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Abstract
Many recent successful (deep) reinforcement
learning algorithms make use of regularization,
generally based on entropy or Kullback-Leibler di-
vergence. We propose a general theory of regular-
ized Markov Decision Processes that generalizes
these approaches in two directions: we consider
a larger class of regularizers, and we consider
the general modified policy iteration approach,
encompassing both policy iteration and value it-
eration. The core building blocks of this theory
are a notion of regularized Bellman operator and
the Legendre-Fenchel transform, a classical tool
of convex optimization. This approach allows for
error propagation analyses of general algorithmic
schemes of which (possibly variants of) classical
algorithms such as Trust Region Policy Optimiza-
tion, Soft Q-learning, Stochastic Actor Critic or
Dynamic Policy Programming are special cases.
This also draws connections to proximal convex
optimization, especially to Mirror Descent.

1. Introduction
Many reinforcement learning algorithms make use of some
kind of entropy regularization, with various motivations,
such as improved exploration and robustness. Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) is a pol-
icy iteration scheme where the greedy step is penalized with
a Kullback-Leibler (KL) penalty between two consecutive
policies. Dynamic Policy Programming (DPP) (Azar et al.,
2012) is a reparametrization of a value iteration scheme
regularized by a KL penalty between consecutive policies.
Soft Q-learning, eg. (Fox et al., 2016; Schulman et al., 2017;
Haarnoja et al., 2017), uses a Shannon entropy regulariza-
tion in a value iteration scheme, while Soft Actor Critic
(SAC) (Haarnoja et al., 2018) uses it in a policy iteration
scheme. Value iteration has also been combined with a
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Tsallis entropy (Lee et al., 2018), with the motivation of
having a sparse regularized greedy policy. Other approaches
are based on a notion of temporal consistency equation,
somehow extending the notion of Bellman residual to the
regularized case (Nachum et al., 2017; Dai et al., 2018;
Nachum et al., 2018), or on policy gradient (Williams, 1992;
Mnih et al., 2016).

This non-exhaustive set of algorithms share the idea of us-
ing regularization, but they are derived from sometimes
different principles, consider each time a specific regular-
ization, and have ad-hoc analysis, if any. Here, we propose
a general theory of regularized Markov Decision Processes
(MDPs). To do so, a key observation is that (approximate)
dynamic programming, or (A)DP, can be derived solely
from the core definition of the Bellman evaluation opera-
tor. The framework we propose is built upon a regularized
Bellman operator, and on an associated Legendre-Fenchel
transform. We study the theoretical properties of these regu-
larized MDPs and of the related regularized ADP schemes.
This generalizes many existing theoretical results and pro-
vides new ones. Notably, it allows for an error propagation
analysis for many of the aforementioned algorithms. This
framework also draws connections to convex optimization,
especially to Mirror Descent (MD).

A unified view of entropy-regularized MDPs has already
been proposed by Neu et al. (2017). They focus on reg-
ularized DP through linear programming for the average
reward case. Our contribution is complementary to this
work (different MDP setting, we do not regularize the same
quantity, we do not consider the same DP approach). Our
use of the Legendre-Fenchel transform is inspired by Men-
sch & Blondel (2018), who consider smoothed finite hori-
zon DP in directed acyclic graphs. Our contribution is also
complementary to this work, that does not allow recover-
ing aforementioned algorithms nor analyzing them. After
a brief background, we introduce regularized MDPs and
various related algorithmic schemes based on approximate
modified policy iteration (Scherrer et al., 2015), as well as
their analysis. All proofs are provided in the appendix.

2. Background
In this section, we provide the necessary background for
building the proposed regularized MDPs. We write ∆X the
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set of probability distributions over a finite set X and Y X

the set of applications from X to the set Y . All vectors are
column vectors, except distributions, for left multiplication.
We write 〈·, ·〉 the dot product and ‖ · ‖p the `p-norm.

2.1. Unregularized MDPs

An MDP is a tuple {S,A, P, r, γ} with S the finite1 state
space, A the finite action space, P ∈ ∆S×AS the Markovian
transition kernel (P (s′|s, a) denotes the probability of tran-
siting to s′ when action a is applied in state s), r ∈ RS×A
the reward function and γ ∈ (0, 1) the discount factor.

A policy π ∈ ∆SA associates to each state a distribution over
actions. The associated Bellman operator is defined as, for
any function v ∈ RS ,

∀s ∈ S, [Tπv](s) = Ea∼π(.|s)
[
r(s, a) + γEs′|s,a[v(s′)]

]
.

This operator is a γ-contraction in supremum norm and its
unique fixed-point is the value function vπ. With rπ(s) =
Ea∼π(.|s)[r(s, a)] and Pπ(s′|s) = Ea∼π(.|s)[P (s′|s, a)]),
the operator can be written as Tπv = rπ + γPπv. For
any function v ∈ RS , we associate the function q ∈ RS×A,

q(s, a) = r(s, a) + γEs′|s,a[v(s′)].

Thus, the Bellman operator can also be written as
[Tπv](s) = 〈π(·|s), q(s, ·)〉 = 〈πs, qs〉. With a slight abuse
of notation, we will write Tπv = 〈π, q〉 = (〈πs, qs〉)s∈S .

From this evaluation operator, one can define the Bellman
optimality operator as, for any v ∈ RS ,

T∗v = max
π

Tπv.

