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Abstract

The enormous size of modern deep neural net-

works makes it challenging to deploy those mod-

els in memory and communication limited scenar-

ios. Thus, compressing a trained model without a

significant loss in performance has become an in-

creasingly important task. Tremendous advances

has been made recently, where the main techni-

cal building blocks are pruning, quantization, and

low-rank factorization. In this paper, we propose

principled approaches to improve upon the com-

mon heuristics used in those building blocks, by

studying the fundamental limit for model com-

pression via the rate distortion theory. We prove

a lower bound for the rate distortion function for

model compression and prove its achievability

for linear models. Although this achievable com-

pression scheme is intractable in practice, this

analysis motivates a novel objective function for

model compression, which can be used to improve

classes of model compressor such as pruning or

quantization. Theoretically, we prove that the

proposed scheme is optimal for compressing one-

hidden-layer ReLU neural networks. Empirically,

we show that the proposed scheme improves upon

the baseline in the compression-accuracy tradeoff.

1. Introduction

Deep neural networks have been successful, for example,

in the application of computer vision (Krizhevsky et al.,

2012), machine translation (Wu et al., 2016) and game play-

ing (Silver et al., 2017). With increasing data and compu-
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tational power, the number of weights in practical neural

network model also grows rapidly. For example, in the ap-

plication of image recognition, the LeNet-5 model (LeCun

et al., 1998) only has 400K weights. After two decades,

AlexNet (Krizhevsky et al., 2012) has more than 60M

weights, and VGG-16 net (Simonyan & Zisserman, 2014)

has more than 130M weights. Coates et al. (2013) even

tried a neural network with 11B weights. The huge size of

neural networks brings many challenges, including large

storage, difficulty in training, and large energy consumption.

In particular, deploying such extreme models to embedded

mobile systems is not feasible.

Several approaches have been proposed to reduce the size of

large neural networks while preserving the performance as

much as possible. Most of those approaches fall into one of

the two broad categories. The first category designs novel

network structures with small number of parameters, such as

SqueezeNet (Iandola et al., 2016) and MobileNet (Howard

et al., 2017). The other category directly compresses a

given large neural network using pruning, quantization, and

matrix factorization, including (LeCun et al., 1990; Hassibi

& Stork, 1993; Han et al., 2015b;a; Cheng et al., 2015).

There are also advanced methods to train the neural network

using Bayesian methods to help pruning or quantization at

a later stage, such as (Ullrich et al., 2017; Louizos et al.,

2017; Federici et al., 2017).

As more and more model compression algorithms are pro-

posed and compression ratio becomes larger and larger, it

motivates us to think about the fundamental question —

How well can we do for model compression? The goal of

model compression is to trade off the number of bits used to

describe the model parameters, and the distortion between

the compressed model and original model. We wonder at

least how many bits is needed to achieve certain distortion?

Despite many successful model compression algorithms,

these theoretical questions still remain unclear.

In this paper, we fill in this gap by bringing tools from rate

distortion theory to identify the fundamental limit on how

much a model can be compressed. Specifically, we focus on

compression of a pretrained model, rather than designing

new structures or retraining models. Our approach builds

upon rate-distortion theory introduced by Shannon (1959)
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and further developed by Berger (1971). The approach

also connects to modeling neural networks as random vari-

ables in Mandt et al. (2017), which has many practical

usages (Cao et al., 2018).

Our contribution for model compression is twofold: theo-

retical and practical. We first apply theoretical tools from

rate distortion theory to provide a lower bound on the fun-

damental trade-off between rate (number of bits to describe

the model) and distortion between compressed and origi-

nal models, and prove the tightness of the lower bound for

a linear model. This analysis seamlessly incorporate the

structure of the neural network architecture into model com-

pression via backpropagation. Motivated by the theory, we

design an improved objective for compression algorithms

and show that the improved objective gives optimal prun-

ing and quantization algorithm for one-hidden-layer ReLU

neural network, and has better performance in real neural

networks as well.

The rest of the paper is organized as follows.

• In Section 2, we briefly review some previous work on

model compression.

• In Section 3, we introduce the background of the rate

distortion theory for data compression, and formally

state the rate distortion theory for model compression.

