DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Appendix

A. Proofs
A.1. Lipschitz MDP

Lemma 1. Ler M be (K, Kp)-Lipschitz and let w be any policy with the property that Vs1, sz € S,
[V7(s1) = V7 (s2)| < max|Q7 (s1,0) — Q"(s2,a))|

Kr

then m is 1_,}/7](7)-

Lipschitz-valued.
Proof. Let
Kq = inf {L eR U {0} | Vs1,80€8,[Q7(51,a) — Q7 (s2,a)| < Lds(sy, 52)} .)

First note that the assumption of the Lemma implies that Ky < K, where Ky is the Lipschitz norm of the value function.

We will show that K is bounded by a recurrence relationship. The derived recurrence will have a finite fixed point, thus
proving that K is finite. See that,

Q7 (s1,a) = Q"(s2,a)| < [R(s1,a) = R(s2,0)| +7

Jg(ﬁ(sﬂsl, a) — P(s's2,a)) V™ (s a’) ds'| .

The first term of the RHS may be bounded above by K |51 — s2],. For the second term of the RHS we apply the definition
of the Wasserstein metric (Section 1).

Q" (s1,a) — Q" (s2,a)| < Krds(s1,s2) + YKvW (P(:|s1,a), P(:|s2,a))
< (Kr + 7Ky Kp)ds(s1, s2)
<)

(Kr +v7KqKp)ds(s1,s2

This recurrence has a finite fixed point given by 1f§ f— . Thus the conditions of Lipschitz-Valued policies (Definition 3) are

satisfied, completing the proof. O

Corollary 1. Let M be (K g, Kp)-Lipschitz, then 7* is %-Lipschitz-Valued

Proof.
[V™(s1) — V™ (s2)] = |max Q™ (s1,a1) — max Q™ (s2, az)|
(LleA azEA
< max [Q™(s1,a) — Q7 (s2, a)|
aeA
Thus the condition for Lemma 1 holds and the result follows. O
A.2. Global DeepMDP

Lemma 2. Let M and M be an MDP and DeepMDP respectively, with an embedding function ¢ and global loss functions
L% and L7°§. For any Ky -Lipschitz-valued policy 7 € 11 the value difference can be bounded by

__ L% Ky L%
Q7 (5.0) = @ (6(s),)] < “BE

Proof. The proof consists of showing that the supremum sup, , |Q (s, a) — Q™ (¢(s), a)| is bounded by a recurrence

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

relationship.
max |Q"(s,a) — Q7 (¢(s), a)| < max|R(s,a) — R(4(s),a)| + ymax 73]E(Jl)Vﬁ(s/) - 7(]|E(:)‘7%(5_/)
s,a s,a s,a |s'~P(-|s,a s'~P(-|p(s),a
=LE +ymax| E [VT(s)=V™(o(s))] + E VT(p(s)) = V™ (5
From| BV -V, B VT0E) - V)]
s’ ~P(|s,a)
SLg+qmax| B [V7(s) = VT(@(s))]| +ymax| _E - [V(¢(s) - V(5]
$:a |s'~P(s.a) 8.4 |5'~P(|¢(s),a)
s'~P(:]s,a)
< Lg +ymax| o)[Vﬁ(S') = V(@(s)]| + vKy max W (¢P(|s,a), P(-]¢(s), a))
=L3 + ymax , PEE:\)[Vﬁ(s') — VT (p(sN]| + WKVL%J
< LE + ymax p]]z]?l : [[V7(s') = V7 (¢(s"))]| + 7Ky LE Using Jensen’s inequality.
s,a s~ s,a
< Lg +ymax |[V7(s) = V7 (§(s))]| + 7Ky L
< L +ymax|[Q7(s,a) — Q7(¢(s), a)]| + 7Ky L
Solving for the recurrence relation over max; o |Q7 (s,a) — Q™ (¢(s), a)| results in the desired resul. O

Theorem 1. Let M and M be an MDP and DeepMDP respectively, with an embedding function ¢ and global loss functions
L% and L%’. For any Ky;-Lipschitz-valued policy 7 € 11 the representation ¢ guarantees that for any s1,s2 € S and a € A,

Q7 (s1,0) — Q" (s2,a)| < Ky [$(s1) — ¢(s2)],
(L% + 7KV LE)

+2
1—v

Proof.