This operator is also a γ-contraction in supremum norm,
and its fixed point is the optimal value function v∗. From
the same operator, one can also define the notion of a policy
being greedy respectively to a function v ∈ RS :

π′ ∈ G(v)⇔ T∗v = Tπ′v ⇔ π′ ∈ argmax
π

Tπv.

Given this, we could derive value iteration, policy iteration,
modified policy iteration, and so on. Basically, we can
do all these things from the core definition of the Bellman
evaluation operator. We’ll do so from a notion of regularized
Bellman evaluation operator.

2.2. Legendre-Fenchel transform

Let Ω : ∆A → R be a strongly convex function. The
Legendre-Fenchel transform (or convex conjugate) of Ω is
Ω∗ : RA → R, defined as

∀qs ∈ RA, Ω∗(qs) = max
πs∈∆A

〈πs, qs〉 − Ω(πs).

1We assume a finite space for simplicity of exposition, our
results extend to more general cases.

We’ll make use of the following properties (Hiriart-Urruty
& Lemaréchal, 2012; Mensch & Blondel, 2018).

Proposition 1. Let Ω be strongly convex, we have the fol-
lowing properties.

i Unique maximizing argument: ∇Ω∗ is Lipschitz and
satisfies∇Ω∗(qs) = argmaxπs∈∆A〈πs, qs〉 − Ω(πs).

ii Boundedness: if there are constants LΩ and UΩ such
that for all πs ∈ ∆A, we have LΩ ≤ Ω(πs) ≤ UΩ, then
maxa∈A qs(a)−UΩ ≤ Ω∗(qs) ≤ maxa∈A qs(a)−LΩ.

iii Distributivity: for any c ∈ R (and 1 the vector of ones),
we have Ω∗(qs + c1) = Ω∗(qs) + c.

iv Monotonicity: qs,1 ≤ qs,2 ⇒ Ω∗(qs,1) ≤ Ω∗(qs,2).

A classical example is the negative entropy Ω(πs) =∑
a πs(a) lnπs(a). Its convex conjugate is the smoothed

maximum Ω∗(qs) = ln
∑
a exp qs(a) and the unique

maximizing argument is the usual softmax ∇Ω∗(qs) =
exp qs(a)∑
b exp qs(b)

. For a positive regularizer, one can consider
Ω(πs) =

∑
a πs(a) lnπs(a) + ln |A|, that is the KL di-

vergence between πs and a uniform distribution. Its con-
vex conjugate is Ω∗(qs) = ln

∑
a

1
|A| exp qs(a), that is the

Mellowmax operator (Asadi & Littman, 2017). The max-
imizing argument is still the softmax. Another less usual
example is the negative Tsallis entropy (Lee et al., 2018),
Ω(πs) = 1

2 (‖πs‖22 − 1). The analytic convex conjugate is
more involved, but it leads to the sparsemax as the maximiz-
ing argument (Martins & Astudillo, 2016).

3. Regularized MDPs
The core idea of our contribution is to regularize the Bellman
evaluation operator. Recall that [Tπv](s) = 〈πs, qs〉. A
natural idea is to replace it by [Tπ,Ωv](s) = 〈πs, qs〉 −
Ω(πs). To get the related optimality operator, one has to
perform state-wise maximization over πs ∈ ∆A, which
gives the Legendre-Fenchel transform of [Tπ,Ωv](s). This
defines a smoothed maximum (Nesterov, 2005). The related
maximizing argument defines the notion of greedy policy.

3.1. Regularized Bellman operators

We now define formally these regularized Bellman oper-
ators. With a slight abuse of notation, we write Ω(π) =
(Ω(πs))s∈S (and similarly for Ω∗ and ∇Ω∗).

Definition 1 (Regularized Bellman operators). Let Ω :
∆A → R be a strongly convex function. For any v ∈ RS
define q ∈ RS×A as q(s, a) = r(s, a) + γEs′|s,a[v(s′)].
The regularized Bellman evaluation operator is defined as

Tπ,Ω : v ∈ RS → Tπ,Ωv = Tπv − Ω(π) ∈ RS ,
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that is, state-wise, [Tπ,Ωv](s) = 〈πs, qs〉 − Ω(πs). The
regularized Bellman optimality operator is defined as

T∗,Ω : v ∈ RS → T∗,Ωv = max
π∈∆SA

Tπ,Ωv = Ω∗(q) ∈ RS ,

that is, state-wise, [T∗,Ωv](s) = Ω∗(qs). For any function
v ∈ RS , the associated unique greedy policy is defined as

π′ = GΩ(v) = ∇Ω∗(q)⇔ Tπ′,Ωv = T∗,Ωv,

that is, state-wise, π′s = ∇Ω∗(qs).

To be really useful, these operators should satisfy the same
properties as the classical ones. It is indeed the case (we
recall that all proofs are provided in the appendix).
Proposition 2. The operator Tπ,Ω is affine and we have the
following properties.

i Monotonicity: let v1, v2 ∈ RS such that v1 ≥ v2. Then,

Tπ,Ωv1 ≥ Tπ,Ωv2 and T∗,Ωv1 ≥ T∗,Ωv2.

ii Distributivity: for any c ∈ R, we have that

Tπ,Ω(v + c1) = Tπ,Ωv + γc1

and T∗,Ω(v + c1) = T∗,Ωv + γc1.

iii Contraction: both operators are γ-contractions in supre-
mum norm. For any v1, v2 ∈ RS ,

‖Tπ,Ωv1 − Tπ,Ωv2‖∞ ≤ γ‖v1 − v2‖∞
and ‖T∗,Ωv1 − T∗,Ωv2‖∞ ≤ γ‖v1 − v2‖∞.

