SUPPLEMENTARY MATERIAL
Optimal Mini-Batch and Step Sizes for SAGA

A. Proofs of the Upper Bounds of £

A.1. Master lemma

Proof of Lemma 1. Since the f;’s are convex, each realization of f,, is convex, and it follows from equation 2.1.7 in (Nesterov,
2014) that
vav<x)_va(y)H% < 2L, (fv(x)_fv(y)_ (va(y),x—y)). (24)

Taking expectation over the sampling gives
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where in the last equality the full gradient vanishes because it is computed at optimality. The result now follows by
comparing the above with the definition of expected smoothness in (7). O

A.2. Proof of the simple bound
Proof of Theorem 2. To derive this bound on £ we use that
1
Le<yd Li, (25)
JEB
which follows from repeatedly applying Lemma 8. For b > 2, it follows from Equation (17) and Equation (25) that
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Inserting this into Equation (26) gives

n—2 n—1 n—2
. n(b72) = (b71) - (b72)
- n—1 L+ n—1 Lmax
b(5-1) b(5-1)
nb—1- 1n-5>
= — L+ - Lax - 28
bn-—1 + bn—1 (28)
We also verify that this bound is valid for 1-nice sampling. Indeed, we already have that in this case £ = L. O

A.3. Proof of the Bernstein bound

To start the proof of Theorem 3, we re-write the expected smoothness constant as the maximum over an expectation. Let S*
be a (b — 1)-nice sampling over [n] \ {¢}. We can write
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=" max UE | Amax | 3 > aja) . (29)

One can come back to the definition of the subsample smoothness constant Equation (12) and interpret previous expression

as an expectation of the largest eigenvalue of a sum of matrices. This insight allows us to apply a matrix Bernstein inequality,
see Theorem 7, to bound L.

For the proof of Theorem 3, we first need the two following results.

Lemmad. Leta; € R% i € {1,...,n} and let S* be a (b — 1)-nice sampling over the set [n] \ {i}. It follows that
E o OO S et S e 30
Z aja; | = aa; + — Z aa; . 30)

jeSiU{i} Jj=1,j#i
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Proof of Lemma 4. This results follows using a double-counting argument at the fourth line of the computation.
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We then introduce another two lemmas which give a first intermediate bound.
Lemma 5. Let a;j € R% for j € [n], leti € [n] and let S be a (b — 1)-nice sampling over [n] \ {i}. We have
UE X ! > aja) <4—l——«n—wL~+Mb—UL)
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Proof of Lemma 5. Expanding the expectation we have

jeSu{i} jeSu{i} JjESTU{:}
1 b—1 <« 1 1 b—1
= gAmax aia;r + m Z ajajT + E /\max g Z CLjCL;»r — g aia,-T + m Z G,jlle
Jj=1,j#i jesiu{i} Jj=1,j#i
1 1 T S T -1 T
= 5/\“““ — (n—0baa; +(b—1) Zajaj Amax Z a;a ] — fm Z aja;
j=1 ]eSl JelmI\{i}

1 L L 1b-1
S m ((TL — b)ﬁ + n(b — 1)U) m'}x Z Cl] — Z CljajT s

bn—1 )
jES’ JEMI\{i}



Optimal Mini-Batch and Step Sizes for SAGA

where in the first inequality we add and remove the mean and then apply Lemma 8. In the second equality we explicit the
mean with Lemma 4 and in the last inequality we use again Lemma 8 for the left-hand side term. Finally, we multiply by U
on both sides of the inequality. O

We recall the following lemma used to introduced the practical estimate given by

DehmlnSnb—l 1n—2»5
ACpractical(b) -io b n— 1L + gmLmax .

Lemma 3. Let a; € RY for j € [n] and let S* be a (b — 1)-nice sampling over [n] \ {i}, for every i € [n]. It follows that
L S ‘cpmcricul(b) + Um[a}]{E [)\max (Nz)] 5 (21)
€N

