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Abstract
We propose a novel formulation for phase syn-
chronization—the statistical problem of jointly
estimating alignment angles from noisy pairwise
comparisons—as a nonconvex optimization prob-
lem that enforces consistency among the pairwise
comparisons in multiple frequency channels. In-
spired by harmonic retrieval in signal processing,
we develop a simple yet efficient two-stage algo-
rithm that leverages the multi-frequency informa-
tion. We demonstrate in theory and practice that
the proposed algorithm significantly outperforms
state-of-the-art phase synchronization algorithms,
at a mild computational costs incurred by using
the extra frequency channels. We also extend our
algorithmic framework to general synchronization
problems over compact Lie groups.

1. Introduction
Angular or phase synchronization (Singer, 2011; Boumal,
2016) concerns estimating angles θ1, . . . , θn in [0, 2π) from
a subset of possibly noise-contaminated relative offsets
(θi − θj) mod 2π. An instance of phase synchronization
can be encoded on an observation graph G = (V,E),
where each angle is assigned to a vertex i ∈ V and rel-
ative offsets are measured between θi and θj if and only if
there is an edge in G connecting vertices i and j. Equiva-
lently, the angles can be encoded into a column phase vector
z = (exp ιθ1, · · · , exp ιθn)>, and measurements constitute
a Hermitian matrix

H = A ◦ [zz∗ + ∆] , (1)

where A is the adjacency matrix of the observation graph
G, ◦ is the entrywise product, and the Hermitian matrix
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∆ ∈ Cn×n encodes measurement noise.

As a prototypical example of more general synchroniza-
tion problems arising from many scientific fields concerning
consistent pairwise comparisons within large collections of
objects (e.g., cryogenic electron microscopy (Singer et al.,
2011) and comparative biology (Gao et al., 2019a)), phase
synchronization attracted much attention due to its simple
yet rich mathematical structure. One mathematical formula-
tion is through nonconvex optimization

max
x∈Cn

1

x∗Hx (2)

where Cn1 is the Cartesian product of n copies of U(1). De-
pending on the context of the scientific problem, H may be
assumed to arise from an additive Gaussian noise model
(Boumal, 2016; Bandeira et al., 2017), in which the Hermi-
tian matrix ∆ in (1) is a Wigner matrix with i.i.d. complex
Gaussian entries above the diagonal, or from a random cor-
ruption model (Singer, 2011; Chen et al., 2016) that assumes

Hij =

{
ziz̄j with prob. r ∈ [0, 1]

w ∼ Unif (U(1)) with prob. 1− r
(3)

for each edge (i, j) ∈ E. Note that the random corruption
model can also be cast in the form (1) after proper shifting
and scaling. In general, the additive Gaussian noise model
is more amenable to analysis, while the random corruption
model is better at capturing the behavior of physical or
imaging models where many outliers exist.

In this paper, we propose to tackle the phase synchronization
problem by solving an alternative nonconvex optimization
problem of “multi-frequency” nature, namely,

max
x∈Cn

1

kmax∑
k=1

(xk)∗H(k)xk (4)

where kmax is the number of frequency channels, xk is the
entrywise kth power of x, and H(k) ∈ Cn×n is a Hermitian
matrix containing information of the “true signal” z in the
kth frequency component:

• For the random corruption model (3), we construct
H(k) directly from H by entrywise power:

H
(k)
ij = Hk

ij , k = 1, . . . , kmax; 1 ≤ i, j ≤ n. (5)
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• For the additive Gaussian noise model, following (Ban-
deira et al., 2015; Perry et al., 2018), we assume

H(k) = A ◦ [zk (z∗)
k

+ σk∆(k)], (6)

where each ∆(k) is a complex Hermitian random ma-
trix with independent upper diagonal entries, and the
scaling σk is chosen such that the operator norm of
∆(k) is upper bounded by

√
n. Unlike (Bandeira et al.,

2015; Perry et al., 2018), we allow entries of ∆(k) to
be general sub-Gaussian random variables rather than
restrictively complex Gaussian, and we do not assume
independence of the ∆(k)’s across different k’s.

We treat the two types of noise (5) (6) in a unified model, un-
der which we design and analyze our multi-frequency phase
synchronization algorithm. We demonstrate surprising the-
oretical and empirical results that drastically outperform
all existing phase synchronization algorithms in their cor-
responding settings, measured in terms of the correlation
between the output and the true phase vector z, at a mild
increase in the computational cost incurred by parallelizing
the computation in kmax frequency channels. As will be
demonstrated in Section 4, in the noise regime where phase
synchronization is tractable, the number of frequencies kmax

needed to outperform single frequency algorithms is at most
polylogarithmically dependent on the problem size n, while
the estimation error decays polynomially in kmax.