• In Section 4, we give a lower bound of the rate distor-

tion function, which quantifies the fundamental limit

for model compression. We then prove that the lower

bound is achievable for linear model.

• In Section 5, motivated by the achievable compressor

for linear model, we proposed an improved objective

for model compression, which takes consideration of

the sturcture of the neural network. We then prove that

the improved objective gives optimal compressor for

one-hidden-layer ReLU neural network.

• In Section 6, we demonstrate the empirical perfor-

mance of the proposed objective on fully-connected

neural networks on MNIST dataset and convolutional

networks on CIFAR dataset.

2. Related work on model compression

The study of model compression of neural networks ap-

peared as long as neural network was invented. Here we

mainly discuss the literature on directly compressing large

models, which are more relevant to our work. They usually

contain three types of methods — pruning, quantization and

matrix factorization.

Pruning methods set unimportant weights to zero to reduce

the number of parameters. Early works of model pruning

includes biased weight decay (Hanson & Pratt, 1989), op-

timal brain damage (LeCun et al., 1990) and optimal brain

surgeon (Hassibi & Stork, 1993). Early methods utilize the

Hessian matrix of the loss function to prune the weights,

however, Hessian matrix is inefficient to compute for mod-

ern large neural networks with millions of parameters. More

recently, Han et al. (2015b) proposed an iterative pruning

and retraining algorithm that works for large neural net-

works.

Quantization, or weight sharing methods group the weights

into clusters and use one value to represent the weights in

the same group. This category includes fixed-point quan-

tization by Vanhoucke et al. (2011), vector quantization

by Gong et al. (2014), HashedNets by Chen et al. (2015),

Hessian-weighted quantizaiton by Choi et al. (2016) and

Diameter-regularized Hessian-weighted quantization by Bu

et al. (2019).

Matrix factorization assumes the weight matrix in each layer

could be factored as a low rank matrix plus a sparse matrix.

Hence, storing low rank and sparse matrices is cheaper than

storing the whole matrix. This category includes Denton

et al. (2014) and Cheng et al. (2015).

There are some recent advanced method beyond pruning,

quantization and matrix factorization. Han et al. (2015a)

assembles pruning, quantization and Huffman coding to

achieve better compression rate. Bayesian methods (Ullrich

et al., 2017; Louizos et al., 2017; Federici et al., 2017) are

also used to retrain the model such that the model has more

space to be compressed. He et al. (2018) uses reinforcement

learning to design a compression algorithm.

Despite these aforementioned works for model compression,

no one has studied the fundamental limit of model compres-

sion, as far as we know. More specifically, in this paper,

we focus on the study of theory of model compression for

pretrained neural network models and then derive practical

compression algorithms given the proposed theory.

3. Rate distortion theory for model

compression

In this section, we briefly introduce the rate distortion the-

ory for data compression. Then we extend the theory to

compression of model parameters.

3.1. Review of rate distortion theory for data

compression

Rate distortion theory, firstly introduced by Shannon (1959)

and further developed by Berger (1971), is an important con-

cept in information theory which gives theoretical descrip-

tion of lossy data compression. It addressed the minimum

average number of R bits, to transmit a random variable
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Figure 1. An illustration of encoder and decoder.

such that the receiver can reconstruct the random variable

with distortion D.

Precisely, let Xn = {X1, X2 . . . Xn} ∈ Xn be i.i.d. ran-

dom variables from distribution PX . An encoder fn :
Xn → {1, 2, . . . , 2nR} maps the message Xn into code-

word, and a decoder gn : {1, 2, . . . , 2nR} → Xn recon-

struct the message by an estimate X̂n from the codeword.

See Figure 1 for an illustration.

A distortion function d : X × X → R
+ quantifies the

difference of the original and reconstructed message. Dis-

tortion between sequence Xn and X̂n is defined as the

average distortion of Xi’s and X̂i’s. Commonly used

distortion function includes Hamming distortion function

d(x, x̂) = I[x 6= x̂] for X = {0, 1} and square distortion

function d(x, x̂) = (x− x̂)2 for X = R.

Now we are ready to define the rate-distortion function for

data compression.