. 1 T _ 1b=1 al
with N; := 3 ZjeSi aja; = pn—1 Zje[n]\{i} aj; -

Proof of Lemma 3. The result comes from applying re-writing £ as an expectation of the largest eigenvalue of a sum of
matrices. Then we apply Lemma 5 and then taking the maximum over all ¢ € [n]. Thus, we have
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Proof of Theorem 3. Applying the previous lemma we get
ehnb—-1 In—0»
< — L - Lmax U]E max N ) 32
~bn-1 +bn—1 +H11,ax,n [Pmax (V)] (32)
: 1 T _ 1b= T
with N := Zjesi aja; — 5— jem\{i} 4 -
To further our argument, we will encode different samplings using unit coordinate vectors. Let ey, ..., e, € R™ be the unit
coordinate vectors. Let S* = {S},..., Si} denote an arbitrary but fixed ordering of the elements of S*. With this we can

encode the sampling without replacement as

Zau Z Z 6asva”' (33)

jes? k=1je[n]\{i}

Using this notation, the matrix /N which can be further decomposed as

1 L o1b-1 .
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where we have encoded the sampling S? using unit coordinate vectors. The matrices My, . .., M,_; are sampled without
replacement from the set

1 1
Z b<xj—n_1>ajajT cxefer, ., 621,641, sEn} p - (34)
J€[n\ {3}
Now let X1, ..., X, be matrices sampled with replacement from (34) and let X, := 7 > i\ (i) (zf - ﬁ) aja; and
Y = 22;11 X, thus the vectors z* are sampled with replacement from {ey,...,e;_1,€;11,...,e,}. Consequently
P [ =1] S Vie{l,...,i—Li+1,...,n} .
] n _ 1 ) ) ) ) ) )

We are now in a position to apply the Bernstein matrix inequality. To this end we have
e A sum of centered random matrices: E [X}] = 0.

e Let k* be the unique index such that z§. = 1. We have a uniform bound of the largest eigenvalue of our X,

1 k. T 1 T
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< == 35
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where we applied the Lemma 9 in the first inequality.
e And a bound on the variance too
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where, in the last equality, we used that zfz;f =0ifj#pandE [zjkzﬂ =E [Zﬂ = 1 5o that

kk T, T kk T, T
Y. Elfglaefae =E| > 5 ae o,
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Summing in (36), taking the largest eigenvalue and applying Lemma 9 results in

b—1 b—1
1
Amax (ZE [Xk ) < Amax 2 Z achjTaja;r
n—
k=1 k=1 j€[n]\{i}
b—1 1
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Considering Equations (35) and (37) and applying the matrix Bernstein concentration inequality in Theorem 7 we get

b—1 1 Linax
UE [/\max(N)] S \/2bgLInaxL[n]\{i} IOg d + g ba IOg d

Taking the maximum over 7 and using Li,\ ;3 < "5 L we have that

b-—1 n 1 mex
< [ — <
,max UE [Amax(N)] < \/2 ER— LyaxLlogd+ 370 logd

Combining the above result with (32) leads us to

(n—="0)Lmax n(b—1)L b—1 n 1 1 Linax
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where in the second inequality we used the inequality v/2ab < a + . O

B. Linear Algebra Tools

This appendix is dedicated to the presentation of useful results to manipulate more easily the smoothness constants.

B.1. Spectral Lemmas

Let us recall some useful spectral results on Hermitian and positive semi-definite matrices.

Lemma 6. (Weyl’s inequality) Let A, B € R"*" symmetric matrices. Assume that the eigenvalues of A (resp. B) are
sortedie., A\ (A) > -+ > N\, (4) (resp. A\1(B) > -+ > \y(B)). Then, we have

Aivj—1(A+ B) < Ni(A) + Xi(B) . (38)

wheneveri,j > landi+j—1<n .
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Moreover, as a direct consequence of the variational characterization of eigenvalues, namely

v’ Av
max ——-
w20 ||v]l3

)\max(A) = 5 (39)

we have an inequality between the maximum diagonal term of a positive semi-definite matrices and its maximum eigenvalue.

Lemma 7. Let A € R™*" positive semi-definite matrix and the vector containing its diagonal d := diag(A). Then, we
have

‘max d; < Apax(4) . (40)

i=1,..

The following lemma is a direct consequence of Weyl’s inequality for ¢ = j = 1.

Lemma 8. Let A, B € R™*" symmetric matrices. Then, we have

Arnax(14 + B) S )\max(A) + )\max(B) . (41)
Lastly, we present a result arising from previous lemma.
Lemma9. Let A, B € R™*"™ symmetric matrices such that B is positive semi-definite. Then, we have

)\max(A - B) S )\max(A) . (42)

Proof. Let A, B € R™*" symmetric matrices such that B is positive semi-definite. We get directly

Amax(A - B) S )\max(A) + Amax(_B)
= )\max(A) - Anlin(B)
S )\max(A) )

where the first inequality stems from Lemma 8 and the second from B > 0. O

B.2. Basic properties of the smoothness constants

The complexity results of Gower et al. (2018) depends on smoothness constants defined in Section 3.1. Here are some
inequalities giving an idea of the order of those constants.