Motivation The rationale behind the multi-frequency for-
mulation (4) lies at the observation that statistical estimation
can often benefit from higher moment estimates, even with-
out introducing new measurements. As a motivating exam-
ple, let G be a complete graph, and consider the following
kmax = 2 coupled problems:

max
x∈Cn

1

x∗H(1)x; max
x∈Cn

1

(
x2
)∗
H(2)x2 (7)

where H(1) = H , and H(2) is generated according to (5).
Up to rescaling by a factor of 1/r, H(1) and H(2) fit into
model (6) with

σk∆
(k)
ij =

{
(1− r) ziz̄j with prob. r ∈ [0, 1]

eιkϕij − rziz̄j with prob. 1− r
(8)

where ϕij are i.i.d. uniform on R/2π for (i, j) ∈ E, and
ϕji = −ϕij . Note that σ1∆(1) and σ2∆(2) are by no means
independent, but for all practical purposes satisfy the same
sub-Gaussian bounds since eιϕij and eι2ϕij are identically
distributed; we thus assume without loss of generality that
σ1 = σ2. If we can find x̂ ∈ Cn1 satisfying jointly

(x̂k)∗H(k)x̂k ≥ (zk)∗H(k)zk k = 1, 2 (9)

then, by Lemma 1 of (Boumal, 2016) (assuming without
loss of generality that x̂∗z = |x̂∗z|), we have for k = 1, 2∥∥x̂k − zk∥∥2

2
= 2(n− |z∗x̂|k) ≤ 16σ2‖∆(k)‖22/n, (10)

which gives |z∗x̂| ≥ maxk=1,2

{(
n− 8σ2‖∆(k)‖22/n

) 1
k

}
,

a tighter bound than one could obtain from (9) with k = 1
alone, especially for large σ (with n− 8σ2‖∆(k)‖22/n < 1).

The lesson we learn from this motivating example is that sta-
tistical estimation can benefit from leveraging higher-order
moment information, even when the moment measurements
are not essentially independent of each other. This is particu-
larly prominent for the random corruption model, where all
the “higher-order trigonometric moments” in H(k), k > 1
come from the first moments in H = H(1) by taking en-
trywise powers. In drastic contrast is the message-passing
algorithm in (Perry et al., 2018), for which independence of
the complex Gaussian Wigner noise ∆(k)’s across the fre-
quency channels play an essential role. The AMP approach
was motivated by the non-unique games (NUG) framework
in (Bandeira et al., 2015). Our algorithm follows an efficient
two-stage paradigm (initialization and iterative refinement)
popularized by recent progress in nonconvex optimization
(see, e.g. (Candes et al., 2015; Chen & Candes, 2015)), and
combines the trigonometric moments information across
frequency channels in a manner akin to classical harmonic
retrieval techniques in signal processing (Stoica & Moses,
1997; Tufts & Kumaresan, 1982; Bresler & Macovski, 1986;
Ziskind & Wax, 1988; Schmidt, 1986; Roy & Kailath, 1989;
Sorensen & De Lathauwer, 2017a;b) and the generalized
power method (Boumal, 2016). This strategy easily extends
to synchronization over general compact Lie groups, as
illustrated in Section 5.

Notations Upper case letters A,B,C, · · · and lower case
letters a, b, c, · · · will be used to denote matrices and vectors,
respectively. A∗, A> are the transpose of A with or without
conjugation, respectively. The entrywise (Hadamard) prod-
uct of matrix A and B will be denoted as A ◦ B. Graphs
G = (V,E) are always undirected and connected. Vertices
of the graph will be denoted as integers 1, 2, · · · , |V |; pairs
of integers (i, j) denote edges in E. For n ∈ N we write
[n] := {1, · · · , n}. Norms ‖·‖2, ‖·‖∞ stand for matrix or
vector norms, depending on the context; ‖·‖op, ‖·‖F are
matrix operator and Frobenius norms, respectively. The
Cartesian product of n copies of U(1) is denoted as Cn1 .
The quotient space R/2π is identified with the unit circle.

2. Related Work
Phase synchronization Directly solving (2) is NP-hard
(Zhang & Huang, 2006), but many convex and nonconvex
methods have been proposed to find high quality approx-
imate solutions. These include spectral and semi-definite
programming (SDP) relaxations (Singer, 2011; Cucuringu
et al., 2012; Chaudhury et al., 2015; Bandeira et al., 2016;
2017). An alternative approach using generalized power
method (GPM) is also studied (Boumal, 2016; Liu et al.,
2017; Zhong & Boumal, 2018).
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Phase synchronization in multiple frequency channels
(Bandeira et al., 2015) proposed the non-unique games
(NUG) SDP optimization framework for synchronization
over compact Lie groups. The SDP is based on quadratically
lifting the irreducible representations of the group elements,
and imposing consistency among variables across frequency
channels via a Féjer kernel; it is computationally expen-
sive. (Perry et al., 2018) introduced an iterative approxi-
mate message passing (AMP) algorithm for noise model (6),
assuming the noise are Gaussian and independent across
frequency channels. Each iteration of the AMP performs
matrix-vector multiplication and entrywise nonlinear trans-
formation, followed by an extra Onsager correction term;
it is conjectured to be asymptotically optimal. The multi-
frequency methodology has also been applied to cryo-EM
image analysis (Fan & Zhao, 2019a;b; Gao et al., 2019b).

