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1 Technical Proofs

1.1 Proof of Lemma 1

Proof of Lemma 1. The conclusion of this lemma is identical to [Zhong and Boumal, 2018, Theorem 8]; the
only difference is that the event probability is slightly larger — in [Zhong and Boumal, 2018, Theorem 8]
the event probability is 1 − O

(
n−2

)
. This can be done by straightforwardly modifying the arguments in

the proof of [Zhong and Boumal, 2018, Theorem 8], and at the expense of increasing the absolute constant
picked in that proof. Actually, this is already stated by the authors of [Zhong and Boumal, 2018] on page
998 of the published version, in the paragraph right below their Theorem 5. We document here how this
modification can be done.

The randomness in the proof of [Zhong and Boumal, 2018, Theorem 8] arises only from the dependence
of Lemma 9 and Lemma 10 of [Zhong and Boumal, 2018], so it is sufficient to track the failure probability
of the events there. These modifications only need to be stated for real sub-Gaussian random variables, as
the trivial passage from real to complex cases is the same as detailed in the proof of [Zhong and Boumal,
2018, Lemma 9].

[Zhong and Boumal, 2018, Lemma 9] is based on the well-known concentration results on the maximum
singular value of sub-Gaussian random matrices, in particular, [Rudelson and Vershynin, 2010, Proposi-
tion 2.4], which states for any sub-Gaussian random matrix A of dimension n-by-n with independent, zero
mean sub-Gaussian entries (whose subgaussian moments are bounded by 1) that, for any t > 0,

P
(
σmax (A) > C

√
n+ t

)
≤ 2e−ct

2

where c, C > 0 are positive absolute constants. We take here t = C
√
n, so ‖A‖2 .

√
n with probability at

least 1− 2e−cC
2n. Obviously, there exists sufficiently large absolute constant C2 > 0 such that

e−cC
2n ≤ C2

n2+ε
∀n ∈ N,

where ε ∈ (0, 2] is the arbitrarily chosen but fixed constant in the statement of our Lemma 1.
[Zhong and Boumal, 2018, Lemma 10] attains the event probability 1 − O

(
n−2

)
by taking a union

bound, over n instances of 1 ≤ m ≤ n and |Um| instances of u ∈ Um, for individual event probabilities
of 1 − 4en−5 − 4e−c2n/4, where c2 is an absolute positive constant. However, note that in the case of
eigenvectors, we have |Um| = 1 (consisting of a singleton, cf. the second paragraph on pp.1000 of [Zhong and
Boumal, 2018], right above section title “Introducing auxiliary eigenvector problems”), which is two orders
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of magnitude smaller than the bound |Um| ≤ 3n2 stated in [Zhong and Boumal, 2018, Lemma 10]. The
union bound thus yields the success probability of at least 1− 4en−4 − 4ne−c2n/4, which is 1−O

(
n−4

)
.

Combining both ends lead to the success probability of 1−O
(
n−(2+ε)

)
for any ε ∈ (0, 2].

For the last inequality, note that z = (eιθ1 , · · · , eιθn)>, eιk(θi−θj) = zki z
k
j , and W

(k)
ij = u

(k)
i u

(k)
j , and note

that
∣∣zki ∣∣ = 1 for all 1 ≤ i ≤ n and 1 ≤ k ≤ kmax. We have∣∣∣W (k)

ij − e
ιk(θi−θj)

∣∣∣ =
∣∣∣u(k)i u

(k)
j − z

k
i z
k
j

∣∣∣ ≤ ∣∣∣u(k)i

∣∣∣ · ∣∣∣u(k)j − z
k
j

∣∣∣+
∣∣zkj ∣∣ · ∣∣∣u(k)i − z

k
i

∣∣∣
(Lemma 1)

≤

(
1 + C0σ

√
log n

n
+ 1

)
· C0σ

√
log n

n
< (2 + C0c0)C0σ

√
log n

n

where in the last inequality we used the assumption σ < c0
√
n/ log n �

1.2 Proof of Lemma 2

Proof of Lemma 2. The proof starts with some elementary observations for the Dirichlet kernel Dirm :
[0, 2π]→ R, defined as

Dirm (x) =

m∑
k=−m

eιkx =
sin [(m+ 1/2)x]

sin (x/2)
. (1)

Note the following (cf. Figure 1):

(1) |Dirm (x)| is upper bounded by 1/ sin (x/2);

(2) |Dirm (x)| vanishes at 2π`/ (2m+ 1), for ` ∈ [2m];

(3) A unique local maximum exists between each pair of consecutive zeros on R/2π.

Let θ∗ be the local maximizer attaining the highest “side lobe” of |Dirm (x)| between 2π/ (2m+ 1) and

4π/ (2m+ 1) in Figure 1. When φ ∈ [θ∗, 2π − θ∗], by Lemma 1, the periodogram
∣∣∣Re

{∑kmax

k=1 W
(k)
ij e−ιkφ

}∣∣∣
will not exceed

1

2
[sin (θ∗/2)]

−1 − 1

2
+ 2C2kmaxσ

√
log n/n

≤ 1

2

[
sin

(
π

2m+ 1

)]−1
− 1

2
+ 2C2kmaxσ

√
log n/n. (2)

On the other hand, again by Lemma 1, the periodogram
∣∣∣Re

{∑kmax

k=1 W
(k)
ij e−ιkφ

}∣∣∣ stays above

1

2
|Dirm (0)− 1| − 2C2kmaxσ

√
log n/n

= m− 2C2kmaxσ
√

log n/n. (3)

Therefore, as long as the upper bound (2) is no greater than the lower bound (3), which one can check is
satisfied if condition (19) in the state of the lemma holds, i.e., if[

2kmax sin

(
π

2kmax + 1

)]−1
+ 4C2σ

√
log n/n < 1

then the peak location of the periodogram
∣∣∣Re

{∑kmax

k=1 W
(k)
ij e−ιkφ

}∣∣∣ can occur nowhere other than within

[0, θ∗] ∪ [2π − θ∗, 2π], which gives the conclusion∣∣∣θ̂ij − (θi − θj)
∣∣∣ ≤ θ∗ < 4π

2m+ 1

with m = kmax. This completes the proof.
�
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Figure 1: Illustration of the periodogram of a Dirichlet kernel function with m = 5 on [0, 2π], for the proof
of Lemma 2.

