
Rate Distortion For Model Compression: From Theory To Practice

A. Lower bound for rate distortion function

In this section, we finish the proof of the lower bound and achievability in Section 4. Our approach is based on the

water-filling approach (McDonald & Schultheiss, 1964).

A.1. General lower bound

First, we establish establishes a lower bound of the rate distortion function, which works for general models..

Lemma 1 The rate-distortion function R(D) ≥ R(D) = h(W ) − C, where C is the optimal value of the following

optimization problem.

max
P

Ŵ |W

m∑

i=1

min
{

h(Wi),
1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])
}

s.t. EW,Ŵ

[

d(W, Ŵ )
]

≤ D.

where h(W ) = −
∫

w∈W PW (w) logPW (w)dw is the differential entropy of W and h(Wi) is the differential entropy of the

i-th entry of W .

A.1.1. PROOF OF LEMMA 1

Recall that the rate distortion function for model compression is defined as R(D) = minP
Ŵ |W :E

W,Ŵ
[d(W,Ŵ )]≤D I(W ; Ŵ ).

Now we lower bound the mutual information I(W, Ŵ ) by

I(W ; Ŵ ) = h(W )− h(W | Ŵ ),

= h(W )−
m∑

i=1

h(Wi |W1, . . . ,Wi−1, Ŵi, . . . , Ŵm)

≥ h(W )−
m∑

i=1

h(Wi | Ŵi).

Here the last inequality comes from the fact that conditioning does not increase entropy. Notice that the first term

h(W ) does not depend on the compressor. For the last term, we upper bound each term h(Wi | Ŵi) in two ways. On

one hand, h(Wi | Ŵi) is upper bounded by h(Wi) because conditioning does not increase entropy. On the other hand,

h(Wi | Ŵi) = h(Wi − Ŵi | Ŵi) ≤ h(Wi − Ŵi), and by Cover & Thomas (2012, Theorem 8.6.5), differential entropy is

maximized by Gaussian distribution, for given second moment. We then have:

h(Wi | Ŵi) ≤ min
{

h(Wi), h(Wi − Ŵi)
}

≤ min
{

h(Wi),
1

2
log

(

2πeEW,Ŵ [(Wi − Ŵi)
2]
)}

= min

{

h(Wi),
1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])

}

.

Therefore, the lower bound of the mutual information is given by,

I(W ; Ŵ ) ≥ h(W )−
m∑

i=1

min
{

h(Wi),
1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])
}

.

A.2. Lower bound for linear model

For complex models, the general lower bound in Lemma 1 is difficult to evaluate, due to the large dimension of parameters.

It was shown by Jiao et al. (2017) that the sample complexity to estimate differential entropy is exponential to the dimension.
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It’s even harder to design an algorithm to achieve the lower bound. But for linear model, the lower bound can be simplified.

For fw(x) = wTx, the distortion function d(w, ŵ) can be written as

d(w, ŵ) = EX

[
(fw(X)− fŵ(X))2

]
= EX

[
(wTX − ŵTX)2

]

= EX

[
(w − ŵ)TXXT (w − ŵ)

]
= (w − ŵ)TEX [XXT ](w − ŵ).

Since we assumed that E[X] = 0, E[X2
i ] = λx,i > 0 and E[XiXj ] = 0, so the constraint in Lemma 1 is given by

D ≥ EW,Ŵ

[

(W − Ŵ )TEX [XXT ](W − Ŵ )
]

=

m∑

i=1

λx,i EW,Ŵ

[

(Wi − Ŵi)
2
]

︸ ︷︷ ︸

Di

.

Then the optimization problem in Lemma 1 can be written as follows

max
p(ŵ|w)

m∑

i=1

min{h(Wi),
1

2
log(2πeDi)}

s.t.

m∑

i=1

λx,iDi ≤ D.

Here Wi is a Gaussian random variable, so h(Wi) =
1
2 log(2πeE[W

2
i ]). The Lagrangian function of the problem is given

by

L(D1, . . . , Dm, µ)

=

m∑

i=1

(

min{
1

2
logE[W 2

i ],
1

2
logDi}+

1

2
log(2πe)− µλx,iDi

)

.