Lemma 10. Let ) # B C [n| = {1,...,n} a baich set drawn randomly without replacement. The following inequalities
hold
(i)
Li < Lpax Yi=1,....n . 43)
(ii)
1
LB§§ZLZ- Vi=1,...,n . (44)
Bl i
(iii)
(a) _ (b) (c) (d _
L<L<Lyax <nL<nL . 45)

Proof. (i) One directly gets that L; < max;j—y .. L;j = Lpax.

(i1) This inequality states that the smoothness constant L g of the averaged function fp is upper bounded by the average of
the corresponding smoothness constants L;, over the batch B. The proof consists in | B| repetitive calls of Lemma 8.
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(iii) (@) Direct implication of (ii) for B = [n].

(b) Direct calculation

n
E E max = max .

(¢) Let us first recall the matrix formulation of our smoothness constants:

L= gAmaX(AAT) = g)\max(ATA)
n

S\H
S\H

and
T AT
Liax = Ui max e; A' Ae;

=1,...,n

Using the min-max theorem, we have that

TATA
)\maX(ATA) = maxw > max eiTATAei.
z#0 ||mH2 1=1,...,n
Dividing the above by n on both sides gives
Lmax
L>
n

(d) Direct consequence of (a).

C. Matrix Bernstein Inequality: Sampling Without Replacement

In this appendix, we present the matrix Bernstein inequality for independent Hermitian matrices from Tropp (2015). We
also provide another version of this theorem for matrices sampled without replacement and prove it as explicitly as possible,
taking our inspiration from Tropp (2011). The proof is based the possibility of transferring the results from sampling with to
without through the inequality (50) due to Gross & Nesme (2010). The exact same work can be done for the tail bound,
which is for instance used in Bach (2013).

C.1. Original Bernstein inequality for independent matrices

We first present Theorem 4 which gives a Bernstein inequality for a sum of random and independent Hermitian matrices
whose eigenvalues are upper bounded. If the matrices X, are sampled from a finite set X', one can interpret this random
sampling of independent matrices as a random sampling with replacement.

Theorem 4 (Tropp (2015), Theorem 6.6.1: Matrix Bernstein Inequality). Consider a finite sequence { Xy }r=1,.. n of 1
independent, random, Hermitian matrices with dimension d. Assume that

EX, =0 and Apax(Xk) <L foreachindexk .

Introduce the random matrix
n
S X = Z X Lk -
k=1

Let v(Sx) be the matrix variance statistic of the sum:

i]EX,f

k=1

v(Sx) = HES%-H =

. (Z E X,f) . (46)
k=1

Then

E Amax(Sx) < v/20(Sx)logd + Llogd 47)

This theorem is the one we extend in Theorem 7 to the case when the random matrices X}, are sampled without replacement
from a finite set X'. We drew our inspiration from the proof of the matrix Chernoff inequality in Tropp (2011) and the one of
the matrix Bernstein tail bound in Bach (2013), both in the case of sampling without replacement.
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C.2. Technical random matrices prerequisites

Before proving Theorem 7, which extends the matrix Bernstein inequality to sampling without replacement, we need to
introduce the key tools of the matrix Laplace transform technique. This technique is precious to prove tail bounds for sums
of random matrices such as Chernoff, Hoeffding or Bernstein bounds, as presented in (Tropp, 2012).

Here, ||-|| denotes the spectral norm, which is defined for any Hermitian matrix H by
[|M|| = max {A\max(H), —Amin(H)} . (48)

We also introduce the moment generating function (mgf) and the cumulant generating function (cgf) of a random matrix,
which are essential in the Laplace transform method approach.

Definition 6 (Matrix Mgf and Cgf). Let X be a random Hermitian matrix. For all # € R, the matrix generating function
M x and the matrix cumulant generating function = x are given by

Mx (0) :=EefX
and
Ex(0) :=logE e .
Remark 4. These expectations may not exist for all values of 6.

