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1 Technical Proofs

1.1 Proof of Lemma 1

Proof of Lemma 1. The conclusion of this lemma is identical to [Zhong and Boumal, 2018, Theorem 8]|; the
only difference is that the event probability is slightly larger — in [Zhong and Boumal, 2018, Theorem §]
the event probability is 1 — O (n_Q). This can be done by straightforwardly modifying the arguments in
the proof of [Zhong and Boumal, 2018, Theorem 8], and at the expense of increasing the absolute constant
picked in that proof. Actually, this is already stated by the authors of [Zhong and Boumal, 2018| on page
998 of the published version, in the paragraph right below their Theorem 5. We document here how this
modification can be done.

The randomness in the proof of [Zhong and Boumal, 2018, Theorem 8] arises only from the dependence
of Lemma 9 and Lemma 10 of |[Zhong and Boumal, 2018], so it is sufficient to track the failure probability
of the events there. These modifications only need to be stated for real sub-Gaussian random variables, as
the trivial passage from real to complex cases is the same as detailed in the proof of [Zhong and Boumal,
2018| Lemma 9].

[Zhong and Boumal, 2018, Lemma 9] is based on the well-known concentration results on the maximum
singular value of sub-Gaussian random matrices, in particular, [Rudelson and Vershynin, 2010, Proposi-
tion 2.4], which states for any sub-Gaussian random matrix A of dimension n-by-n with independent, zero
mean sub-Gaussian entries (whose subgaussian moments are bounded by 1) that, for any ¢ > 0,

P (0max (A) > Cy/n +1) < 267

where ¢, C' > 0 are positive absolute constants. We take here t = C'y/n, so [|A|l, < /n with probability at
least 1 — 2e=°C°n, Obviously, there exists sufficiently large absolute constant Cs > 0 such that

o< G e,
where € € (0, 2] is the arbitrarily chosen but fixed constant in the statement of our Lemma 1.

[Zhong and Boumal, 2018, Lemma 10] attains the event probability 1 — O (n*2) by taking a union
bound, over n instances of 1 < m < n and |U,,| instances of u € U,,, for individual event probabilities
of 1 — 4en=> — 4e="/* where ¢, is an absolute positive constant. However, note that in the case of
eigenvectors, we have [U,,| = 1 (consisting of a singleton, cf. the second paragraph on pp.1000 of [Zhong and
Boumal, 2018], right above section title “Introducing auxiliary eigenvector problems”), which is two orders
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of magnitude smaller than the bound |U,,| < 3n? stated in |[Zhong and Boumal, 2018, Lemma 10]. The
union bound thus yields the success probability of at least 1 — den~* — dne~2"/* which is 1 — O (n‘4).

Combining both ends lead to the success probability of 1 — O (n’(”e)) for any € € (0,2].

For the last inequality, note that z = (e'%1, ...  e!fn)T, etk(0i=0;) — zfg, and Wi(jk) = ugk)uék), and note
that |zf| =lforalll<i<nandl<k<kna. We have
’W k) _ pik(0:—0;)| — ‘ugk)u§k) f?‘ <u ‘ i 1;‘ _ ugk) _ sz
(Lemma 1) 1 1 1
< <1 + Coo ogn + 1) - Coo osn < (2 + C()Co) Coo osn
V n V n n
where in the last inequality we used the assumption o < ¢gy/n/logn |

1.2 Proof of Lemma 2

Proof of Lemma 2. The proof starts with some elementary observations for the Dirichlet kernel Dir,, :
[0,27] — R, defined as

m

k=—m
Note the following (cf. Figure :
(1) |Diry, (x)| is upper bounded by 1/sin (x/2);
(2) |Diry, (x)| vanishes at 27¢/ (2m + 1), for £ € [2m];
(3) A unique local maximum exists between each pair of consecutive zeros on R/27.
Let 6, be the local maximizer attaining the highest “side lobe” of |Dir,, (z)| between 27/ (2m + 1) and
A7/ (2m+1) in Figure When ¢ € [0., 27 — 6,], by Lemma 1, the periodogram ‘Re {Zk‘““ wFe _LM’}‘

ij
will not exceed

1 _ 1
3 [sin (6, /2)] ! — B + 2C5kmaxor/logn/n
—1
< % {Sin < il )] — % + 2C5kmaxo/logn/n. (2)

2m+1

On the other hand, again by Lemma 1, the periodogram ‘Re{ k“‘al" Wz(jk) _‘k¢}’ stays above