3. Algorithm
In this section we formally state the two-stage multi-
frequency phase synchronization algorithmic paradigm.
Stage One combines phase synchronization outcomes from
individual frequency channels with harmonic retrieval, aim-
ing at producing a high-quality initialization; Stage Two it-
eratively refines an input by an extended generalized power
method that works concurrently in multiple frequency chan-
nels while striving to maintain entrywise consistency.

3.1. Stage One: Initialization Strategy

Our algorithm takes as input kmax Hermitian measurement
matrices H(k), k = 1, . . . , kmax, arising from the general
sub-Gaussian model (6) (which includes (5) as a special
case). This stage can be divided into three steps.

Step 1. Individual Frequency Synchronization: Apply any
phase synchronization algorithm (spectral/SDP relaxation
or GPM) to get phase vector estimate u(k) ∈ Cn from each
H(k), k = 1, · · · , kmax, and form W (k) := u(k)(u(k))∗;

Step 2. Entrywise Harmonic Retrieval: For each (i, j) ∈ E,
use any harmonic retrieval technique to estimate θi − θj
from W

(k)
ij , k = 1, 2, · · · , kmax, call the estimators θ̂ij ;

Step 3. Final Phase Synchronization: Construct another
Hermitian matrix Ĥ ∈ Cn×n by Ĥij := eιθ̂ij , and apply
any phase synchronization algorithm to estimate the true
phases {eιθ1 , · · · , eιθn} from matrix Ĥ .

The flexibility of the multi-frequency phase synchronization
framework lies at the various choices to be made in each step.
As a concrete example, we detail in Algorithm 1 a simple
version that uses spectral relaxation for phase synchroniza-
tion and periodogram-based harmonic retrieval. We will
henceforth refer to Algorithm 1 as the periodogram peak
extraction with spectral methods (PPE-SPC). If a different

Algorithm 1 Periodogram Peak Extraction with Spectral
Methods (PPE-SPC)

Input: Hermitian matrices
{
H(k) | 1 ≤ k ≤ kmax

}
Output: Initialization x̂ ∈ Cn1
Step 1: Individual Frequency Synchronization
for k = 1 to kmax do

Extract the leading eigenvector u(k) of H(k) with scal-
ing
∥∥u(k)∥∥

2
=
√
n

W (k) ← u(k)
(
u(k)

)∗
end for
Step 2: Entrywise Harmonic Retrieval
for i = 1 to n do

θ̂ij ← argmax
φ∈R/2π

∣∣∣∣∣Re

{
kmax∑
k=1

W
(k)
ij e−ιkφ

}∣∣∣∣∣
end for
Step 3: Final Phase Synchronization
Construct Hermitian Ĥ ∈ Cn×n by Ĥij = eιθ̂ij

Extract the leading eigenvector û = (û1, . . . , ûn)
> of Ĥ

x̂← (û1/|û1|, . . . , ûn/|ûn|)

phase synchronization method is used, for instance, SDP
relaxation, our nomenclature refers to it as PPE-SDP. We
will focus on analyzing PPE-SPC in depth in Section 4, but
the analysis strategy can be seamlessly carried in principle
to other variants of this algorithmic paradigm.

We briefly motivate the argmax operation in Step 2 as fol-
lows. If our measurement matrices are noise-free, then
the (i, j)th entry of W (k) from Step 1 should equal to
eιk(θi−θj); in this case, the goal of Step 2 is to reconstruct
(θi − θj) from its “trigonometric moments,” for which
any harmonic retrieval technique can be applied; the pe-
riodogram method in Algorithm 1 is among the most naı̈ve
approach for this purpose. For clean signal, the periodogram
|Re{

∑kmax

k=1 W
(k)
ij e−ιkφ}| is equal to the modulus of the

Dirichlet kernel

Dirkmax (θij − θ) :=

kmax∑
k=−kmax

eιk(θij−θ) (11)

which attains its maximum at θij = θi−θj (mod2π). Since
the peak of Dirkmax

becomes sharper and sharper as kmax in-
creases, we expect the periodogram peak identification step
to be robust to noise, which will produce a very high quality
estimate Ĥ for Step 3. In fact, our analysis in Section 4 sug-
gests that this initialization stage alone can produce highly
accurate phase vectors for sufficiently large kmax, and the
estimation error drops inverse-polynomially in kmax.