3.2. Regularized value functions

The regularized operators being contractions, we can define
regularized value functions as their unique fixed-points. No-
tice that from the following definitions, we could also easily
derive regularized Bellman operators on q-functions.
Definition 2 (Regularized value function of policy π).
Noted vπ,Ω, it is defined as the unique fixed point of the
operator Tπ,Ω: vπ,Ω = Tπ,Ωvπ,Ω. We also define the asso-
ciated state-action value function qπ,Ω as

qπ,Ω(s, a) = r(s, a) + γEs′|s,a[vπ,Ω(s′)]

with vπ,Ω(s) = Ea∼π(.|s)[qπ,Ω(s, a)]− Ω(π(.|s)).

Thus, the regularized value function is simply the unreg-
ularized value of π for the reward rπ − Ω(π), that is
vπ,Ω = (I − γPπ)−1(rπ − Ω(π)).
Definition 3 (Regularized optimal value function). Noted
v∗,Ω, it is the unique fixed point of the operator T∗,Ω: v∗,Ω =
T∗,Ωv∗,Ω. We also define the associated state-action value
function q∗,Ω(s, a) as

q∗,Ω(s, a) = r(s, a) + γEs′|s,a[v∗,Ω(s′)]

with v∗,Ω(s) = Ω∗(q∗,Ω(s, .)).

The function v∗,Ω is indeed the optimal value function,
thanks to the following result.

Theorem 1 (Optimal regularized policy). The policy
π∗,Ω = GΩ(v∗,Ω) is the unique optimal regularized policy,
in the sense that for all π ∈ ∆SA, vπ∗,Ω,Ω = v∗,Ω ≥ vπ,Ω.

When regularizing the MDP, we change the problem at
hand. The following result relates value functions in
(un)regularized MDPs.

Proposition 3. Assume that LΩ ≤ Ω ≤ UΩ. Let π be any
policy. We have that vπ − UΩ

1−γ1 ≤ vπ,Ω ≤ vπ −
LΩ

1−γ1 and
v∗ − UΩ

1−γ1 ≤ v∗,Ω ≤ v∗ −
LΩ

1−γ1.

Regularization changes the optimal policy, the next result
shows how it performs in the original MDP.

Theorem 2. Assume that LΩ ≤ Ω ≤ UΩ. We have that

v∗ −
UΩ − LΩ

1− γ
≤ vπ∗,Ω ≤ v∗.

3.3. Related Works

Some of these results already appeared in the literature, in
different forms and with specific regularizers. For example,
the contraction of T∗,Ω (Prop. 2) was shown in various
forms, e.g. (Fox et al., 2016; Asadi & Littman, 2017; Dai
et al., 2018), as well as the relation between (un)regularized
optimal value functions (Th. 2), e.g. (Lee et al., 2018; Dai
et al., 2018). The link to Legendre-Fenchel has also been
considered before, e.g. (Dai et al., 2018; Mensch & Blondel,
2018; Richemond & Maginnis, 2017).

The core contribution of Sec. 3 is the regularized Bellman
operator, inspired by Nesterov (2005) and Mensch & Blon-
del (2018). It allows building in a principled and general
way regularized MDPs, and generalizing existing results
easily. More importantly, it is the core building block of reg-
ularized (A)DP, studied in the next sections. The framework
and analysis we propose next rely heavily on this formalism.

4. Regularized Modified Policy Iteration
Having defined the notion of regularized MDPs, we still
need algorithms that solve them. As the regularized Bell-
man operators have the same properties as the classical ones,
we can apply classical dynamic programming. Here, we
consider directly the modified policy iteration approach (Put-
erman & Shin, 1978), that we regularize (reg-MPI for short):{

πk+1 = GΩ(vk)

vk+1 = (Tπk+1,Ω)mvk
. (1)

Given an initial v0, reg-MPI iteratively performs a regu-
larized greedy step to get πk+1 and a partial regularized
evaluation step to get vk+1.
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With m = 1, we retrieve a regularized value iteration algo-
rithm, that can be simplified as vk+1 = T∗,Ωvk (as πk+1 is
greedy resp. to vk, we have Tπk+1,Ωvk = T∗,Ωvk). With
m =∞, we obtain a regularized policy iteration algorithm,
that can be simplified as πk+1 = GΩ(vπk,Ω) (indeed, with a
slight abuse of notation, (Tπk,Ω)∞vk−1 = vπk,Ω).

Before studying the convergence and rate of convergence
of this general algorithmic scheme (with approximation),
we discuss its links to state of the art algorithms (and more
generally how it can be practically instantiated).

4.1. Related algorithms

Most existing schemes consider the negative entropy as the
regularizer. Usually, it is also more convenient to work with
q-functions. First, we consider the case m = 1. In the exact
case, the regularized value iteration scheme can be written

qk+1(s, a) = r(s, a) + γEs′|s,a[Ω∗(qk(s′, ·))].