Q7 (s1,a) — Q" (s2,a)| < |Q™(s1,a) — Q" (s2,a)| + |Q" (s1,a) — Q" (s1,a)| + |Q™ (s2,a) — Q™ (52,)|
__ L% Ky L®
< |G (s1,a) — 7 (520 ‘_i_QW

(Lz +1EvLE)
1 _

Applying Lemma 2

Ky |o(s1) — d(s2)ly + 2 Using the Lipschitz property of Q™

O

Theorem 2. Let M and M be an MDP and a (K r, K p)-Lipschitz DeepMDP respectively, with an embedding function ¢
and global loss functions L;‘% and L%o. For all s € S, the suboptimality of the optimal policy T of M evaluated on M can

be bounded by,
LE +yKy L%
R V=p

V*(s) = V™ (s) <2 =

Where Ky, =

I Ify e is an upper bound to the Lipschitz constant of the value function V™ as shown by Corollary 1.

Proof. For any s € S we have

VE(s) = VT (s)] < [V¥(6(s)) = V™ (8)] + [V¥(s) = V*(8(s))]. (10)

LE+~yKyLE

Using the result given by Lemma 2 and Corollary 1, we may bound the first term of the RHS by T—

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

To complete the proof, we want to show that for any s € S, a € A, we have,

_ L% + ’}/KvL%o

\Q*(s,a)—Q*(¢(8),a)| < 1_7) (11)
_ LE + Ky L2
VHe) Vo)) < TR (12)
We prove the validity of Equation 11 similarly to Lemma 2:
max |Q*(s,a) — Q*(qﬁ(s),a)} < max ’R(s,a) - ﬁ(qﬁ(s),a)} + v max PEE:\)V*(s') - 7(1%\3(:)‘7*(5')
s,a s,a s,a |s'~ -|s,a 5/~ . ¢ s),a

= L% + ymax E V(') = VF(p(s)] + E V*(o(s')) — V*(5
R T yma; S/NP(.B,@[(s)) (¢(s))] s’~7><~|¢|<s>,)a>[(¢(s) ()]
s'~P(:|s,a

VA) = V]| + e B 70 -)
RS

< L% + ymax
SR TN v pClsa)

- 1 + ymax [V¥() = V()] + 2K L

E
s'~P(:|s,a)
<LE+ 7y max [V*(s) — V*(¢(s))| + 7Ky LS Using Jensen’s inequality.

=L3+ 7 max |max Q*(s,a) — max Q*(9(s), a)‘ +vKy L3

< L +ymax|Q*(s,a) — Q*(¢(s),a)| + Ky L5

Solving for the recurrence proves Equation 11. Now to show the validity of Equation 12, we derive,

V*(s) = V¥(¢(s))| = max Q*(s, a) — max Q*(¢(s), a')| (13)
<max |Q*(s,a) — Q*(¢(s), a)| (14)
JTrtalvly 15)
L=y
as desired. This completes the proof. O

A.3. Local DeepMDP Proofs

Lemma 3. Let M and M be an MDP and DeepMDP respectively, with an embedding function ¢. For any K -Lipschitz-
valued policy 7 € 11, the expected value function difference can be bounded using the local loss functions L%’ and L%"
measured under &z, the stationary state action distribution of 7.

. LS + Ky LS
LB 1Q7(s.0) = Q7(6(s). a)] (2% — ¥)

N

)

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Proof.
E T(s,a) — Q™(4(s),a)| < E |R(s,a) — R(¢(s),a)| +~v E E V(Y- E V(5
JE Q7 (s,a) — Q7 (4(s),a)| MNEJ (s,a) = R(¢(s), a)| L0 T (s)) v)
—I¥ +4 E E [V7(s) = VT ((s)] + E VT (p(s') = V(s
R B v w (s)) (o(s) v) (s)]
s'~P(:|s,a)
<LY +4 E E [V =V ()| +7 E E VT (p(s")) — V(5
REE sf~7>(.|s,a)[(s) (@D + E g,wﬁ(ws)’a)[(¢(s) (5]
s'~P(:|s,a)
SIg4v B | B V) -V 1Ky B W (6PClsa). PCIo().)
—Lg 40 B | B V) - V)| + KL
<LY +4 E E [[V7(s') = V™ (¢(s)]| + 7Ky LY Using Jensen’s inequality.
R s,a~€x s'~P(-|s,a) P
< L%’” + 7 E& V7 (s) — V™ (o(s))]| + WK(/L%’" Applying the stationarity property.
s,a~Ex
<Ly +7 E, [[Q7(s,a) = Q7(6(s))| + 7Ky Ly
Solving for the recurrence relation over E, q~¢. |Q™(s,a) — Q™ (¢(s), a)| results in the desired result. O

Theorem 3. Let M and M be an MDP and DeepMDP respectively, with an embedding function ¢. Let 7 € 11 be any
Ky -Lipschitz-valued policy with stationary distribution dz(s) and let L%’ and L%’" be the local loss functions measured
under &, the stationary state action distribution of 7. For any two states s1, So € S, the local representation similarity can
be bounded by