1.3 Proof of Theorem 2

Proof of Theorem 2. First, we note that the second part of the theorem about x̂ follows directly from [Liu
et al., 2017, Proposition 1], as in the proof of [Zhong and Boumal, 2018, Lemma 8].

Assuming for the moment that the key assumption in Lemma 2 is satisfied, namely, n and kmax have
been chosen such that

1

2kmax sin

(
π

2kmax + 1

) + 4C2σ

√
log n

n
< 1. (4)

With a union bound over each of the O
(
n2
)

estimated relative phases θ̂ij obtained at the end of the Step 2

of Algorithm 1, with probability at least 1−O
(
n2 · n−(2+ε)

)
= 1−O (n−ε) we have for all (i, j) ∈ E∣∣∣θ̂ij − (θi − θj)

∣∣∣ ≤ 4π

2kmax + 1

and thus ∣∣∣Ĥij − zizj
∣∣∣ =

∣∣∣eιθ̂ij − eι(θi−θj)∣∣∣ ≤ ∣∣∣θ̂ij − (θi − θj)
∣∣∣ ≤ 4π

2kmax + 1
. (5)

Therefore, ∥∥∥Ĥ − zz∗∥∥∥
2
≤
∥∥∥Ĥ − zz∗∥∥∥

Frob
≤ 4πn

2kmax + 1
(6)

where the last equality follows from bounding each entry of H − zz∗ individually using the rightmost term
in (5). (Note that by doing so we do not need any information on the randomness of H − zz∗.) By the

Davis–Kahan sin Θ Theorem in [Zhong and Boumal, 2018, Lemma 11], as long as n >
∥∥∥Ĥij − zz∗

∥∥∥
2
, which

we know from (6) that can be guaranteed if kmax > 2π − 1/5 ≈ 5.7832, the angle θ (û, z) between û and z
satisfies

sin θ (û, z) ≤

∥∥∥Ĥ − zz∗∥∥∥
2

n−
∥∥∥Ĥ − zz∗∥∥∥

2

≤

4πn

2kmax + 1

n− 4πn

2kmax + 1

=
4π

2kmax + 1− 4π
<

400
√

2π

kmax

where in the last inequality we used the fact that (2− 0.01) kmax ≥ 4π − 1 for all kmax ≥ 6. Therefore,

setting C3 :=
(
400
√

2π
)2

, we have

|û∗z|
‖û‖2 ‖z‖2

= |cos θ (û, z)| ≥ cos2 θ (û, z) = 1− sin2 θ (û, z) ≥ 1− C3

k2max

.
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(a) PPE-SPC (b) PPE-SPC3 (c) AMP

Figure 2: U(1) synchronization under Gaussian noise model with σ =
√
n/λ for n = 100 vertices. Every

data point is the median over 20 trials.

Now we seek lower bound for n and kmax that satisfies (4) under the condition σ < c0
√
n/ log n imposed

in Lemma 1. Obviously, (4) is satisfied if

2kmax sin

(
π

2kmax + 1

)
>

1

1− 4C2σ
√

log n/n
. (7)

Using the elementary inequality [Kroopnick, 1997]

sinx >
x√

1 + x2
, ∀x > 0.

we know that a sufficient condition for (7) to hold is

2kmax ·
π

2kmax + 1√
1 +

π2

(2kmax + 1)
2

>
1

1− 4C2σ
√

log n/n
⇔ 2kmaxπ√

(2kmax + 1)
2

+ π2

>
1

1− 4C2σ
√

log n/n
. (8)

Note that for all kmax ≥ 2 we have 2kmax + 1 > π, and thus (2kmax + 1)
2

+ π2 < 2 (2kmax + 1)
2
. Therefore,

a sufficient condition for the rightmost inequality of (8) to hold is

√
2πkmax

2kmax + 1
>

1

1− 4C2σ
√

log n/n
⇔ kmax >

1
√

2π
(

1− 4C2σ
√

log n/n
)
− 2

�

2 Extra Numerical Results

We consider the incomplete graph structure with n = 100 vertices under Erdős-Renyi graph model and
the edge connection probability p = 0.23 for the following experiments. Figure 2 shows that Algorithm 1
(PPE-SPC) is also robust for incomplete graphs.

Figures 3 and 4 show the performance of our PPE-SPC and its variant PPE-SPC3 on complete graph
with n = 500 vertices.
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(a) PPE-SPC (b) PPE-SPC3 (c) AMP

Figure 3: Correlation value for U(1) synchronization under Gaussian noise model for n = 500 vertices.

(a) PPE-SPC (b) PPE-SPC3 (c) AMP

Figure 4: Correlation value for U(1) synchronization under random corruption model with r = λ√
n

for

n = 500 vertices and fully connected graph.
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