Proposition 2 (Tropp (2015), Proposition 3.2.2: Expectation Bound of the Maximum Eigenvalue). Let X be a random
Hermitian matrix. Then

1
E Amax (X) < ajI;% { 7 log E tre?X } ) (49)

Remark 5. This proposition is an adaptation of the Laplace transform method to obtain a bound of the expectation of the
maximum eigenvalue of a random Hermitian matrix. Contrary to the tail bounds, there is no exact analog of the expectation
bounds in the scalar setting.

Proof of Proposition 2. Fix a positive number 0. Because Ayax(+) is a positive-homogeneous map, we have

B A (X) = éE A (0X)

= %E log etmax(0X)

< % log E Mmax (0X)

1

= ] log E A\ pax (eex)
1

< ] logEtrefX |

where in the third line we used the Jensen’s inequality, in the fourth one the spectral mapping theorem and in the last line the
domination by the trace of a positive-definite matrix. O

Theorem 5 (Tropp (2015), Theorem 8.1.1: Lieb). Let H be a fixed Hermitian matrix with dimension d. The function
X = trexp (H + X)

is a concave map on the the convex cone of d X d positive-definite matrices.

Proof of Theorem 5. See Chapter 8 in Tropp (2015). O

Corollary 1. Let H be a fixed Hermitian matrix with dimension d. Let X be a random Hermitian matrix of same dimension.
The following inequality holds
Etrexp (H + X) < trexp (H + logIEeX)

is a concave map on the the convex cone of d X d positive-definite matrices.
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Proof of Corollary 1. Introducing Y = eX, we have directly

Etrexp (H + X) = Etrexp (H + loge™)
=Etrexp(H +logY)
<trexp(H +1logEY)
= trexp (H—i—logEeX)

where the inequality comes from the application of Theorem 5 and Jensen’s inequality. O

Lemma 11 (Tropp (2015), Lemma 3.5.1 or Tropp (2012), Lemma 3.4: Subadditivity of Matrix Cgfs). Consider a finite
sequence { X} of independent, random, Hermitian matrices of the same dimension. Let 0 € R, then

trexp (EZ k=17 X (9)) = Etrexp (6 Zk Xk)
< trexp (Zk log]EeeX’“)

= trexp (Zk Ex, (9))

Proof of Lemma 11. Let us assume, without loss of generality, that § = 1. Let a finite sequence { X} }7_; of n independent,
random, Hermitian matrices of the same dimension. We write down [y, the expectation with respect only to the k-th random
matrix Xj.

n
trexp (522:1 Xk(l)) = trexp <log]E exp <Z Xk>)

k=1

= Etrexp (i Xk>

k=1

n—1
=E,...E,_1E, trexp (Z Xi + Xn+1>
k=1

n—1
< El e En—l tr exp (Z Xk: + IOgEn eXn,-H)
k=1

n—2
=E;...E,_1trexp (Z X+ X1 +1ogE, eXn+1>
k=1

n—2
<E;...E, otrexp <Z Xk +1logE, 1 eXn-1 4 logE,, eX">
k=1

<o <trexp (Zk log]EeQX’“)

= trexp <Z Ex, (9))

k

where first and second inequalities result from Corollary 1, the last one comes the fact that Ej, eX* = EeX* Vk € [n] and
the final equality directly comes from an indentification of Definition 6. [

Lemma 12 (Tropp (2015), Lemma 6.6.2: Matrix Bernstein Mgf and Cgf Bounds). Let X a random Hermitian matrix such
that

EX =0 and Anax(X) <L .
Then, for0 < 0 < 3/L,

60X 02/2 2
MX(Q) =FEe jexp T%/SEX
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and

2
Ex(0) :=logE e < 6°/2 EX? .

~1-6L/3
Proof of Lemma 12. See Tropp (2015). O

C.3. Extended results for sampling without replacement

This section is dedicated to the main result, Lemma 13, needed for transferring results from sampling with to without
replacement. This lemma is actually the matrix version of a classical result from Hoeffding (1963). We then combine it with
previous results of Appendix C.2 to produce a new master bound in Theorem 6, which is the key inequality of the proof of
Theorem 7.