5 \Dirm (0) — 1| — 2C3kmaxo+/logn/n
=m — 2C5kmaxo/logn/n. (3)

Therefore, as long as the upper bound is no greater than the lower bound , which one can check is
satisfied if condition (19) in the state of the lemma holds, i.e., if

—-1
[zkmax sin (%”Hﬂ 4+ 4Co0sflognTn < 1

then the peak location of the periodogram ‘Re {Zk""“" W(k) _Lk¢}‘ can occur nowhere other than within
[0,0.] U [2m — 6., 2], which gives the conclusion

47

iy = (6: ;) 2m + 1

<4, <

with m = kpax. This completes the proof.
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Figure 1: Illustration of the periodogram of a Dirichlet kernel function with m =5 on [0, 27], for the proof
of Lemma 2.

1.3 Proof of Theorem 2

Proof of Theorem 2. First, we note that the second part of the theorem about & follows directly from
et al., 2017, Proposition 1], as in the proof of [Zhong and Boumal, 2018, Lemma 8].
Assuming for the moment that the key assumption in Lemma 2 is satisfied, namely, n and kp.x have

been chosen such that
1 1
A0y /B0 <1 (4)
T ) n

2kmax + 1

2k max Sin (

With a union bound over each of the O (n2) estimated relative phases éij obtained at the end of the Step 2
of Algorithm 1, with probability at least 1 — O (n*-n=(+9) =1 — O (n=) we have for all (i,j) € E

A 47
91-' — Gl —0; ‘ <
Ll T —
and thus 4
7 = LAi' L(b;—0, N ™
Therefore,

41n

ﬁ — ZZ* < ——m
H Frob — 2kmax +1

< Hﬁ — 22"
2

(6)

where the last equality follows from bounding each entry of H — zz* individually using the rightmost term
in . (Note that by doing so we do not need any information on the randomness of H — zz*.) By the

Davis—Kahan sin © Theorem in |[Zhong and Boumal, 2018, Lemma 11], as long as n > Hﬁ” - zz*’

, which
2

we know from @ that can be guaranteed if kyax > 27 — 1/5 &~ 5.7832, the angle 6 (i, z) between @ and z
satisfies

Hj_\[ . 47n
— s 7

4 4002
sin @ (4, z) < — Z_ < 2kmaz+1 = T < V2

where in the last inequality we used the fact that (2 — 0.01) kpax > 47 — 1 for all kpax > 6. Therefore,
setting Cs := (400\/§7r)2, we have

@z

L —|cos (11, 2)| > cos® O (@1, 2) =1 —sin? O (@, 2) > 1 — .
[ P I khax
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Figure 2: U(1) synchronization under Gaussian noise model with ¢ = y/n/\ for n = 100 vertices. Every
data point is the median over 20 trials.

Now we seek lower bound for n and k.. that satisfies @ under the condition o < ¢gy/n/logn imposed
in Lemma 1. Obviously, is satisfied if

1

T
2Kk max sin > . 7
<2kmax+1> 1 —4C50+/logn/n )
Using the elementary inequality |[Kroopnick, 1997
sinx > _r Vx>0
V1t 22 '
we know that a sufficient condition for @ to hold is
T
2kmax T
kaax +1 > 1 o 2kmaXTr > 1 8)
2 1 —4Cy0+/logn/n \/(2k +1)2+7r2 1—4C50+/logn/n
1+ m max

Note that for all kyax > 2 we have 2kpax + 1 > 7, and thus (2kmax + 1)2 + 72 < 2 (2kmax + 1)2. Therefore,
a sufficient condition for the rightmost inequality of to hold is

V2 Thinax 1 1
> S kmax >
2kmax+1 1—4C20\/10gn/n \/57‘[‘ (1—4020\/10gn/n) -2

2 Extra Numerical Results

We consider the incomplete graph structure with n = 100 vertices under Erdds-Renyi graph model and
the edge connection probability p = 0.23 for the following experiments. Figure [2] shows that Algorithm 1
(PPE-SPC) is also robust for incomplete graphs.

Figures [3| and [4| show the performance of our PPE-SPC and its variant PPE-SPC? on complete graph

with n = 500 vertices.
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Figure 3: Correlation value for U(1) synchronization under Gaussian noise model for n = 500 vertices.
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Figure 4: Correlation value for U(1) synchronization under random corruption model with r = \/Lﬁ for

n = 500 vertices and fully connected graph.
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