Definition 1 A rate-distortion pair (R,D) is achievable

if there exists a series of (probabilistic) encoder-

decoder (fn, gn) such that the alphabet of code-

word has size 2nR and the expected distortion

limn→∞ E[d(Xn, gn(fn(X
n)))] ≤ D.

Definition 2 Rate-distortion function R(D) equals to the

infimum of rate R such that rate-distortion pair (R,D) is

achievable.

The main theorem of rate-distortion theory (Cover &

Thomas (2012, Theorem 10.2.1)) states as follows,

Theorem 1 Rate distortion theorem for data compression.

R(D) = min
P

X̂|X :E[d(X,X̂)]≤D
I(X; X̂) . (1)

The rate distortion quantifies the fundamental limit of data

compression, i.e., at least how many bits are needed to

compress the data, given the quality of the reconstructed

data. Here is an example for rate-distortion function.

Example 1 If X ∼ N (0, σ2), the rate distortion function

is given by

R(D) =

{
1
2 log2(σ

2/D) ifD ≤ σ2

0 ifD > σ2
.

If the required distortion D is larger than the variance of the

Gaussian variable σ2, we simply transmit X̂ = 0; otherwise,

we will transmit X̂ such that X̂ ∼ N (0, σ2−D), X−X̂ ∼
N (0, D) where X̂ and X − X̂ are independent.

3.2. Rate distortion theory for model compression

Now we extend the rate distortion theory for data compres-

sion to model compression. To apply the rate distortion

theory to model compression, we view the weights in the

model as a multi-dimensional random variable W ∈ R
m

following distribution PW . The randomness comes from

multiple sources including different distributions of training

data, randomness of training data and randomness of train-

ing algorithm. The compressor can also be random hence

we describe the compressor by a conditional probability

PŴ |W . Now we define the distortion and rate in model

compression, analogously to the data compression scenario.

Distortion. Assume we have a neural network fw that maps

input x ∈ R
dx to fw(x) in output space S. For regressors,

fw(x) is defined as the output of the neural network on R
dy .

Analogous to the square distortion in data compression, We

define the distortion to be the expected ℓ2 distance between

fw and fŵ, i.e.

d(w, ŵ) ≡ EX

[
‖fw(X)− fŵ(X)‖22

]
. (2)

For classfiers, fw(x) is defined as the output probability

distribution over C classes on the simplex ∆C−1. We define

the distortion to be the expected distance between fw and

fŵ, i.e.

d(w, ŵ) ≡ EX [D(fŵ(X)||fw(X)) ] . (3)

Here D could be any statistical distance, including KL diver-

gence, Hellinger distance, total variation distance, etc. Such

a definition of distortion captures the difference between

the original model and the compressed model, averaged

over data X , and measures the quality of a compression

algorithm.

Rate. In data compression, the rate is defined as the de-

scription length of the bits necessary to communicate the

compressed data X̂ . The compressor outputs X̂ from a finite

code book X . The description consists the code word which

are the indices of x̂ in the code book, and the description of

the code book.

In rate distortion theory, we ignore the code book length.

Since we are transmitting a sequence of data Xn, the code

word has to be transmitted for each Xi but the code book is

only transmitted once. In asymptotic setting, the description

length of code book can be ignored, and the rate is defined

as the description length of the code word.

In model compression, we also define the rate as the code

word length, by assuming that an underlying distribution
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PW of the parameters exists and infinitely many models

whose parameters are i.i.d. from PW will be compressed.

In practice, we only compress the parameters once so there

is no distribution of the parameters. Nevertheless, the rate

distortion theory can also provide important intuitions for

one-time compression, explained in Section 5.

Now we can define the rate distortion function for model

compression. Analogously to Theorem 1, the rate distortion

function for model compression is defined as follows,

Definition 3 Rate distortion function for model compres-

sion.

R(D) = min
P

Ŵ |W :E
W,Ŵ [d(W,Ŵ )]≤D

I(W ; Ŵ ). (4)

In the following sections we establish a lower bound of the

rate-distortion function.

4. Lower bound and achievability for rate

distortion function

In this section, we study the lower bound for rate distortion

function in Definition 3. We provide a lower bound for the

rate distortion function, and prove that this lower bound is

achivable for linear regression models.