Lemma 13 (Gross & Nesme (2010), Domination of the Trace of the Mgf of a Sample Without Replacement). Consider two
finite sequences, of same length n, { Xy }k=1,... n and {Yy}r=1,.. n of Hermitian random matrices sampled respectively
with and without replacement from a finite set X. Let € R, Sx := > __, Xy, and Sy := >} _, Yy, then

tr Mg, (0) :=Etrexp (0Sy) < Etrexp (0Sx) . (50)

Proof of Lemma 13. The left-hand side equality directly arises from Definition 6 and the fact that the trace commutes with
the expectation because it is a linear operator. For the right-hand side inequality, see the proof in Gross & Nesme (2010). [

Theorem 6 (Master Bound for a Sum of Random Matrices Sampled Without Replacement). Consider two finite sequences,
of same length n, { Xy }x=1, . n and {Yy}r=1_._n of Hermitian random matrices of same size sampled respectively with
and without replacement from a finite set X. Then

< — k .
E Max (E Yk> < ét;g{e log tr exp < E logEe >} (51)

k=1 k=1

Remark 6. This theorem is a modified version of Theorem 3.6.1 in Tropp (2015) for a sum of matrices sampled without
replacement.

Proof of Theorem 6. Consider two finite sequences, of same length, { X} and {Y}; } of Hermitian random matrices of same
size sampled respectively with and without replacement from a finite set X’. Let 6 a positive number.

< i — <i — )
E Max (ZYk> < ;I;f(;{e log E tr exp (92Yk>} < él;f(’){e log E tr exp <92Xk>}

k=1 k=1 k=1

: 1 - 0Xp
< égg{elogtrexp (ZlogEe ")}

k=1

where we used successively Proposition 2, Lemma 13 and Lemma 11. First, we use the expectation bound for the maximum
eigenvalue. We then use the main result of Gross & Nesme (2010) and invoked in Tropp (2011) to extend the matrix
Chernoff bound for matrices sampled without replacement. This lemma allows us to transfer our results to sampling with
replacement. And finally, we then apply the subadditivity of matrix cgfs to get the desired result. O

C.4. Bernstein inequality for sampling without replacement

The following theorem is almost the same than Theorem 4, but in the case of matrices sampled without replacement from a
finite set. The proof stems from results established in previous Appendices C.2 and C.3.

Theorem 7 (Matrix Bernstein Inequality Without Replacement). Let X be a finite set of Hermitian matrices with dimension
d such that
)\max(X) < L7 VX eX .

Sample two finite sequences, of same length n, { Xy }r=1_ n and {Yi}r=1
with and without replacement such that

n uniformly at random from X respectively

.....

EX,=0 Vk .
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Introduce the random matrices
n n
Sx ::ZXk and Sy ::ZYk .
k=1 k=1

Let v(Sx) be the matrix variance statistic of the second sum

i]EX,f

k=1

o(Sx) = ||ES|| =

= Amax <ZEX13> . (52)
k=1

Then

E Amnax(Sy) < v/2v(Sx)logd + Llogd (53)
Proof of Theorem 7. Consider X a finite set of Hermitian matrices of dimension d such that

Amax(X) <L VX eX .

Sample two finite sequences, of same length, { X}, } and {Y}, } uniformly at random from X respectively with and without
replacement such that
EX,=0 Vk .

The { X} matrices are thus independent. Introduce the sums Sx = ZZ:1 X and Sy = ZZ:1 Y}.. Let us bound the

expectation of the largest eigenvalue of the latter
Y, | < inf }log trexp i log E e/ X+
f ]l =650) 0 P

M=

E )\max(SY) =E )\max (

b
Il

st e )
e e o )]
< o<égg/L {; log :d exp (1_‘929/;/3/\max (E ng))] }
< (1o oo (s

. logd 0/2
_o<éri§/L{ 0 +1—9L/3”(SX)}

where the inequalities sucessively derive from Theorem 6, Lemma 12 combined with the monotony of tr exp(+), the fact
that tr(M) < d Apax (M), YM € R?¥4, the spectral mapping theorem and lastly (48) with EY?2 = 0. Finally, one can
complete the infimum, for instance using a computer algebra system, to finish the proof as it was stated in the original proof
by Tropp (2015) °. In conclusion,

E Amax(Sy) < 1/20(Sx)logd + Llogd

O
D. Miscellaneous
Lemma 14 (Double counting). Leta; c € Rfori=1,...,nand C € C, where C is a collection of subsets of [n]. Then
> D ac = ), ), wc (54)

cecCieC i=1CeC :ieC

9Forinstance:Minimize[(log(d)/x) + ((x/2)/(1-(L/3)*x))*v, x >0, x < (3/L), x] in Wolfram Alpha.
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Algorithm 2 JACSKETCH PRACTICAL IMPLEMENTATION OF b-NICE SAGA