In the entropic case, Ω∗(qk(s, ·)) = ln
∑
a exp qk(s, a). In

an approximate setting, the q-function can be parameter-
ized by parameters θ (for example, the weights of a neural
network), write θ̄ the target parameters (computed during
the previous iteration) and Ê the empirical expectation over
sampled transitions (si, ai, ri, s

′
i), an iteration amounts to

minimize the expected loss

J(θ) = Ê
[
(q̂i − qθ(si, ai))2

]
(2)

with q̂i = ri + γΩ∗(qθ̄(s
′
i, ·)).

Getting a practical algorithm may require more work, for ex-
ample for estimating Ω∗(qθ̄(s

′
i, ·)) in the case of continuous

actions (Haarnoja et al., 2017), but this is the core principle
of soft Q-learning (Fox et al., 2016; Schulman et al., 2017).
This idea has also been applied using the Tsallis entropy as
the regularizer (Lee et al., 2018).

Alternatively, assume that qk has been estimated. One
could compute the regularized greedy policy analytically,
πk+1(·|s) = ∇Ω∗(qk(s, ·)). Instead of computing this for
any state-action couple, one can generalize this from ob-
served transitions to any state-action couple through a pa-
rameterized policy πw, by minimizing the KL divergence
between both distributions:

J(w) = Ê[KL(πw(·|si)||∇Ω∗(qk(si, .)))]. (3)

This is done in SAC (Haarnoja et al., 2018), with an entropic
regularizer (and thus∇Ω∗(qk(s, .)) = exp qk(s,·)∑

a exp qk(s,a) ). This
is also done in Maximum A Posteriori Policy Optimization
(MPO) (Abdolmaleki et al., 2018b) with a KL regularizer
(a case we discuss Sec. 5), or by Abdolmaleki et al. (2018a)
with more general “conservative” greedy policies.

Back to SAC, qk is estimated using a TD-like approach, by
minimizing2 for the current policy π:

J(θ) = Ê[(q̂i − qθ(si, ai))2] (4)
with q̂i = ri + γ(Ea∼π(·|s′i)[qθ̄(s

′
i, a)]− Ω(π(·, s′i)).

For SAC, we have Ω(π(·, s)) = Ea∼π(·|s)[lnπ(a|s)] specif-
ically (negative entropy). This approximate evaluation step
corresponds to m = 1, and SAC is therefore more a VI
scheme than a PI scheme, as presented by Haarnoja et al.
(2018) (the difference with soft Q-learning lying in how the
greedy step is performed, implicitly or explicitly). It could
be extended to the case m > 1 in two ways. One possibility
is to minimize m times the expected loss (4), updating the
target parameter vector θ̄ between each optimization, but
keeping the policy π fixed. Another possibility is to replace
the 1-step rollout of Eq. (4) by an m-step rollout (similar to
classicalm-step rollouts, up to the additional regularizations
correcting the rewards). Both are equivalent in the exact
case, but not in the general case.

Depending on the regularizer, Ω∗ or ∇Ω∗ might not be
known analytically. In this case, one can still solve the
greedy step directly. Recall that the regularized greedy
policy satisfies πk+1 = maxπ Tπ,Ωvk. In an approximate
setting, this amounts to maximize3

J(w) = Ê
[
Ea∼πw(·|si)[qk(si, a)]− Ω(πw(·|si)

]
. (5)

This improvement step is used by Riedmiller et al. (2018)
with an entropy, as well as by TRPO (up to the fact that the
objective is constrained rather than regularized), with a KL
regularizer (see Sec. 5).

To sum up, for any regularizer Ω, with m = 1 one can
concatenate greedy and evaluation steps as in Eq. (2), with
m ≥ 1 one can estimate the greedy policy using either
Eqs. (3) or (5), and estimate the q-function using Eq. 4, ei-
ther performedm times repeatedly or combined withm-step
rollouts, possibly combined with off-policy correction such
as importance sampling or Retrace (Munos et al., 2016).

4.2. Analysis

We analyze the propagation of errors of the scheme depicted
in Eq. (1), and as a consequence, its convergence and rate of
convergence. To do so, we consider possible errors in both
the (regularized) greedy and evaluation steps,{

πk+1 = Gε
′
k+1

Ω (vk)

vk+1 = (Tπk+1,Ω)mvk + εk+1

, (6)

2Actually, a separate network is used to estimate the value
function, but it is not critical here.

3One could add a state-dependant baseline to qk, eg. vk, this
does not change the maximizer but can reduce the variance.
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with πk+1 = Gε
′
k+1

Ω (vk) meaning that for any policy π, we
have Tπ,Ωvk ≤ Tπk+1,Ωvk + ε′k+1. The following analysis
is basically the same as the one of Approximate Modified
Policy Iteration (AMPI) (Scherrer et al., 2015), thanks to
the results of Sec. 3 (especially Prop. 2).

The distance we bound is the loss lk,Ω = v∗,Ω− vπk,Ω. The
bound will involve the terms d0 = v∗,Ω − v0 and b0 =
v0 − Tπ1,Ωv0. It requires also defining the following.