4.1. Lower bound for linear model

Assume that we are going to compress a linear regression

model fw(x) = wTx. We assume that the mean of data

x ∈ R
m is zero and the covariance matrix is diagonal, i.e.,

EX [X2
i ] = λx,i > 0 and EX [XiXj ] = 0 for i 6= j. Further-

more, assume that the parameters W ∈ R
m are drawn from

a Gaussian distribution N (0,ΣW ). The following theorem

gives the lower bound of the rate distortion function for the

linear regression model.

Theorem 2 The rate-distortion function of the linear re-

gression model fw(x) = wTx is lower bounded by

R(D) ≥ R(D) =
1

2
log det(ΣW )−

m∑

i=1

1

2
log(Di),

where

Di =

{

µ/λx,i ifµ < λx,iEW [W 2
i ] ,

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ] ,

where µ is chosen that
∑m

i=1 λx,iDi = D.

This lower bound gives rise to a “weighted water-filling”

approach, which differs from the classical “water-filling”

for rate distortion of colored Gaussian source in Cover &

Thomas (2012, Figure 13.7). The details and graphical

explanation of the “weighted water-filling” can be found in

Appendix A.

4.2. Achievability

We show that, the lower bound give in Theorem 2 is achiev-

able. Precisely, we have the following theorem.

Theorem 3 There exists a class of probabilistic compres-

sors P
(D)

Ŵ∗|W such that E
PW ◦P (D)

Ŵ∗|W

[

d(W, Ŵ ∗)
]

= D and

I(W ; Ŵ ∗) = R(D).

The optimal compressor is Algorithm 1 in Appendix A.

Intuitively, the optimal compressor does the following

• Find the optimal water levels Di for “weighted wa-

ter filling”, such that the expected distortion D =
EW,Ŵ [d(W, Ŵ )] = EW,Ŵ [ŴTΣX(W − Ŵ )] is min-

imized given certain rate.

• Add a noise Zi which is independent of Ŵi = Wi+Zi

and has a variance proportional to the water level. That

is possible since W is Gaussian.

We can check that the compressor makes all the inequalities

become equality, hence achieve the lower bound. The full

proof of the lower bound and achievability can be found in

Appendix A.

5. Improved objective for model compression

In the previous sections, we study the rate-distortion theory

for model compression. In rate-distortion theory, we assume

that there exists a prior distribution PW on the weights W ,

and prove the tightness of the lower bound in the asymptotic

scenario. However, in practice, we only compress one par-

ticular pre-trained model, so there are no prior distribution

of W . Nonetheless, we can still learn something impor-

tant from the achivability of the lower bound, by extracting

two “golden rules” from the optimal algorithm for linear

regression.

5.1. Two golden rules

Recall that for linear regression model, to achieve the

smallest rate given certain distortion (or, equivalently,

achieve the smallest distortion given certain rate), the

optimal compressor need to do the following: (1) find

appropriate “water levels” such that the expected distor-

tion EW,Ŵ [d(W, Ŵ )] = EW,Ŵ ,X [(WTX − ŴTX)2] =

EW,Ŵ [(W − Ŵ )TΣX(W − Ŵ )] is minimized. (2) make

sure that Ŵi is independent with Wi − Ŵi, in other words,

EW,Ŵ [ŴTΣX(W − Ŵ )] = 0. Hence, we extract the fol-

lowing two “golden rules”:
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1. EW,Ŵ [ŴTΣX(W − Ŵ )] = 0

2. EW,Ŵ [(W−Ŵ )TΣX(W−Ŵ )] should be minimized,

given certain rate.

For practical model compression, we adopt these two

“golden rules”, by making the following amendments. First,

we discard the expectation over W and Ŵ since there is

only one model to be compressed. Second, the distor-

tion can be written as d(w, ŵ) = (w − ŵ)TΣX(w − ŵ)
only for linear models. For non-linear models, the dis-

tortion function is complicated, but can be approximated

by a simpler formula. For non-linear regression mod-

els, we take first order Taylor expansion of the function

fŵ(x) ≈ fw(x) + (ŵ − w)T∇wfw(x), and have

d(w, ŵ)

= EX

[
‖fw(X)− fŵ(X)‖22

]

≈ EX

[
(w − ŵ)T∇wfw(X)(∇wfw(X))T (w − ŵ)

]

= (w − ŵ)T Iw(w − ŵ)

where the “weight importance matrix” defined as

Iw = EX

[
∇wfw(X)(∇wfw(X))T

]
, (5)

quantifies the relative importance of each weight to the

output. For linear regression models, weight importance

matrix Iw equals to ΣX .

