (25) is included in a finite
union of manifolds of dimensions smaller than (or equal to)
N(N − 2).

Finally, the total setX of matrices we are after− i.e. of rank
N − 1 and which cannot be made full ranked by pointwise
square − can be defined as the union over α of all Mα, i.e.
X = ∪αMα. As X has the structure of a fiber bundle, with
base space the set of α’s (of dimension N ), X is a subset of
submanifolds of dimensions smaller than N +N(N −2) =
N2 −N < N2 − 1 for N > 1, which concludes the proof.

F. Proof of Theorem 7
Proof. Let h : [−T, T ] be any increasing function defined
on [−T, T ]. Assume bounded derivatives, i.e. ∃R > 0
s.t. |h′(x)| < R, ∀x ∈ [−T, T ]. Then, for a fixed positive
integer K, we consider the knots li = −T + 2Ti

K ,∀0 ≤ i ≤
K. Next, using standard linear interpolation, we define a

piecewise linear function fK : [−T, T ]→ R s.t. fK(li) =
h(li),∀0 ≤ i ≤ K. Since h is increasing, one obtains that
fK is also increasing. It is then easy to see that fK is a PLIF
function. Moreover, the slopes are given by the formula:
si = h(li+1)−h(li)

li+1−li .

We define the additional function gK(x) := fK(x)− h(x).
We wish to prove that limK→∞maxx∈[−T,T ] |gK(x)| = 0 .
For this, we first use Cauchy’s theorem deriving that ∃ci ∈
(li+1, li) s.t. si = h(li+1)−h(li)

li+1−li = h′(ci). Thus, since h′

is bounded by R, we get that |si| < R, ∀i. This further
implies that |g′K(x)| < 2R,∀x ∈ [−T, T ]. Moreover, from
the definition of fK we have that gK(li) = 0,∀i. Finally,
for any x ∈ [−T, T ], let [li+1, li] be the interval in which x
lies. We have that:

|gK(x)| = |gK(x)− gK(li)| =

=
|gK(x)− gK(li)|

|x− li|
|x− li| ≤

≤ 2R|x− li| ≤ 2R
2T

K

(27)

where the first inequality happens from the same argument
derived from Cauchy’s theorem as above. It is now trivial
to prove that limK→∞maxx∈[−T,T ] |gK(x)| = 0, which
concludes our proof.

G. Effect of the Dirichlet concentration
See fig. 5.

H. Additional Synthetic Experiments
See figs. 6 to 8.
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Figure 5. Distribution of M-class discrete distributions sampled from a Dirichlet prior. Larger concentration parameters result in close to
uniform distributions, while low values result in sparse or long-tail distributions.
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Figure 6. Percentage of contexts j for which the modes of true and parametric distributions match, i.e argmaxi P
∗(xi|cj) =

argmaxiQΘ(xi|cj). Higher the better. Dirichlet concentration α = 0.01.

Figure 7. Average KL(P ∗||QΘ) (across all contexts). Lower the better. Dirichlet concentration α = 0.01.
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Figure 8. Percentage of contexts j for which the modes of true and parametric distributions match, i.e argmaxi P
∗(xi|cj) =

argmaxiQΘ(xi|cj). Higher the better. Dirichlet concentration α = 1.