Definition 4 (Γ-matrix (Scherrer et al., 2015)). For n ∈ N∗,
Pn is the set of transition kernels defined as 1) for any set of
n policies {π1, . . . , πn},

∏n
i=1(γPπi) ∈ Pn and 2) for any

α ∈ (0, 1) and (P1, P2) ∈ Pn×Pn, αP1 +(1−α)P2 ∈ Pn.
Any element of Pn is denoted Γn.

We first state a point-wise bound on the loss. This is the
same bound as for AMPI, generalized to regularized MDPs.

Theorem 3. After k iterations of scheme (6), we have

lk,Ω ≤ 2

k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
k−1∑
i=0

∞∑
j=i

Γj |ε′k−i|+ h(k)

with h(k) = 2
∑∞
j=k Γj |d0| or h(k) = 2

∑∞
j=k Γj |b0|.

Next, we provide a bound on the weighted `p-norm of the
loss, defined for a distribution ρ as ‖lk‖pp,ρ = ρ|lk|p. Again,
this is the AMPI bound generalized to regularized MDPs.

Corollary 1. Let ρ and µ be distributions. Let p, q and q′

such that 1
q + 1

q′ = 1. Define the concentrability coefficients

Ciq = 1−γ
γi

∑∞
j=i γ

j maxπ1,...,πj

∥∥∥ρPπ1Pπ2 ...Pπj
µ

∥∥∥
q,µ

. After

k iterations of scheme (6), the loss satisfies

‖lk,Ω‖p,ρ ≤ 2

k−1∑
i=1

γi

1− γ
(Ciq)

1
p ‖εk−i‖pq′,µ

+

k−1∑
i=0

γi

1− γ
(Ciq)

1
p ‖ε′k−i‖pq′,µ + g(k)

with g(k) = 2γk

1−γ (Ciq)
1
p min(‖d0‖pq′,µ, ‖b0‖pq′,µ).

As this is the same bound (up to the fact that it deals with
regularized MDPs) as the one of AMPI, we refer to Scherrer
et al. (2015) for a broad discussion about it. It is similar to
other error propagation analyses in reinforcement learning,
and generalizes those that could be obtained for regularized
value or policy iteration. The factor m does not appear in
the bound. This is also discussed by Scherrer et al. (2015),
but basically this depends on where the error is injected. We
could derive a regularized version of Classification-based
Modified Policy Iteration (CBMPI, see Scherrer et al. (2015)
again) and make it appear.

So, we get the same bound for reg-MPI that for unregu-
larized AMPI, no better nor worse. This is a good thing,

as it justifies considering regularized MDPs, but it does no
explain the good empirical results of related algorithms.

With regularization, policies will be more stochastic than in
classical approximate DP (that tends to produce determin-
istic policies). Such stochastic policies can induce lower
concentrability coefficients. We also hypothesize that regu-
larizing the greedy step helps controlling the related approx-
imation error, that is the ‖ε′k−i‖pq′,µ terms. Digging this
question would require instantiating more the algorithmic
scheme and performing a finite sample analysis of the re-
sulting optimization problems. We left this for future work,
and rather pursue the general study of solving regularized
MDPs, with varying regularizers now.

5. Mirror Descent Modified Policy Iteration
Solving a regularized MDP provides a solution that differs
from the one of the unregularized MDP (see Thm. 2). The
problem we address here is estimating the original optimal
policy while solving regularized greedy steps. Instead of
considering a fixed regularizer Ω(π), the key idea is to pe-
nalize a divergence between the policy π and the policy
obtained at the previous iteration of an MPI scheme. We
consider more specifically the Bregman divergence gener-
ated by the strongly convex regularizer Ω.

Let π′ be some given policy (typically πk, when computing
πk+1), the Bregman divergence generated by Ω is

Ωπ′s(πs) = DΩ(πs||π′s)
= Ω(πs)− Ω(π′s)− 〈∇Ω(π′s), πs − π′s〉.

For example, the KL divergence is generated by the negative
entropy: KL(πs||π′s) =

∑
a πs(a) ln πs(a)

π′s(a) . With a slight
abuse of notation, as before, we will write

Ωπ′(π) = DΩ(π||π′) = Ω(π)−Ω(π′)−〈∇Ω(π′), π−π′〉.

This divergence is always positive, it satisfies Ωπ′(π
′) = 0,

and it is strongly convex in π (so Prop. 1 applies).

We consider a reg-MPI algorithmic scheme with a Bregman
divergence replacing the regularizer. For the greedy step,
we simply consider πk+1 = GΩπk

(vk), that is

πk+1 = argmax
π
〈qk, π〉 −DΩ(π||πk).

This is similar to the update of the Mirror Descent (MD)
algorithm in its proximal form (Beck & Teboulle, 2003),
with −qk playing the role of the gradient in MD. There-
fore, we will call this approach Mirror Descent Modified
Policy Iteration (MD-MPI). For the partial evaluation step,
we can regularize according to the previous policy πk,
that is vk+1 = (Tπk+1,Ωπk

)mvk, or according to the cur-
rent policy πk+1, that is vk+1 = (Tπk+1,Ωπk+1

)mvk. As
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Ωπk+1
(πk+1) = 0, this simplifies as vk+1 = (Tπk+1

)mvk,
that is a partial unregularized evaluation.

To sum up, we will consider two general algorithmic
schemes based on a Bregman divergence, MD-MPI types 1
and 2 respectively defined as{
πk+1 = GΩπk

(vk)

vk+1 = (Tπk+1,Ωπk
)mvk

,

{
πk+1 = GΩπk

(vk)

vk+1 = (Tπk+1
)mvk

and both initialized with some v0 and π0.