For classification models, we will first approximate the

KL divergence. Using the Taylor expansion x log(x/a) ≈
(x − a) + (x − a)2/(2a) for x/a ≈ 1, the KL

divergence DKL(P ||Q) for can be approximated by

DKL(P ||Q) ≈
∑

i(Pi − Qi) + (Pi − Qi)
2/(2Pi) =

∑

i(Pi − Qi)
2/(2Pi), or in vector form DKL(P ||Q) ≈

1
2 (P −Q)Tdiag[P−1](P −Q). Therefore,

d(w, ŵ)

= EX [DKL(fŵ(X)||fw(X))]

≈
1

2
EX

[
(fw(X)− fŵ(X))Tdiag[f−1

w (X)]

(fw(X)− fŵ(X))
]

≈
1

2
EX

[
(w − ŵ)T (∇wfw(X))diag[f−1

w (X)]

(∇wfw(X))T (w − ŵ)
]
.

So the weight importance matrix is given by

Iw = EX

[
(∇wfw(X))diag[f−1

w (X)](∇wfw(X))T
]
. (6)

This weight importance matrix is also valid for many

other statistical distances, including reverse KL divergence,

Hellinger distance and Jenson-Shannon distance.

Now we define the two “golden rules” for practical model

compression algorithms,

1. ŵT Iw(w − ŵ) = 0,

2. (w − ŵ)T Iw(w − ŵ) is minimized given certain con-

straints.

In the following subsections we will show the optimality of

the “golden rules” for a one-hidden-layer neural network,

and apply the “golden rules” to derive new objective func-

tion for pruning and quantization.

5.2. Optimality for one-hidden-layer ReLU network

We show that if a compressor of a one-hidden-layer ReLU

network satisfies the two “golden rules”, it will be the op-

timal compressor, with respect to mean-square-error. Pre-

cisely, consider the one-hidden layer ReLU neural network

fw(x) = ReLU(wTx), where the distribution of input

x ∈ R
m is N (0,ΣX). Furthermore, we assume that the

covariance matrix ΣX = diag[λx,1, . . . , λx,m] is diagonal

and λx,i > 0 for all i. We have the following theorem.

Theorem 4 If compressed weight ŵ∗ satisfies ŵ∗Iw(ŵ∗ −
w) = 0 and

ŵ∗ = arg min
ŵ∈Ŵ

(w − ŵ)T Iw(w − ŵ),

where Ŵ is some class of compressors, then

ŵ∗ = arg min
ŵ∈Ŵ

EX

[
(fw(X)− fŵ(X))2

]
.

The proof uses the techniques of Hermite polynomials and

Fourier analysis on Gaussian spaces, inspired by Ge et al.

(2017). The full proof can be found in Appendix B. Gener-

alizing this result to other activation functions and deeper

neural networks are possible future directions.

Here Ŵ denotes a class of compressors, with some con-

straints. For example, Ŵ could be the class of pruning

algorithms where no more than 50% weights are pruned, or

Ŵ could be the class of quantization algorithm where each

weight is quantized to 4 bits. Theoretically, it is not guaran-

teed that the two “golden rules” can be satisfied simultane-

ously for every Ŵ , but in the following subsection we show

that they can be satisfied simultaneously for two of the most

commonly used class of compressors — pruning and quanti-

zation. Hence, minimizing the objective (w−ŵ)T Iw(w−ŵ)
will be optimal for pruning and quantization.

5.3. Improved objective for pruning and quantization

Pruning and quantization are two most basic and useful

building blocks of modern model compression algorithms,

For example, DeepCompress (Han et al., 2015a) iteratively

prune, retrain and quantize the neural network and achieve

state-of-the-art performances on large neural networks.
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In pruning algorithms, we choose a subset S ∈ [m] and

set ŵi = 0 for all i ∈ S and ŵi = wi for i 6∈ S. The

compression ratio is evaluated by the proportion of unpruned

weights r = (m − |S|)/m. Since either ŵi or wi − ŵi is

zero, so the first “golden rule” is automatically satisfied, so

we have the following corollary.