Input: mini-batch size b, step size v > 0
Initialize: w° € R?, JO € R™*", 0 = 1 0
for k=0,1,2,...do

Sample a fresh batch B C [n] s.t. |B| =b

aux = Y. p(Vfi(wk) — JE) // update the auxiliary vector

gk =uF + %aux // update the unbiased gradient estimate

ultl =k 4 %aux // update the biased gradient estimate
JE i¢ B

J]Z'H = 'l K ¢ // update the Jacobian estimate
V fi(w") i € B.

whtl = wh — ygF // take a step

end for

E. Additional Experiments
E.1. Experiment 1: estimates of the expected smoothness constant for artificial datasets

As described in Section 5, we compute our the simple and Bernstein bounds, our practical estimate and the true £ for
ridge regression applied to small artificial datasets: uniform (n = 24, d = 50), staircase eigval (n = d = 24) and alone
eigval (n = d = 24). Figure 7 shows first that the practical estimate is a very close approximation of £. On the one hand,
we observe in Figure 7a that the Bernstein bound performs poorly since the feature dimension is very small d = 50. On
the other hand, Figure 7c shows a regime change for b ~ 10, which highlight the usefulness of combining our bounds to
approximate the expected smoothness constant. Finally, we observe that for the alone eigval dataset Figure 7b, which has
one very large eigenvalue far from the rest of the spectrum, the simple bound matches £ because the gap between L and L
shrinks. Indeed, in this configuration L~L=~ % When the spectrum is more concentrated, like for staircase eigval, we
get a significant gap between L and L as shown in Figure 7c, where the simple bound is far from £ when b = n.

smoothness constant
smoothness constant
smoothness constant

e N e \¥
: e | Noo s annnna

20 5

20

10 15 10 15 10 15
mini-batch size mini-batch size mini-batch size

(a) uniform. (b) alone eigval. (c) staircase eigval.

I—practical Lsimple LBernstein - L

Figure 7: Expected smoothness constant £ and its upper-bounds the mini-batch size b varies (unscaled datasets, A = 107 1).

We also report the influence of changing the value of the regularization parameter A. Figure 8 shows that this parameter has
little impact on the general shape of the bounds and of L.

Finally, we study the impact of scaling or standardizing (i.e., removing the mean and dividing by the standard deviation for
each feature) our artificial datasets. In order not to benefit from the diagonal shape of the alone eigval and staircase eigval
datasets we also give examples of the bounds of £ after a rotation of the data. The rotation aims at preserving the spectrum
while erasing the diagonal structure of the covariance matrix AA". This rotation procedure consists in transforming A into
QT AQ, where Q is the orthogonal matrix given by the QR decomposition of a random squared matrix (with dimension the
same as the one of A) with uniformly random coefficients M, such that M = QR.
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We observe in Figure 9 that rotations do not affect our estimates of £, because they preserve the spectrum. Scaling
non-diagonal datasets does not change the general shape neither. As predicted, scaling diagonal matrices leads to a particular
case where the spectrum of the covariance matrix is flattened and for all ¢ € [n], L; & Liyax = L. This is why we get a
flat simple bound in Figures 9c and 9g. Even after those different types of preprocessing (rotation and scaling) and with
different values of A\, we end up with the same strong observation that the practical estimate is a very sharp approximation
of the expected smoothness constant.

E.2. Experiment 1: estimates of the expected smoothness constant for real datasets

In what folows, we also used publicly available datasets from LIBSVM'? provided by Chang & Lin (2011) and from
the UCI repository'! provided by Dheeru & Karra Taniskidou (2017). We applied ridge regression to the following
datasets: YearPredictionMSD (n = 515,345,d = 90) from LIBSVM and slice (n = 53,500, d = 384) from UCIL. We
also applied regularized logistic regression for binary classification on ijcnnl (n = 141,691,d = 22), covtype.binary
(n = 581,012,d = 54), real-sim (n = 72,309, d = 20, 958), rcvi.binary (n = 697,641, d = 47, 236) and news20.binary
(n =19,996,d = 1, 355, 191) from LIBSVM. When a test set was available, we concatenated it with the train set to have
more samples.