By setting the derivative w.r.t. Di to 0, we have

0 =
∂L

∂Di
=

1

2Di
− µλx,i.

for all Di such that Di < E[W 2
i ]. So the optimal Di should satisfy that Diλx,i is constant, for all Di such that Di < E[W 2

i ].
Also the optimal Di is at most E[W 2

i ]. Also, since h(W ) = m
2 log(2πe) + 1

2 log det(ΣW ) the lower bound is given by

R(D) ≥
1

2
log det(ΣW )−

m∑

i=1

1

2
log(Di),

where

Di =

{

µ/λx,i ifµ < λx,iEW [W 2
i ] ,

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ] ,

where µ is chosen that
∑m

i=1 λx,iDi = D.

This lower bound gives rise to a “weighted water-filling”, which differs from the classical “water-filling” for rate-distortion of

colored Gaussian source in Cover & Thomas (2012, Figure 13.7), since the water level’s Di are proportional to 1/λx,i, which

is related to the input of the model rather than the parameters to be compressed. To illustrate the “weighted water-filling”

process, we choose a simple example where ΣW = ΣX = diag[3, 2, 1]. In Figure 6, the widths of each rectangle are

proportional to λx,i, and the heights are proportional to ΣW = [3, 2, 1]. The water level in each rectangle is Di and the

volume of water is µ. As D starts to increase from 0, each rectangle is filled with same volume of water (µ is the same), but

the water level Di’s increase with speed 1/λx,i respectively (Figure 6.(a)). This gives segment (a) of the rate distortion

curve in Figure 6.(d). If D is large enough such that the third rectangle is full, then D3 is fixed to be E[W 2
3 ] = 1, whereas

D1 and D2 continuously increase (Figure 6.(b)). This gives segment (b) in Figure 6.(d). Keep increasing D until the second

rectangle is also full, then D2 is fixed to be E[W 2
2 ] = 2 and D1 continuous increasing (Figure 6 (c)). This gives segment (c)

in Figure 6.(d). The entire rate-distortion function is shown in Figure 6(d), where the first red dot corresponds to the moment

that the third rectangle is exactly full, and the second red dot corresponds to moment that the second rectangle is exactly full.
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Figure 6. Illustration of “weighted water-filling” process.

A.3. Achievability

We prove that this lower bound is achievable. To achieve the lower bound, we construct the compression algorithm in

Algorithm 1,

Algorithm 1 Optimal compression algorithm for linear regression

Input: distortion D, covariance matrix of parameters ΣW , covariance matrix of data ΣX = diag[λx,1, . . . , λx,m].
Choose Di’s such that

Di =

{

µ/λx,i ifµ < λx,iEW [W 2
i ] ,

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ] ,

where
∑m

i=1 λx,iDi = D.

for i = 1 to m do

if Di = µ/λx,i then

Choose Ŵi = 0
else

Choose a conditional distribution PŴi|Wi
such that Wi = Ŵ+Zi where Zi ∼ N (0, Di), Ŵi ∼ N (0,EW [W 2

i ]−Di)

and Ŵi is independent of Zi.

end if

end for

Combine the conditional probability distributions by PŴ |W =
∏m

i=1 PŴi|Wi
.

Intuitively, the optimal compressor does the following: (1) Find the optimal water levels Di for “weighted water filling”.

(2) For the entries where the corresponding rectangles are full, simply discard the entries; (3) for the entries where the

corresponding rectangles are not full, add a noise which is independent of Ŵi and has a variance proportional to the water

level. That is possible since W is Gaussian. (4) Combine the conditional probabilities.

To see that this compressor is optimal, we will check that the compressor makes all the inequalities become equality. Here is

all the inequalities used in the proof.

• h(Wi |W1, . . . ,Wi−1, Ŵi, . . . , Ŵm) ≤ h(Wi|Ŵi) for all i = 1...m. It becomes equality by PŴ |W =
∏m

i=1 PŴi|W .

• Either

– h(Wi|Ŵi) ≤ h(Wi). It becomes equality for those Ŵi = 0.
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– h(Wi − Ŵi|Ŵi) ≤ h(Wi − Ŵi) ≤
1
2 log(2πeEW,Ŵ [(Wi − Ŵ )2]). It becomes equality for those Ŵi’s such that

Wi − Ŵi is independent of Ŵi and Wi − Ŵi is Gaussian.