5.1. Related algorithms

To derive practical algorithms, the recipes provided in
Sec. 4.1 still apply, just replacing Ω by Ωπk . If m = 1,
greedy and evaluation steps can be concatenated (only for
MD-MPI type 1). In the general case (m ≥ 1) the greedy
policy (for MD-MPI types 1 and 2) can be either directly
estimated (Eq. (5)) or trained to generalize the analytical
solution (Eq. (3)). The partial evaluation can be done using
a TD-like approach, either done repeatedly while keeping
the policy fixed or considering m-step rollouts. Specifi-
cally, in the case of a KL divergence, one could use the fact
that Ω∗πk(qk(s, ·)) = ln

∑
a πk(a|s) exp qk(s, a) and that

∇Ω∗πk(qk(s, ·)) = πk(·|s) exp qk(s,·)∑
a πk(a|s) exp qk(s,a) .

This general algorithmic scheme allows recovering state
of the art algorithms. For example, MD-MPI type 2
with m = ∞ and a KL divergence as the regularizer is
TRPO (Schulman et al., 2015) (with a direct optimization
of the regularized greedy step, as in Eq. (5), up to the use of
a constraint instead of a regularization). DPP can be seen as
a reparametrization4 of MD-MPI type 1 with m = 1 (Azar
et al., 2012, Appx. A). MPO (Abdolmaleki et al., 2018b)
is derived from an expectation-maximization principle, but
it can be seen as an instantiation of MD-MPI type 2, with
a KL divergence, a greedy step similar to Eq. (3) (up to
additional regularization) and an evaluation step similar to
Eq. (4) (without regularization, as in type 2, with m-step
return and with the Retrace off-policy correction). This also
generally applies to the approach proposed by Abdolmaleki
et al. (2018a) (up to an additional subtelty in the greedy step
consisting in decoupling updates for the mean and variance
in the case of a Gaussian policy).

5.2. Analysis

Here, we propose to analyze the error propagation of MD-
MPI (and thus, its convergence and rate of convergence).
We think this is an important topic, as it has only been partly

4Indeed, if one see MD-MPI as a Mirror Descent approach, one
can see DPP as a dual averaging approach, somehow updating a
kind of cumulative q-functions directly in the dual. However, how
to generalize this beyond the specific DPP algorithm is unclear,
and we let it for future work.

studied for the special cases discussed in Sec. 5.1. For exam-
ple, DPP enjoys an error propagation analysis in supremum
norm (yet it is a reparametrization of a special case of MD-
MPI, so not directly covered here), while TRPO or MPO
are only guaranteed to have monotonic improvements, un-
der some assumptions. Notice that we do not claim that
our analysis covers all these cases, but it will provide the
key technical aspects to analyze similar schemes (much like
CBMPI compared to AMPI, as discussed in Sec. 4.2 or
by Scherrer et al. (2015); where the error is injected changes
the bounds).

In Sec. 4.2, the analysis was a straightforward adaptation of
the one of AMPI, thanks to the results of Sec. 3 (the regular-
ized quantities behave like their unregularized counterparts).
It is no longer the case here, as the regularizer changes over
iterations, depending on what has been computed so far. We
will notably need a slightly different notion of approximate
regularized greediness.

Definition 5 (Approximate Bregman divergence-regular-
ized greediness). Write Jk(π) the (negative) optimiza-
tion problem corresponding to the Bregman divergence-
regularized greediness (that is, negative regularized Bell-
man operator of π applied to vk):

Jk(π) = 〈−qk, π〉+DΩ(π||πk) = −Tπ,Ωπk vk.

We write πk+1 ∈ G
ε′k+1

Ωπk
(vk) if for any policy π the policy

πk+1 satisfies

〈∇Jk(πk+1), π − πk+1〉+ ε′k+1 ≥ 0.

In other words, πk+1 ∈ G
ε′k+1

Ωπk
(vk) means that πk+1 is ε′k+1-

close to satisfying the optimality condition, which might be
slightly stronger than being ε′k+1-close to the optimal (as
for AMPI or reg-MPI). Given this, we consider MD-MPI
with errors in both greedy and evaluation steps, type 1{

πk+1 = Gε
′
k+1

Ωπk
(vk)

vk+1 = (Tπk+1,Ωπk
)mvk + εk+1

and type 2 {
πk+1 = Gε

′
k+1

Ωπk
(vk)

vk+1 = (Tπk+1
)mvk + εk+1

.

The quantity we are interested in is v∗ − vπk , that is sub-
optimality in the unregularized MDP, while the algorithms
compute new policies with a regularized greedy operator.
So, we need to relate regularized and unregularized quanti-
ties when using a Bregman divergence based on the previous
policy. The next lemma is the key technical result that allows
analyzing MD-MPI.



A Theory of Regularized MDPs

Lemma 1. Assume that πk+1 ∈ G
ε′k+1

Ωπk
(vk), as defined in

Def. 5. Then, the policy πk+1 is ε′k+1-close to the regular-
ized greedy policy, in the sense that for any policy π

Tπ,Ωπk vk − Tπk+1,Ωπk
vk ≤ ε′k+1.