Corollary 1 For any fixed r, let

ŵ∗
r = arg min

S:
d−|S|

d
=r

(w − ŵ)T Iw(w − ŵ),

Then

ŵ∗
r = arg min

S:
d−|S|

d
=r

EX

[
(fw(X)− fŵ(X))2

]
.

In quantization algorithms, we cluster the weights into k
centroids {c1, . . . , ck}. The algorithm optimize the cen-

troids as long as the assignments of each weight Ai ∈ [k].
The final compressed weight is given by ŵi = cAi

. Usually

k-means algorithm are utilized to minimize the centroids

and assignments alternatively. The compression ratio of

quantization algorithm is given by

r =
mb

m
∑k

j=1
mj

m ⌈log2
m
mj

⌉+ kb
,

where m is the number of weights and b is the number of

bits to represent one weight before quantization (usually

32). By using Huffman coding, the average number of bits

for each weight is given by
∑k

j=1(mj/m)⌈log2(m/mj)⌉,

where mj is the number of weights assigned to the j-th

cluster. The definition of compression ratio of pruning and

quantization is consistent since both of them equals to the

number of bits representing compressed model parameters

divided by the number of bits representing original model

parameters.

If we can find the optimal quantization algorithm with re-

spect to (w− ŵ)T Iw(w− ŵ), then each centroids cj should

be optimal, i.e.

0 =
∂

∂cj
(w − ŵ)T Iw(w − ŵ)

= −2




∑

i:Ai=j

eTi



 Iw(w − ŵ)

where ei is the i-th standard basis. Therefore, we have

ŵIw(ŵ − w) =





k∑

j=1

cj(
∑

i:Ai=j

ei)





T

Iw(w − ŵ)

=

k∑

j=1

cj



(
∑

i:Ai=j

eTi )Iw(w − ŵ)



 = 0.

Hence the first “golden rule” is satisfied if the second

“golden rule” is satisfied. So we have

Corollary 2 For any fixed number of centroids k, let

ŵ∗
k = arg min

{c1,...,ck},A∈[k]m
(w − ŵ)T Iw(w − ŵ),

then

ŵ∗
k = arg min

{c1,...,ck},A∈[k]m
EX

[
(fw(X)− fŵ(X))2

]
.

As corollaries of Theorem 4, we proposed to use (w −
ŵ)T Iw(w−ŵ) as the objective for pruning and quantization

algorithms, which can achieve the minimum MSE for one-

hidden-layer ReLU neural network.

6. Experiments

In the previous section, we proved that a pruning or quantiza-

tion algorithm that minimizes the objective (w−ŵ)T Iw(w−
ŵ) also minimizes the MSE loss for one-hidden-layer ReLU

neural network. In this section, we show that this objective

can also improve pruning and quantization algorithm for

larger neural networks on real data.1

We test the objectives on the following neural network and

datasets. 2

1. 3-layer fully connected neural network on MNIST.

2. Convolutional neural network with 5 convolutional

layers and 3 fully connected layers on CIFAR 10 and

CIFAR 100.

In Section 6.1, we use the weight importance matrix for

classification in Eq. (6), which is derived by approximat-

ing the distortion of KL-divergence. This weight impor-

tance matrix does not depend on the training labels, so

the induced pruning/quantization algorithms is called “un-

supervised compression”. Furthermore, if the training la-

bels are available, we treat the loss function Lw(X,Y ) :
X × Y → R

+ as the function to be compressed, and de-

rive several pruning/quantization objectives. The induced

pruning/quantization methods are called “supervised com-

pression” and are studied in Section 6.2.

6.1. Unsupervised Compression Experiments

Recall that for classification problems, the weight impor-

tance matrix is defined as

Iw = EX

[
∇wfw(X)diag[f−1

w (X)](∇wfw(X))T
]
.

1We leave combinations of pruning, model retraining and quan-
tization like Han et al. (2015a) as future work.