• The “water levels” Di. It becomes equality by choosing the Di’s according to Lagrangian conditions.

Therefore, Algorithm 1 gives a compressor P
(D)

Ŵ |W such that E
PW ◦P (D)

Ŵ |W

[d(W, Ŵ )] = D and I(W ; Ŵ ) = R(D), hence the

lower bound is tight.

B. Proof of Theorem 4

In this section, we provide the proof of Theorem 4. For simplicity let σ(t) = tI{t ≥ 0} denotes the ReLU activation

function. First we deal with the objective of the compression algorithm,

(w − ŵ)T Iw(w − ŵ) = (w − ŵ)TEX

[
∇wfw(x)∇wfw(x)

T
]
(w − ŵ)

= (w − ŵ)TEX

[
∇wσ(w

Tx)∇wσ(w
Tx)T

]
(w − ŵ)

= (w − ŵ)TEX

[
xT (σ′(wTx))2x

]
(w − ŵ)

= EX

[
I{wTx ≥ 0}((w − ŵ)Tx)2

]

Notice that x is jointly Gaussian random variable with zero mean and non-degenerate variance, so the distribution of x is

equivalent to the distribution of −x. Therefore,

EX [I{wTx ≥ 0}((w − ŵ)Tx)2] =

∫

x:wT x≥0

((w − ŵT )x)2dx

=
1

2

(∫

x:wT x≥0

((w − ŵT )x)2dx+

∫

x:wT x≤0

((w − ŵT )x)2dx

)

=
1

2

∫ d

x∈R

((w − ŵT )x)2dx =
1

2
(w − ŵ)TΣX(w − ŵ)

So minimizing the gradient-squared based loss is equivalent to minimizing (w − ŵ)TΣX(w − ŵ). Similarly, the condition

ŵIw(w − ŵ) = 0 is equivalent to ŵΣX(w − ŵ) = 0. Now we deal with the MSE loss function E[(fw(x)− fŵ(x))
2]. We

utilize the Hermite polynomials and Fourier analysis on Gaussian space. We use the following key lemma,

Lemma 2 (Ge et al. (2017, Claim 4.3)) Let f , g be two functions from R to R such that f2, g2 ∈ L2(R, e−x2/2). The for

any unit vectors u, v, we have that

Ex∈N (0,Id×d)[f(u
Tx)g(vTx)] =

∞∑

p=0

f̂pĝp(u
T v)p

where f̂p = Ex∈N (0,1)[f(x)hp(x)] is the p-th order coefficient of f , where hp is the p-th order probabilists’ Hermite

polynomial.

Please see Section 4.1 in Ge et al. (2017) for more backgrounds of the Hermite polynomials and Fourier analysis on Gaussian

space. For ReLU function, the coefficients are given by σ̂0 = 1√
2π

, σ̂1 = 1
2 . For p ≥ 2 and even, σ̂p = ((p−3)!!)2√

2πp!
. For p ≥ 2

and odd, σ̂p = 0. Since X ∼ N (0,ΣX), we can write x = Σ
1/2
X z, where z ∼ N (0, Id). So for any compressed weight ŵ,
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we have

EX

[
(fw(x)− fŵ(x))

2
]
= EX

[
(σ(wTx)− σ(ŵTx))2

]

= Ez∈N (0,Id)[(σ(w
TΣ

1/2
X z)− σ(ŵTΣ

1/2
X z))2]

= Ez∈N (0,Id)[σ(w
TΣ

1/2
X z)2]− 2Ez∈N (0,Id)[σ(w

TΣ
1/2
X z)σ(ŵTΣ

1/2
X z)] + Ez∈N (0,Id)[σ(ŵ

TΣ
1/2
X z)2]

=

∞∑

p=0

σ̂2
p(w

TΣXw)p − 2

∞∑

p=0

σ̂2
p(w

TΣXŵ)p +

∞∑

p=0

σ̂p
2(ŵTΣXŵ)p

=

∞∑

p=0

σ̂2
p




(wTΣXw)p − 2(wTΣXŵ)p + (ŵTΣXŵ)p
︸ ︷︷ ︸

Dp(w,ŵ)






Now we can see that D0(w, ŵ) = 0. D1(w, ŵ) = wTΣXw − 2wTΣXŵ + ŵTΣXw = (w − ŵ)TΣX(w − ŵ), is just the

objective. The following lemma gives the minimizer of Dp(w, ŵ) for higher order p.