Moreover, we can relate the (un)regularized Bellman oper-
ators applied to vk. For any policy π (so notably for the
unregularized optimal policy π∗), we have

Tπvk − Tπk+1,Ωπk
vk ≤ ε′k+1 +DΩ(π||πk)−DΩ(π||πk+1),

Tπvk − Tπk+1
vk ≤ ε′k+1 +DΩ(π||πk)−DΩ(π||πk+1).

We’re interested in bounding the loss lk = v∗ − vπk , or
some related quantity, for each type of MD-MPI. To do so,
we introduce quantities similar to the ones of the AMPI anal-
ysis (Scherrer et al., 2015), defined respectively for types 1
and 2: 1) The distance between the optimal value func-
tion and the value before approximation at the kth iteration,
d1
k = v∗ − (Tπk,Ωπk−1

)mvk−1 = v∗ − (vk − εk) and d2
k =

v∗ − (Tπk)mvk−1 = v∗ − (vk − εk); 2) The shift between
the value before approximation and the policy value a itera-
tion k, s1

k = (Tπk,Ωπk−1
)mvk−1 − vπk = (vk − εk)− vπk

and s2
k = (Tπk)mvk−1 − vπk = (vk − εk) − vπk ; 3) the

Bellman residual at iteration k, b1k = vk − Tπk+1,Ωπk
vk and

b2k = vk − Tπk+1
vk.

For both types (h ∈ {1, 2}), we have that lhk = dhk + shk , so
bounding the loss requires bounding these quantities, which
is done in the following lemma (quantities related to both
types enjoy the same bounds).
Lemma 2. Let k ≥ 1, define xk = (I−γPπk)εk+ε′k+1 and
yk = −γPπ∗εk+ ε′k+1, as well as δk(π∗) = DΩ(π∗||πk)−
DΩ(π∗||πk+1). We have for h ∈ {1, 2} :

bhk ≤ (γPπk)mbhk−1 + xk,

shk ≤ (γPπk)m(I − γPπk)−1bhk−1 and

dhk+1 ≤ γPπ∗dhk + yk +

m−1∑
j=1

(γPπk+1
)jbhk + δk(π∗).

These bounds are almost the same as the ones of
AMPI (Scherrer et al., 2015, Lemma 2), up to the addi-
tional δk(π∗) term in the bound of the distance dhk . One
can notice that summing these terms gives a telescopic
sum:

∑K−1
k=0 δk(π∗) = DΩ(π∗||π0) − DΩ(π∗||πK) ≤

DΩ(π∗||π0) ≤ supπDΩ(π||π0). For example, if DΩ

is the KL divergence and π0 the uniform policy, then
‖ supπDΩ(π||π0)‖∞ = ln |A|. This suggests that we must
bound the regret LK defined as

Lk =

K∑
k=1

lk =

K∑
k=1

(v∗ − vπk).

Theorem 4. Define RΩπ0
= ‖ supπDΩ(π||π0)‖∞, after

K iterations of MD-MPI, for h = 1, 2, the regret satisfies

LK ≤ 2

K∑
k=2

k−1∑
i=1

∞∑
j=i

Γj |εk−i|+
K∑
k=1

k−1∑
i=0

∞∑
j=i

Γj |ε′k−i|

+

K∑
k=1

h(k) +
1− γK

(1− γ)2
RΩπ0

1.

with h(k) = 2
∑∞
j=k Γj |d0| or h(k) = 2

∑∞
j=k Γj |b0|.

From this,we can derive an `p-bound for the regret.

Corollary 2. Let ρ and µ be distributions over states. Let p,
q and q′ be such that 1

q + 1
q′ = 1. Define the concentrability

coefficients Ciq as in Cor. 1. After K iterations, the regret
satisfies

‖LK‖p,ρ ≤ 2
K∑
k=2

k−1∑
i=1

γi

1− γ
(Ciq)

1
p ‖εk−i‖pq′,µ

+

K∑
k=1

k−1∑
i=0

γi

1− γ
(Ciq)

1
p ‖ε′k−i‖pq′,µ

+ g(k) +
1− γK

(1− γ)2
RΩπ0

.

with g(k) = 2
∑K
k=1

γk

1−γ (Ckq )
1
p min(‖d0‖pq′,µ, ‖b0‖pq′,µ).

This result bounds the regret, while it is usually the loss that
is bounded. Both can be related as follows.

Proposition 4. For any p ≥ 1 and distribution ρ, we have
min1≤k≤K ‖v∗ − vπk‖1,ρ ≤ 1

K ‖LK‖p,ρ.

This means that if we can control the average regret, then we
can control the loss of the best policy computed so far. This
suggests that practically we should not use the last policy,
but this best policy.

From Cor. 2 can be derived the convergence and rate of
convergence of MD-MPI in the exact case.

Corollary 3. Both MD-MPI type 1 and 2 enjoy the follow-
ing rate of convergence, when no approximation is done
(εk = ε′k = 0),

1

K
‖LK‖∞ ≤

1− γK

(1− γ)2

2γ‖v∗ − v0‖∞ +RΩπ0

K
.