3.2. Stage Two: Iterative Refinement

In this stage, we use an iterative refinement scheme that
takes an initial phase vector and enhances it successively.
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In our implementation we warm-start this iterative algo-
rithm with the x̂ produced from the PPE-SPC Algorithm 1,
but any initialization scheme can be applied in principle,
including random initialization. This iterative refinement
concurrently performs the generalized power method (GPM)
(Boumal, 2016) in multiple frequency channels consistently:
at each frequency k, we perform power iteration by multipli-
cation with H(k); the results are combined across frequency
channels to obtain one periodogram for each vertex i fol-
lowed by a “soft harmonic retrieval” step that soft-thresholds
(Donoho, 1995) the periodogram in frequency domain. We
pick a relatively lower threshold at the beginning of this
iterative scheme, but gradually raise the threshold over 0.99
to reveal the true peak that persists. Details can be found
in Algorithm 2, henceforth referred to as multi-frequency
generalized power method (MFGPM).

Algorithm 2 Multi-Frequency Generalized Power Method
(MFGPM)

Input: Hermitian matrices
{
H(k) | 1 ≤ k ≤ kmax

}
, ini-

tialization x̂ ∈ Cn1 ; threshold τ
Output: Phase vector ẑ ∈ Cn1
for k = 1 to kmax do
z(k,0) ← x̂k

end for
for t = 1 to T do

for k = 1 to kmax do
u(k,t) ← H(k)z(k,t−1).

end for
for i = 1 to n do

h
(t)
i (θ) = Re

{
kmax∑
k=1

u
(k,t)
i eıkθ

}
Soft-thresholding: û(k,t)i ←

∫ 2π

0
ητ (h

(t)
i (θ))e−ıkθdθ

Rounding: z(k,t)i ← û
(k,t)
i

/
|û(k,t)i |

end for
end for
ẑ ← z(1,T )

MFGPM can be viewed as an iterative version of PPE-SPC,
except that the stringent peak extraction step is replaced
with the more malleable soft-thresholding. Periodograms
h
(t)
i are virtually the Dirichlet kernels, which truncate a

Dirac delta function in the frequency domain; one can also
take Cesáro means of these periodograms, or equivalently,
work with the Féjer kernels that are known to converge
faster to the Dirac delta function. We omit those results as
no significant difference is observed in performance.

As an integral part of our two-stage algorithmic frame-
work, MFGPM works most efficiently with initialization
from PPE-SPC, but we also observed empirically that the
MFGPM outperforms other methods given identical ran-
dom initialization, illustrated in Figure 1, in the sense that

Figure 1. Evolution of correlations between iterates and the true
phase vector z ∈ Cn

1 for three iterative algorithms with the same
random initialization. The three iterative algorithms in comparison
are generalized power method (GPM, (Boumal, 2016)), multi-
frequency generalized power method (MFGPM, Algorithm 2), and
approximate message passing (AMP, (Perry et al., 2018)). The
figure illustrates a typical success run (left) where MFGPM started
with a random initialization of low correlation (around 0.1) but
terminated with an output of correlation> 0.5, along with a failure
run (right) started with another random initialization of compa-
rable correlation but terminated with correlation < 0.5. In both
circumstances, outputs from MFGPM attain higher correlation
than GPM or AMP. Input data are generated from the random
corruption model (5) with r = 0.1 and n = 100. See Figure 3 for
more systematic comparison results under this noise model.

MFGPM often produces phase vectors that correlate more
strongly with the true phase vector z. See Section 6 for
more comprehensive comparisons results.

The computational complexities of PPE-SPC and MFGPM
are O

(
kmaxn

3
)

and O
(
Tkmaxn

2
)
, respectively.

4. Analysis
In this section we analyze PPE-SPC in theory, under the
general sub-Gaussian noise model (6). We assume the ob-
servation graph G is generated from a Erdős–Rényi model
with edge connectivity p ∈ [0, 1] independent of the ∆(k)’s.

Assumption 1 For σ > 0 and each k ∈ [kmax], assume

H(k) = A ◦ [zk
(
zk
)∗

+ σ∆(k)] (12)

where zk ∈ Cn1 is the entrywise kth power of z, and ∆(k),
k = 1, . . . , kmax are complex random Wigner matrices
satisfying the following assumptions:

(1) For any fixed k ∈ [kmax], {Re(∆
(k)
`j ), Im(∆

(k)
`j ) | 1 ≤

` < j ≤ n} are jointly independent with zero mean,
and unit sub-Gaussian norm (Vershynin, 2018);

(2) ∆
(k)
ii = 0 for all 1 ≤ k ≤ kmax and 1 ≤ i ≤ n;

(3) ∆
(k)
`j = ∆

(k)
j` for all k = 1, . . . , kmax and ` < j.