Lemma 3 If ŵ∗ satisfies ŵ∗ΣX(ŵ − w) = 0 and

ŵ∗ = arg min
ŝ∈W

D1(w, ŵ)

for some constrained set W . Then for any p ≥ 2 and even, we have

ŵ∗ = arg min
ŵ∈W

Dp(w, ŵ)

Since the coefficients σ̂p is zero for p ≥ 3 and odd, so if a compressed weight ŵ satisfied ŵΣX(ŵ − w) = 0 and minimizes

D1(ŵ, w) = (ŵ −w)TΣX(ŵ −w), then it is the minimizer for all Dp(w, ŵ) for even p, therefore a minimizer of the MSE

loss.

B.1. Proof of Lemma 3

For simplicity of notation, define A = wTΣXw, B = ŵTΣX(ŵ − w) and C = D1(w, ŵ) = (ŵ − w)TΣX(ŵ − w). For

all compressors, we have C ≤ A. Therefore, wTΣXŵ = A+B − C and ŵTΣXŵ = A+ 2B − C. So

Dp(w, ŵ) = Ap − 2(A+B − C)p + (A+ 2B − C)p

First notice that

∂Dp(w, ŵ)

∂B
= 2p((A+ 2B − C)p−1 − (A+B − C)p−1).

For even p ≥ 2, xp−1 is monotonically increasing, so (A + 2B − C)p−1 > (A + B − C)p−1 if B > 0 and vice versa.

Therefore, for fixed A and C, Dp(w, ŵ) is monotonically increasing for positive B and decreasing for negative B. Therefore,

Dp(w, ŵ) is minimized when B = 0, and the minimal value is Dp(w, ŵ) = Ap−2(A−C)p+(A−C)p = Ap−(A−C)p,

which is monotonically increasing with respect to C. So if ŵ∗ satisfies B = 0 and is a minimzer of C = D1(w, ŵ), it is

also a minimizer for Dp(w, ŵ) for all p ≥ 2 and even.

C. Details of the experiments

In this appendix, we give some details of the experiment and additional experiments which are omitted in the main text.

C.1. Additional experiment results

We present the experiment results for CIFAR100 here, due to page limit of the main text.
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In Figure 7 and Figure 8, we show the result for unsupervised pruning and quantization, introduced in Section 6.1. We can

see that, similar to the experiments of MNIST and CIFAR10, the proposed objectives gives better accuracy and smaller loss

than the baseline.

In Figure 9 and Figure 10, we show the result for supervised pruning and quantization, introduced in Section 6.2. Due to the

slow running speed for estimating the Hessian ∇2
wi
Lw(x, y), we only compare two objectives — baseline and gradient. It is

shown that the gradient objective gives better accuracy and smaller loss.
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Figure 7. Result for unsupervised pruning experiment for CIFAR 100 experiment. Left: top-1 accuracy. Middle: top-5 accuracy. Right:

cross entropy loss.
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Figure 8. Result for unsupervised quantization experiment for CIFAR 100 experiment. Left: top-1 accuracy. Middle: top-5 accuracy.

Right: cross entropy loss.
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Figure 9. Result for supervised pruning experiment for CIFAR 100 experiment. Left: top-1 accuracy. Middle: top-5 accuracy. Right:

cross entropy loss.

C.2. Algorithm for finding optimal quantization

We present a variation of k-means algorithm which are used to find the optimal quantization for the following objective,

min
c1,...,ck,A∈[k]m

m∑

i=1

(
Ii(wi − cAi

)2 +Hi(wi − cAi
)4
)
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Figure 10. Result for supervised quantization experiment for CIFAR 100 experiment. Left: top-1 accuracy. Middle: top-5 accuracy. Right:

cross entropy loss.

where Ii is positive weight importance for quadratic term and Hi is positive weight importance for quartic term. Basic idea

of the algorithm is — the assignment step finds the optimal assignment given fixed centroids, and the update step finds the

optimal centroids given fixed assignments. This is used for gradient+hessian objective in Section 6.2.