2We load the pretrained models from https://github.

com/aaron-xichen/pytorch-playground.

https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
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For computational simplicity, we drop the off-

diagonal terms of Iw, and simplify the objective to
∑m

i=1 EX [
(∇wi

fw(X))2

fw(X) ](wi − ŵi)
2. To minimize the pro-

posed objective, a pruning algorithm just prune the weights

with smaller EX [
(∇wi

fw(X))2

fw(X) ]w2
i greedily. A quantization

algorithm uses the weighted k-means algorithm (Choi et al.,

2016) to find the optimal centroids and assignments. We

compare the proposed objective with the baseline objective
∑m

i=1(wi − ŵi)
2, which were used as building blocks

in DeepCompress (Han et al., 2015a). We compare the

objectives in Table 6.1.

Name Minimizing objective

Baseline
∑m

i=1(wi − ŵi)
2

Proposed
∑m

i=1 EX [
(∇wi

fw(X))2

fw(X) ](wi − ŵi)
2

Table 1. Comparison of unsupervised compression objectives.

For pruning experiment, we choose the same compression

rate for every convolutional layer and fully-connected layer,

and plot the test accuracy and test cross-entropy loss against

compression rate. For quantization experiment, we choose

the same number of clusters for every convolutional and

fully-connected layer. Also we plot the test accuracy and

test cross-entropy loss against compression rate. To reduce

the variance of estimating the weight importance matrix Iw,

we use the temperature scaling method introduced by Guo

et al. (2017) to improve model calibration.

We show that results of pruning experiment in Figure 2,

and the results of quantization experiment in Figure 3. We

can see that the proposed objective gives better validation

cross-entropy loss than the baseline, for every different com-

pression ratios. The proposed objective also gives better

validation accuracy in most scenarios. Occasionally the

proposed objective can not improve the accuracy (top left of

Figure 2). We conjecture that the reason is the ill-calibration

of the original model. We relegate the results for CIFAR100

in Appendix C.

6.2. Supervised Compression Experiments

In the previous experiment, we only use the training data

to compute the weight importance matrix. But if we can

use the training label as well, we can further improve the

performance of pruning and quantization algorithms. If the

training label is available, we can view the cross-entropy

loss function L(fw(x), y) = Lw(x, y) as a function from

X × Y → R
+, and define the distortion function as

d(w, ŵ) = EX,Y

[
(Lw(X,Y )− Lŵ(X,Y ))2

]
.

Taking first order approximation of the loss function gives

the supervised weight importance matrix,

Iw = E
[
∇wLw(X,Y )(∇wLw(X,Y ))T

]
.
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Figure 2. Result for unsupervised pruning experiment. Left: fully-

connected NN on MNIST (Top: test accuracy, Bottom: test cross

entropy). Right: ConvNN on CIFAR10 (Top: test accuracy, Bot-

tom: test cross entropy).
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Figure 3. Result for unsupervised quantization experiment. Left:

fully-connected NN on MNIST (Top: test accuracy, Bottom: test

cross entropy). Right: ConvNN on CIFAR10 (Top: test accuracy,

Bottom: test cross entropy).

We write E instead of EX,Y for simplicity. Similarly, we

drop the off-diagonal terms for ease of computation, and

simplify the objective to
∑m

i=1 E[(∇wi
Lw(X,Y ))2](wi −

ŵi)
2, which is called gradient-based objective. Note that

for well-trained model, the expected value of gradient

E[∇wLw(X,Y )] is closed to zero, but the second moment

of the gradient E[∇wLw(X,Y )(∇wLw(X,Y ))T ] could be

large. We compare this objective with the baseline objective
∑m

i=1(wi − ŵi)
2. We also compare with the hessian-based

objective
∑m

i=1 E[∇
2
wi
Lw(X,Y )](wi−ŵi)

2, which is used

in (LeCun et al., 1990) and (Hassibi & Stork, 1993) for net-

work pruning and (Choi et al., 2016) for network quantiza-

tion. To estimate the diagonal entries of the Hessian matrix

of the loss function with respect to the model parameters, we

implemented Curvature Propagation (Martens et al., 2012)

treating each layer and activation as a node. The running

time is proportional to the running time of the usual gradient

back-propagation by a factor that does not depend on the
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size of the model. Manually optimizing the local Hessian

calculation at each node reduces memory usage and allows

us to use larger batch size and larger number of samples for

more accurate estimates.