Furthermore, assume A is the adjacency matrix of a Erdős–
Rényi random graph independent of all the ∆(k)’s, with
edge connecting probability p ∈ [0, 1].
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We emphasize again that Assumption 1 assumes no inde-
pendence for the ∆(k)’s across frequency channels; only
entries within the same ∆(k) are assumed independent. As
explained in Introduction, this enables us to unify our discus-
sions on the random corruption model and additive Gaussian
model in a single pass (see e.g., (8)). Another advantage for
such generality is that we can focus on analyzing complete
observation graphs, since

EH(k) = pzk
(
zk
)∗ − pIn

where In is the identify matrix of dimension n-by-n, and
thus we can apply the theoretical analysis in this section to
1
p

(
H(k) + pIn

)
= zk

(
zk
)∗

+ E(k) where

E(k) =
1

p

{
A ◦ [zk

(
zk
)∗

+ σ∆(k)]
}
− zk

(
zk
)∗

+ In

satisfies the same conditions as ∆(k) in Assumption 1 with
different absolute constants. Therefore, in the rest of this
section we focus on complete observation graph G only, i.e.,

H(k) = zk
(
zk
)∗

+ σ∆(k), 1 ≤ k ≤ kmax. (13)

Our first goal is to understand the spectral method in PPE-
SPC Step 1 and Step 3. Since Step 2 is entrywise, it is
crucial to bound the `∞ distance between zk and the leading
eigenvector u(k) (scaled to ‖u(k)‖2 =

√
n). The proof of

the following Lemma 1 uses recent `∞ perturbation results
of eigenvectors of random matrices (Eldridge et al., 2017;
Abbe et al., 2017; Fan et al., 2018; Zhong & Boumal, 2018)
and can be found in the supplemental material.

Lemma 1 Assume Assumption 1 is satisfied, and the ob-
servation graph G is a complete graph. Let ε ∈ (0, 2]
be an arbitrarily chosen but fixed absolute constant. For
any k ∈ [kmax], denote u(k) for the leading eigenvector
of H(k) scaled such that

∥∥u(k)∥∥
2

=
√
n and (zk)∗u(k) =

|(zk)∗u(k)|. There exist absolute (in particular, independent
of k and n) constants c0, C0, C2 > 0 such that, if σ <
c0
√
n/ log n, there holds with probability 1−O

(
n−(2+ε)

)
‖u(k) − zk‖∞ ≤ C0σ

√
log n/n, (14)∣∣∣W (k)

ij − z
k
i z̄
k
j

∣∣∣ ≤ C2σ
√

log n/n. (15)

The inequality (15) is a direct consequence of (14), which is
identical to Theorem 8 of (Zhong & Boumal, 2018), but we
verify in the proof that the event probability 1−O(n−2) in
(Zhong & Boumal, 2018) can be made slightly higher. This
is necessary for taking the union bound across all O(n2)
entries in the main Theorem 2.

A quick consequence of Lemma 1 is the uniform proximity
of the periodogram to a Dirichlet kernel up to constant
scaling and shifts, with high probability. More specifically,∣∣∣∣∣Re

{
kmax∑
k=1

W
(k)
ij e−ιkφ

}
− 1

2
[Dirkmax

(θi − θj − φ)− 1]

∣∣∣∣∣

≤

∣∣∣∣∣
kmax∑
k=1

(
W

(k)
ij − z

k
i z̄
k
j

)
e−ιkφ

∣∣∣∣∣ ≤ 2C2kmaxσ
√

log n/n

with probability 1 − O
(
n−(2+ε)

)
. Clearly, the maximum

of |Dirkmax
(θi − θj − φ)− 1| is attained at θ = θi − θj .

We thus expect the argmax operation in Step 2 of PPE-SPC
to produce high accuracy estimates of θi − θj as long as
the difference between the “optimization landscape” of the
periodogram and the Dirichlet kernel is small enough. This
is formalized in the following lemma, which exploits the
geometry of the Dirichlet kernel.

Lemma 2 Under the same conditions as in Lemma 1, if

[2kmax sin (π/ (2kmax + 1))]
−1

+ 4C2σ
√

log n/n < 1
(16)

then with probability at least 1−O
(
n−(2+ε)

)
∣∣∣θ̂ij − (θi − θj)

∣∣∣ ≤ 4π/ (2kmax + 1) . (17)

It is straightforward to check that (16) holds for sufficiently
large kmax as long as 4C2σ

√
log n/n is bounded from

above by 1−1/π. This can be seen by noticing that the func-
tion [2x sin (π/ (2x+ 1))]

−1 is differentiable and monoton-
ically decreasing for all x ≥ 2, and for sufficiently large
kmax it infinitesimally approaches 1/π < 1.

The most important message from Lemma 2 is the following:
At the beginning of the Step 3 of PPE-SPC, the newly con-
structed Hermitian matrix Ĥ is entrywise O

(
k−1max

)
–close

to the ground truth rank-one matrix zz∗. We emphasize
that this error incurred in Ĥ is significantly smaller than
the noise level σ in the raw input data, and can be made
arbitrarily small by choosing large kmax. We formalize this
key observation in the main theorem below, for which the
proof is deferred to the supplemental material.