Algorithm 2 Quartic weighted k-means

input Weights {w1, . . . , wm}, weight importances {I1, . . . , Im}, quartic weight importances {H1, . . . , Hm}, number of

clusters k, iterations T
Initialize the centroid of k clusters {c

(0)
1 , . . . , c

(0)
k }

for t = 1 to T do

Assignment step:

for i = 1 to m do

Assign wi to the nearest cluster centroid, i.e. A
(t)
i = argminj∈[k](wi − c

(t−1)
j )2.

end for

Update step:

for j = 1 to k do

Find the only real root x∗ of the cubic equation

(
∑

i:A
(t)
i

=j

4Hi)x
3 − (

∑

i:A
(t)
i

=j

12Hiwi)x
2 + (

∑

i:A
(t)
i

=j

(12Hiw
2
i + 2Ii))x− (

∑

i:A
(t)
i

=j

(4Hiw
3
i + 2Iiwi)) = 0

Update the cluster centroids c
(t)
j be the real root x∗.

end for

end for

output Centroids {c
(T )
1 , . . . , c

(T )
k } and assignments A(T ) ∈ [k]m.

Here we show that the cubic equation in Algorithm 2 has only one real root. It was know that if the determinant ∆0 = b2−3ac
of a cubic equation ax3 + bx2 + cx+ d = 0 is negative, then the cubic equation is strictly increasing or decreasing, hence

only have one real root. Now we show that the determinant is negative in this case (we drop the subsripts of the summation

for simplicity).

∆0 = (
∑

12Hiwi)
2 − 3(

∑

4Hi)(
∑

12Hiw
2
i + 2Ii)

= 144
(

(
∑

Hiwi)
2 − (

∑

Hi)(
∑

Hiw
2
i )
)

− 24(
∑

Hi)(
∑

Ii)

The first term is non-positive because of Cauchy-Schwarz inequality. The second term is negative since Hi’s and Ii’s are all

positive. Hence the determinant is negative.

C.3. Effects of hyperparameters

Here we briefly talk about the hyperparameters used in estimating the gradients E[∇wi
Lw(X,Y )] and hessians

E[∇2
wi
Lw(X,Y )].
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C.3.1. TEMPERATURE SCALING METHOD

The temperature scaling method proposed by (Guo et al., 2017), aims to improve the confidence calibration of a classification

model. Denote zw(x) ∈ R
C is the output of the neural network, and classical softmax gives f

(c)
w (x) =

exp{z(c)
w (x)}

∑
c∈C exp{z(c)

w (x)}
.

The temperature sclaed softmax gives

f (c)
w (x) =

exp{z
(c)
w (x)/T}

∑

c∈C exp{z
(c)
w (x)/T}

by choosing different T , the prediction of the model does not change, but the cross entropy loss may change. Hence, we can

finetune T to get a better model calibration. In our experiment, we found that in MNIST experiment, the model is poorly

calibrated. Hence, the variance of estimating gradient and hessian is very large. To solve this, we adopt a temperature T > 1
such that the loss from correctly-predicted data can also be backpropagated.

In Figure 11, we show the effect of T for supervised pruning for MNIST. We can see that as T increases from 1, the

performance become better at first, then become worse. In our experiment, we choose T ∈ {1.0, 2.0, . . . , 9.0} which gives

best accuracy.
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Figure 11. Effect of the temperature T . Left: accuracy of supervised pruning for MNIST. Right: cross entropy of supervised pruning for

MNIST. Different lines denote different compression ratio ∈ {0.05, 0.075, 0.1}

C.3.2. REGULARIZER OF HESSIAN

In the experiments, we estimate the hessians E[∇2
wi
Lw(X,Y )] using the curvature propagation algorithm (Martens et al.,

2012). However, due to the sparsity introduced by ReLU, there are many zero entries of the estimated hessians, which hurts

the performance of the algorithm. Hence, we add a constant µ > 0 to the estimated hessians. In Figure 12, we show that

effect of µ for supervised pruning for CIFAR10. We can see that as µ increases from 0, the performance increase first then

decrease. We use simple binary search to find the best µ.
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Figure 12. Effect of the regularizer µ. Left: accuracy of supervised pruning for CIFAR10. Right: cross entropy of supervised pruning for

CIFAR10. Different lines denote different compression ratio ∈ {0.4, 0.5, 0.6}