In classical DP and in regularized DP (see Cor. 1), there is
a linear convergence rate (the bound is 2γK

1−γ ‖v∗ − v0‖∞),
while in this case we only have a logarithmic convergence
rate. We also pay an horizon factor (square dependency in

1
1−γ instead of linear). This is normal, as we bound the
regret instead of the loss. Bounding the regret in classical
DP would lead to the bound of Cor. 3 (without the RΩπ0

term).
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The convergence rate of the loss of MD-MPI is an open
question, but a sublinear rate is quite possible. Compared
to classical DP, we slow down greediness by adding the
Bregman divergence penalty. Yet, this kind of regularization
is used in an approximate setting, where it favors stability
empirically (even if studying this further would require
much more work regarding the ‖ε′k‖ term, as discussed
in Sec. 4.2).

As far as we know, the only other approach that studies a
DP scheme regularized by a divergence and that offers a
convergence rate is DPP, up to the reparameterization we
discussed earlier. MD-MPI has the same upper-bound as
DPP in the exact case (Azar et al., 2012, Thm. 2). However,
DPP bounds the loss, while we bound a regret. This means
that if the rate of convergence of our loss can be sublinear, it
is superlogarithmic (as the rate of the regret is logarithmic),
while the rate of the loss of DPP is logarithmic.

To get more insight on Cor. 2, we can group the terms
differently, by grouping the errors.

Corollary 4. With the same notations as Cor. 2, we have

1

K
‖Lk‖p,ρ ≤

K−1∑
i=1

γi

1− γ
(Ciq)

1
p

2EK−i + E′K−i
K

+
1

K

(
g(k) +

1− γK

(1− γ)2
RΩπ0

)
,

with Ei =
∑i
j=1 ‖εj‖pq′,µ and E′i =

∑i
j=1 ‖ε′j‖pq′,µ.

Compared to the bound of AMPI (Scherrer et al., 2015,
Thm. 7), instead of propagating the errors, we propagate
the sum of errors over previous iterations normalized by
the total number of iterations. So, contrary to approximate
DP, it is no longer the last iterations that have the highest
influence on the regret. Yet, we highlight again the fact that
we bound a regret, and bounding the regret of AMPI would
provide a similar result.

Our result is similar to the error propagation of DPP (Azar
et al., 2012, Thm. 5), except that we sum norms of errors,
instead of norming a sum of errors, the later being much
better (as it allows the noise to cancel over iterations). Yet,
as said before, DPP is not a special case of our framework,
but a reparameterization of such one. Consequently, while
we estimate value functions, DPP estimate roughly at itera-
tion k a sum of k advantage functions (converging to −∞
for any suboptimal action in the exact case). As explained
before, where the error is injected does matter. Knowing
if the DPP’s analysis can be generalized to our framework
(MPI scheme, `p bounds) remains an open question.

To get further insight, we can express the bound using dif-
ferent concentrability coefficients.

Corollary 5. Define the concentrability coefficient Cl,kq as

Cl,kq = (1−γ)2

γl−γk
∑k−1
i=l

∑∞
j=i cq(j), the regret then satisfies

‖LK‖p,ρ ≤ 2

K−1∑
i=1

γ − γi+1

(1− γ)2
(C1,i+1

q )
1
p ‖εK−i‖pq′,µ

+

K−1∑
i=0

1− γi+1

(1− γ)2
(C0,i+1

q )
1
p ‖ε′K−i‖pq′,µ + f(k)

with f(k) = γ−γK+1

(1−γ)2 (C1,K+1
q )

1
p min(‖d0‖pq′,µ, ‖b0‖pq′,µ)+

1−γK
(1−γ)2RΩπ0

.

We observe again that contrary to ADP, the last iteration
does not have the highest influence, and we do not enjoy a
decrease of influence at the exponential rate γ towards the
initial iterations. However, we bound a different quantity
(regret instead of loss), that explains this behavior. Here
again, bounding the regret in AMPI would lead to the same
bound (up to the term RΩπ0

). Moreover, sending p and K
to infinity, defining ε = supj ‖εj‖∞ and ε′ = supj ‖ε′j‖∞,

we get lim sup
K→∞

1
K ‖LK‖∞ ≤

2γε+ε′

(1−γ)2 , which is the classical

asymptotical bound for approximate value and policy itera-
tions (Bertsekas & Tsitsiklis, 1996) (usually stated without
greedy error). It is generalized here to an approximate MPI
scheme regularized with a Bregman divergence.

6. Conclusion
We have introduced a general theory of regularized MDPs,
where the usual Bellman evaluation operator is modified
by either a fixed convex function or a Bregman divergence
between consecutive policies. For both cases, we proposed
a general algorithmic scheme based on MPI. We shown how
many (variations of) existing algorithms could be derived
from this general algorithmic scheme, and also analyzed
and discussed the related propagation of errors.

We think that this framework can open many perspectives,
among which links between (approximate) DP and prox-
imal convex optimization (going beyond mirror descent),
temporal consistency equations (roughly regularized Bell-
man residuals), regularized policy search (maximizing the
expected regularized value function), inverse reinforcement
learning (thanks to uniqueness of greediness in this regular-
ized framework) or zero-sum Markov games (regularizing
the two-player Bellman operators). We develop more these
points in the appendix.

This work also lefts open questions, such as combining the
propagation of errors with a finite sample analysis, or what
specific regularizer one should choose for what context.
Some approaches also combine a fixed regularizer and a
divergence (Akrour et al., 2018), a case not covered here
and worth being investigated.
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