Theorem 2 Under the same conditions as Lemma 1 and
Lemma 2, if (16) holds and 4c0C2 < 1 −

√
2/π, then

there exists an absolute constant C3 > 0 such that, with
probability 1−O (n−ε), the correlation between the true
phase vector z and the leading eigenvector û (scaled to
‖û‖2 =

√
n) of Ĥ in PPE-SPC Step 3 is at least

Corr (û, z) ≥ 1− C3/k
2
max (18)

provided that

kmax > max

{
5,
(√

2π
(

1− 4C2σ
√

log n/n
)
− 2
)−1}

.

Moreover, for the phase vector x̂ output from PPE-SPC,

Corr (x̂, z) ≥ 1− 4C3/k
2
max.

Following the discussion after Lemma 2, it is not sur-
prising to see in Theorem 2 that the correlation can be
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made arbitrarily close to 1 (or equivalently, the `2 dis-
tance between the estimated and true phase vectors can
be made arbitrarily close to 0). Moreover, it doesn’t
take excessively large kmax for PPE-SPC to outperform
all existing phase synchronization algorithms—in fact, for
σ � O(

√
n/ log n) which is the highest level of noise tol-

erable to ensure the validity of Lemma 1, it suffices to take
kmax = O (

√
n/σ) � O

(√
log n

)
to suppress the `2 es-

timation error below the established near-optimal bound
O (σ) for eigenvector based phase synchronization methods
(Bandeira et al., 2017; Zhong & Boumal, 2018). We believe
(18) can still be improved by a factor of

√
n by leveraging

the randomness in the residue error in (15), but such finer
analysis relies on more detailed analysis on the `∞ pertur-
bation and the change in the optimization landscape, which
will be pursued in a future work.

5. Extension to General Synchronization
The algorithmic framework of multi-frequency phase syn-
chronization proposed in this paper can be extended to
synchronization over any compact Lie group G, by the
representation-theoretic analogue of Fourier series — the
Peter–Weyl decomposition. In a nutshell, the Peter–Weyl the-
orem states that, for square integrable functions f ∈ L2 (G),
we have decomposition

f(g) =

∞∑
k=0

dktr
(
f̂(k)ρk(g)

)
(19)

where each ρk : G → Cdk×dk is an irreducible, unitary
representation of G, and f̂ (k) is the “Fourier coefficient”

f̂(k) =

∫
G
f(g)ρk(g) dg, (20)

where the integral is take with respect to the Haar measure.

On a connected observation graph G, the input data to a
synchronization problem over group G are pairwise measure-
ments gij ∈ G on edges (i, j) ∈ E satisfying gij = g−1ji .
The goal is to find n group elements g1, . . . , gn ∈ G, one for
each vertex, that satisfy as many constraints gij = gig

−1
j as

possible. Mathematically, this type of problems can often
be formulated as an optimization problem (Bandeira et al.,
2015)

min
g1,...,gn∈G

n∑
i,j=1

fij(gig
−1
j ), (21)

where each fij ∈ L2 (G) measures the compatibility be-
tween the relative alignment gig−1j and the observation data
gij on edge (i, j) ∈ E. The fij’s are nonlinear and noncon-
vex in general. If fij are bandlimited, we can expand (21)
using the Peter–Weyl decomposition

n∑
i,j=1

fij(gig
−1
j ) =

kmax∑
k=0

n∑
i,j=1

dktr
[
f̂ij(k)ρk(gi)ρ

∗
k(gj)

]

which can be viewed as a generalization of the multi-
frequency phase synchronization problem (4).

For simplicity of statement, we assume the observation
graph G is complete in this section. Since ρk’s are unitary
representations, the matrices ρk (g)’s are unitary matrices
for any g ∈ G, and it is natural to solve for gi from its
irreducible representations ρk (gi). Vertically stacking the
kth irreducible representations together, the variable can be
organized in matrices X(k) ∈ Cndk×dk , k ∈ Z defined by

X(k) = [ρk(g1), . . . , ρk(gn)]
>
. (22)

Analogies of the noise models also exist in this more gen-
eral setting. The additive Gaussian noise model, following
(Perry et al., 2018), amounts to

H(k) =
λk
n
X(k)(X(k))∗ +

1√
ndk

∆(k) (23)

where the parameter λk > 0 stands for the signal-to-noise
ratio (SNR) at “frequency k,” ∆(k) ∈ Cndk×ndk is a Wigner
matrix with i.i.d. standard complex Gaussian entries in the
upper triangular part. For the random corruption model, let

gij =

{
gig
−1
j , with probability r

g̃ ∼ Unif (G) , with probability 1− r
(24)

and set the (i, j)th sub-block of H(k) to ρk(gij).