One can observe in Figure 10, that for unscaled datasets the Bernstein bound performs better than the simple bound, except
for YearPredictionMSD (n = 515,345, d = 90) and covtype.binary (n = 581,012, d = 54). From Figure 11, we observe
that after feature-scaling, the Bernstein bound is always below the simple bound.

E.3. Experiment 2: step size estimates for artificial datasets

In this section we give the step sizes estimate corresponding to the expected smoothness constant, the simple and Bernstein
upper-bounds and the practical estimate for our small artificial datasets. In Figure 12, we show that the practical step size

10 . o .
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://archive.ics.uci.edu/ml/datasets/
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estimate is larger than all others. Moreover, for except for small value sof b, Our Ysimplc Or YBemstein €Stimates are larger than
the one proposed in (Hofmann et al., 2015).

E.4. Experiment 2: step size estimates for real datasets

Here we show the step sizes estimate corresponding to the simple and Bernstein upper-bounds and the practical estimate for
real datasets detailed in Appendix E.2. On these real data, unscaled in Figure 13 scaled in Figure 14, we see that the gap
between our step size estimates and Yyofmann are even larger. We observe in Figure 13, accordlingly to previous remarks in
Appendix E.2, that simple bound leads to higher step sizes than the Bernstein one. Yet, as noticed before, Figure 14 seems
to show that scaling the data leads t0 YBemstein 1arger than Ysimple.

E.5. Experiment 3: comparison with previous SAGA settings

In this section we provide more example of the performance of our practical settings compared to previously known
SAGA settings. In Figures 16 to 21 we run our experiments on real datasets introduced in detail in Appendix E.1. SAGA
implementations are run until the suboptimality reaches a relative error of 10~%, except in some cases where the Hofmann’s
exceeded our maximal number of epochs like in Figure 17. In Figure 19, the curves corresponding to Hofmann’s settings are
not displayed because it achieves a total complexity which is too large. Figure 15 shows an example of such a configuration.

These experiments show that our settings (bpractical, Ypractical) Outperforms whether the classical (b = 1, Ypefazio) OF the
(b = 20, YHofmann) settings both in terms of epochs and running time. Interestingly enough, Figure 21a exhibits a case for
which our estimate of the optimal mini-batch size (byractical = 64, 141) is closed to the number of data points (n = 72, 309
for real-sim). So, our method also seems to indicate when to apply gradient descent rather than stochastic gradient methods.

E.6. Experiment 4: optimality of the mini-batch size

This experiment aims to estimate how close is our practical estimate bpracical to the empirical best mini-batch size one could
get running a grid search. We recall that we use the following grid for the mini-batch sizes: {2%,i = 0,...,14}, with
216 218 and n added in some cases. We show in the log-scaled Figures 22 to 27 the empirical total complexity Kotal,
e.g., the number of computed gradients to reach a relative error of 10™4, as a function of the mini-batch b.

We always observe a change of regime in the empirical complexity, except in Figure 27a. For small values of b, the
complexity is of the same order of magnitude, then, for values greater than the empirical optimal mini-batch size, the
complexity explodes. The exception of Figure 27a displays a case for which the total complexity is minimized for b ~ n,
e.g., for which classical gradient descent performs better than SAGA. Our practical settings succesfully predict this behaviour,
like mentioned in Appendix E.5, since bpractical = 64, 141 ~ n.

This experiment shows that our optimal mini-batch size bprciical correctly designates the largest mini-batch achieving the
best complexity as large as possible, without reaching the regime where the total complexity explodes, or is predicting when
to use gradient descent rather than stochastic methods.
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Figure 18: Performance of SAGA implementations for the feature-scaled dataset YearPredictionMSD.
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Figure 19: Performance of SAGA implementations for the feature-scaled dataset slice.
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Figure 20: Performance of SAGA implementations for the unscaled dataset slice.
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Figure 21: Performance of SAGA implementations for the unscaled dataset real-sim.
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Figure 22: Empirical total complexity versus mini-batch size for the feature-scaled ijcnnl dataset.
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Figure 23: Empirical total complexity versus mini-batch size for the feature-scaled covtype.binary dataset.
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Figure 24: Empirical total complexity versus mini-batch size for the feature-scaled YearPredictionMSD dataset.
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Figure 25: Empirical total complexity versus mini-batch size for the feature-scaled slice dataset.
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Figure 26: Empirical total complexity versus
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Figure 27: Empirical total complexity versus mini-batch size for the unscaled real-sim dataset.