Furthermore, if we take second order approximation of the

loss function, and drop the off-diagonal terms of the squared

gradient matrix and squared hessian tensor, we have the

following approximation

d(w, ŵ) = E
[
(Lw(X,Y )− Lŵ(X,Y ))2

]

≈ E
[
(∇wLw(X,Y )T (w − ŵ)

+
1

2
(w − ŵ)T∇2

wLw(X,Y )(w − ŵ))2
]

≈
m∑

i=1

E[(∇wi
Lw(X,Y ))2](wi − ŵi)

2

+
1

4

m∑

i=1

E[(∇2
wi
Lw(X,Y ))2](wi − ŵi)

4,

which is called gradient+hessian based objective. For prun-

ing algorithm, we can prune the weights with smaller

E[(∇wi
Lw(X,Y ))2]w2

i +
1
4E[(∇

2
wi
Lw(X,Y ))2]w4

i greed-

ily. For quantization algorithm, we use an alternatice mini-

mization algorithm in Appendix C to find the minimum. We

conclude the different supervised objectives in Table 6.2.

Name Minimizing objective

Baseline
∑m

i=1(wi − ŵi)
2

Gradient
∑m

i=1 E[(∇wi
Lw(X,Y ))2](wi − ŵi)

2

Hessian
∑m

i=1 E[∇
2
wi
Lw(X,Y )](wi − ŵi)

2

Gradient
∑m

i=1 E[(∇wi
Lw(X,Y ))2](wi − ŵi)

2

+ Hessian + 1
4

∑m
i=1 E[(∇

2
wi
Lw(X,Y ))2](wi − ŵi)

4

Table 2. Comparison of supervised compression objectives.

We show that results of pruning experiment in Figure 4, and

quantization experiment in Figure 5. Generally, the gradient

objective and hessian objective both give better performance

than baseline objective , while gradient objective is slightly

than hessian objective at some points. Gradient + hessian

objective gives the best overall performance. We relegate

the results for CIFAR100 in Appendix C.

Remark. Here we define the supervised distortion function

as d(w, ŵ) = EX,Y

[
(Lw(X,Y )− Lŵ(X,Y ))2

]
, analo-

gously to the distortion of regression. However, since

the goal of classification is to minimize the loss function,

the following definition of distortion function d̃(w, ŵ) =
EX,Y [Lŵ(X,Y )− Lw(X,Y )] is also valid and has been

adopted in LeCun et al. (1990) and Choi et al. (2016). The

main difference is — d(w, ŵ) focus on the quality of com-

pression algorithm, i.e., how similar is the compressed

model compared to uncompressed model, whereas d̃(w, ŵ)
focus on the quality of compressed model, i.e. how good

is the compressed model. So d(w, ŵ) is a better criteria for

the compression algorithm. Additionally, by taking second

order approximation of d(w, ŵ), we have gradient+hessian

objective, which shows better empirical performance than

hessian objective, derived by taking second order approxi-

mation of d̃(w, ŵ).
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Figure 4. Result for supervised pruning experiment.Left: fully-

connected NN on MNIST (Top: test accuracy, Bottom: test cross

entropy). Right: ConvNN on CIFAR10 (Top: test accuracy, Bot-

tom: test cross entropy).
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Figure 5. Result for supervised quantization experiment. Left:

fully-connected NN on MNIST (Top: test accuracy, Bottom: test

cross entropy). Right: ConvNN on CIFAR10 (Top: test accuracy,

Bottom: test cross entropy).

7. Conclusion

In this paper, we investigate the fundamental limit of neural

network model compression algorithms. We prove a lower

bound for the rate distortion function for model compres-

sion, and prove its achievability for linear model. Motivated

by the rate distortion function, we propose the weight im-

portance matrtix, and show that for one-hidden-layer ReLU

network, pruning and quantization that minimizes the pro-

posed objective is optimal. We also show the superiority of

proposed objective in real neural networks.
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