As we elaborate in the remainder of this section, all the key
ingredients in PPE-SPC and MFGPM can be extended to
this more general setting. We demonstrate the efficacy of
this algorithm for SO(3) synchronization in Section 6.

Spectral relaxation: Compute the top dk eigenvectors and
stack them horizontally to form U (k) = [u

(k)
1 , . . . , u

(k)
dk

].
Approximate H(k) with Ĥ(k) = U (k)

(
U (k)

)∗
.

Generalized harmonic retrieval: For each (i, j) ∈ E, set

ĝij = argmax
g∈G

kmax∑
k=1

dktr
[
Ĥ

(k)
ij ρ

∗
k(g)

]
. (25)

Based on these new estimates for the pairwise alignments,
we build matrix Ĥ with n2 blocks with H̃ij = ρ1(ĝij).
We then extract the top d1 eigenvectors of Ĥ , stack them
horizontally to form Ũ = [u1, u2, . . . ud1 ], and project each
of its n vertical blocks Ũ1 . . . , Ũn ∈ Cd1×d1 to a unitary
matrix through singular value decomposition (SVD)

Proj(Ũi) = ΦΨ∗ where Ũi = ΦΣΨ∗. (26)

Iterative refinement: At the tth iteration, denoting X(k,t)

for the current stacked kth representations (22), we construct

Y (k) = H(k)X(k,t),
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(a) AMP (b) PPE-SPC (c) MFGPM

(d) PPE-SDP (e) PPE-SDP (f) PPE-SPC3

(g) PPE-SPC + AMP (h) PPE-SPC + MFGPM

Figure 2. U(1) synchronization under Gaussian noise model for
n = 100. Here σ =

√
n/λ. Every data point is a median over 40

trials in (a)–(c) and (f)–(h), and over 5 trials in (d)–(e).

and compute the inverse Fourier transform for each of the n
vertical sub-blocks Y (k)

1 , . . . , Y
(k)
n ∈ Cdk×dk of Y (k):

hi(g) =

kmax∑
k=1

Re
{
dktr

[
Y

(k)
i ρ∗k(g)

]}
, i = 1, . . . , n.

Note that we only need toe evaluate Ci(g) on a finite num-
ber of uniformly sampled elements of G, from which the
“inverse Fourier transform” can be applied

U
(k)
i =

∫
G
ητ (hi(g)) ρk(g) dg (27)

along with the soft-thresholding ητ . We again project each
U

(k)
i to the closest unitary matrix by SVD (26), then form

X(k,t+1) by vertically stacking the Proj(U
(k)
i )’s. The final

outputs are X̂(k) = X(k,T ) for k = 1, . . . , kmax.

6. Numerical Experiments
This section contains detailed numerical results under both
additive Gaussian noise and random corruption models, for
both U(1) and SO(3). In all experiments with Gaussian
noise, we keep σk ≡ σ ≡

√
n/λ where λ > 0 is the signal-

to-noise ratio (SNR); for the random corruption model (3)
we set r ≡ λ/

√
n. We fix n = 100 and vary λ and kmax

to evaluate and compare the performance of different algo-
rithms. When comparing iterative algorithms (AMP, GPM,
MFGPM), within each random trial the random initializa-
tion is kept identical for all three algorithms and across
frequency channels; between trials both data and initializa-
tion are redrawn. The remainder of the section contains

(a) AMP (b) PPE-SPC (c) MFGPM

(d) PPE-SDP (e) PPE-SDP (f) PPE-SPC3

(g) PPE-SPC + AMP (h) PPE-SPC + MFGPM

Figure 3. U(1) synchronization under random corruption model
for n = 100. Here r = λ/

√
n. Every data point is a median over

40 trials in (a)–(c) and (f)–(h), and over 5 trials in (d)–(e).

results for U(1) and SO(3) synchronization with complete
observation graphs only; incomplete observation graph re-
sults are similar and included in the supplemental material.

U(1) synchronization: In Figure 2 and Figure 3, we mea-
sure the correlation between the output and the truth phase
vector for various single- and multi-frequency synchroniza-
tion methods, under the additive Gaussian and random cor-
ruption noise model, respectively. The SNR λ varies be-
tween 0.7 and 1.3, which is in the extremely noisy regime:
under the random corruption model, for instance, with
n = 100, between 87% and 93% of the pairwise align-
ments are corrupted with random elements. In each subplot,
the vertical axis varies kmax from 1 to 1024, and the hori-
zontal axis marks the change in λ. The bottom row in each
subplot thus represents the single-frequency (kmax = 1)
version of the algorithm. The methods under comparison
are: (a) AMP (Perry et al., 2018) with random initialization;
(b) PPE-SPC; (c) MFGPM with random initialization; (d)
PPE-SDP (replacing the spectral methods in Algorithm 1
with SDP relaxation); (e) PPE-SDP with an additional pro-
jection to rank-one matrices in each iteration; (f) Iterating
PPE-SPC three times; (g) AMP initialized with PPE-SPC;
(h) MFGPM initialized with PPE-SPC.

It is clear from Figure 2 and Figure 3 that leveraging infor-
mation in multiple frequency channels produces superior
results than single-frequency approaches. Most shockingly,
in Figure 3 our proposed PPE-SPC method and variants
[subplots (b)–(h)] are capable of recovering the true phase
vector when the SNR is well below the critical threshold
λ = 1 (corresponding to r < 1/

√
n) determined in (Singer,
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(a) Gaussian Noise Model (b) Random Corruption Model

Figure 4. Accuracy and error-bars for SO(3) synchronization with
Gaussian noise (left) and random corruption (right) model with
K frequencies, for various K. The noise levels are kept as λ =√
n/σ for Gaussian models and r = λ/

√
n for random corruption

models, where n = 100. Accuracy is measured by the correlation
‖(X(1))∗X̂(1)‖F /(

√
3n) between estimates and the ground truth.

Each data point is the median of 50 trials.

2011) by random matrix arguments. This is surprising be-
cause, according to (Singer, 2011), for single frequency
phase synchronization one can not expect correlation to be
much higher than 1/

√
n, which is 0.1 in our experiments.

This is confirmed by looking at the bottom row of each sub-
plot of Figure 3, but with suitably large kmax this barrier no
longer exists, even though in model (5) our high-frequency
measurements are generated from the single frequency data.

In Figure 2 and Figure 3, (d) and (e) illustrates the per-
formance of the SDP variant of PPE-SPC. The difference
between (d) and (e) is the following: in (d) we use directly
estimated W (k) by solving the SDP in (Singer, 2011), but in
(e) we apply project the SDP solution to a rank-one matrix
using eigen-decomposition. The results from these SDP
variants are occasionally slightly better PPE-SPC, but the
computational cost is expensive: the runtime is over 40
times longer, and a lot more memory is required. The SDP
relaxation in (Bandeira et al., 2015) is even more demanding
on computation resources so is not included here.

Figures 2f and 3f explore another possibility of extending
PPE-SPC: After recovering Ĥ , take entrywise powers of Ĥ
and treat them as multi-frequency data input to another fresh
run of PPE-SPC. Unlike the iterative refinement algorithm
MFGPM, we observed empirically that the performance
boost saturate quickly after just a couple of such repeated
calls to PPE-SPC. The result in (f) from both figures are
obtained from performing 3 such repetitions. Compared
with (b), this strategy improves the estimation accuracy for
smaller λ, but the performance gain is not as significant as
using MFGPM for iterative refinements (h).

Initialization turns out to be important for AMP: As shown
in Figure 2a, when the SNR is below the critical thresh-
old predicted in (Perry et al., 2018) (λ < 1), increasing
kmax does not lead to performance improvement; the crit-
ical threshold appears even higher for random corruption
model (Figure 3a). In contrast, PPE-SPC and MFGPM can

Figure 5. Comparison of random and spectral initialization for
SO(3) synchronization, under noise model (23) where kmax =
8, n = 100. Each data point is averaged from 20 random trials.

always benefit from sufficiently larger kmax.

SO(3) synchronization: Comparison results for SO(3)
synchronization under Gaussian noise model and random
corruption model are shown in Figure 4a and 4b, respec-
tively. In all these experiments, the Fourier transform (27)
is numerically evaluated using m = 1000 elements uni-
formly sampled in SO(3). Clearly, the proposed method
outperforms single frequency methods and achieve higher
accuracy as kmax increases; moreover, the multi-frequency
formulation and algorithm lead to drastic performance boost
especially at the “low SNR regime.”

In Figure 5 we compare AMP and MFGPM with different
initialization strategies–PPE-SPC vs. random initialization–
under the additive Gaussian noise model (23) with kmax =
8. We plot the accuracy of using PPE-SPC alone without it-
erative refinement as a baseline. The results demonstrate the
performance boost from using PPE-SPC for initialization, as
well as improvements gain from using iterative refinements
on top of the initialization PPE-SPC.

7. Conclusion
In this paper, we propose a novel, mult-frequency formula-
tion for phase synchronization as a nonconvex optimization
problem, for which we develop a two-stage algorithm in-
spired by harmonic retrieval and generalized power method
that produces high accuracy approximate solutions. We
demonstrate in theory and experiments that the new frame-
work significantly outperform all existing phase synchro-
nization algorithms.

There are many opportunities for future research. We are
particularly interested in gaining deeper theoretical under-
standings for the multi-frequency GPM algorithm, espe-
cially its performance guarantees and behavior near local
optimum. More general harmonic retrieval techniques can
be potentially used in place of the periodogram-based peak
extraction. We are also working on extending the algo-
rithmic framework beyond compact Lie groups, such as
Euclidean groups and symmetric groups, with applications
to object matching (Shen et al., 2016; Pachauri et al., 2013).
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