(V7 (s1) = V7 (s2)| < Ky [lg(s1) — ¢(s2)

& _71é=
N L7—2 +’yKVL75 1 1
1—v d

Proof. Using the fact that |[V™(s) — V7 (s)| < d;'(s)Esna, [V (s) — V7(s)

™

E}

V(1) = V(s2)| < [V7(s1) = V(s2)| + dz ' (s1) B [V (1) = VT(s1)] + dz (s2) B [V (s2) = V7 (s2)]

S~ax

- - LS + yKy LY
< ‘V”(sl) — Vﬂ—(SQ)‘ + %ﬂyp

Ex &
Lﬁ + ’yKvLﬁ
1 —

(d5'(s1) + d5'(s2)) . Applying Lemma 3

< Kv [[o(s1) — d(s2)l, + (dz"(s1) + dz " (s2))

A.4. Connection to Bisimulation

Lemma 4. Let M be a Kr-Kp-Lipschitz MDP, with metric between states ds. Then the bisimulation metric d is also
Lipschitz.

7 (1-7)Kr

d(s1, s2) < [ds(s1,82) (16)

Thus, all close states in ds are also close under the bisimulation metric (although the converse need not be true).

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

d(sl,SQ
ds(s1,52)

Proof. Let By = supy, s,es be (the potentially infinite) Lipschitz constant of the bisimulation metric d such that:

~

d(Sl,Sg) < BJdS(Sl,S2),VS1,SQ eS

T'hus,
T+(P(:|s1,a),P(-|s2,a)) = su E s — E 7‘3’
d((| 1) (| 2)) fe]}«I()iS’1~7’(~\sha)[f(1)] s;~7>(~\sz,a)[(2)]
< Bssu E S - E S
dfe]Ppl 51~P(')[f(1)] SzNP(')[f(2)]

= BJW (P('|817 a)7lp('|527a))
< BgKfpds(Sl, 82)

Then using the fixed point property of all bisimulation metrics,

d(s1,52) = max(1 = 7)[R(s1,) = R(sz,a)| + 1 To(P(|s1, 0), P(:]s2,))

< (1 —=v)Krds(s1,52) +vBjKpds(s1,s2)
J(sikvs§)

ds(s;k,s;k)
these be limiting points). We can conclude the proof with:

by letting s, s be the states where the supremum of is attained (if the supremum is not attained anywhere, let

~

d(st, s3) _ (1-7)Krds(st, s5) + vBKpds(st, s)

B~ = x
¢ ds(sT,s3) ds(sy,53)
< (1—7)Kr +7vB;Kp
(1-7)Kr

We can now derive the upper bound B; < , and by the definition of By, the desired result trivially follows. O

1—’YK7>

Lemma 5. Let M be an MDP and M be a K. = -Kp-Lipschitz MDP with an embedding function ¢ : S — S and global
DeepMDP losses L7°§ and L;)%. We can extend the bisimulation metric to also measure a distance between s € S and

5 € S by considering an composed MDP constructed by joining M and M. When an action is taken, each state will
transition according to the transition matrix of its corresponding MDP. Then the bisimulation metric between a state s and
it’s embedded counterpart ¢(s) is bounded.

~ K5

Proof. First, note that

WieP(ls.a) PCo(s)a) = s B [G]- B[S

1-v9K
<(V)RSU

E s1)] - E 5 (Using Theorem 4)
L=9Kp fer, g’1~¢>7>(~\s7a)[f(V] §;~75(~\¢(s),a)[f(2)] &
_ (I—9)Kr _
1= vKp sz(,P(|Saa)77)(‘¢(S),a))
< ML@
1-— ")/Kp P

Using the triangle inequality of pseudometrics and the previous derivation:
sup d(s, ¢(s)) = max (1 —7)[R(s,a) = R(6(s), a)| + YWg(P(]s, a), P(¢(s),a))

< (L =7)Lg +ymax (Wi(P(-]s,a), ¢P(|s,a)) + Wi(&P(|s,a), P(-|¢(s), a)))

(1 —’}/)KR
@ A RO ~ . P
S —=v)LZ +v T K» Lg +7%§j{ W3(P(|s,a), ¢P(:|s,a))
1 —V)KR Y,
< 0 (7 @© !
(1=7)LZ5 +~ o L% +’yst;pd(s ,0(s))

Solving for the recurrence leads to the desired result. O

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Theorem 5. Let M be an MDP and M be a K -Kp-Lipschitz DeepMDP where we assume metric between deep states is
the {5 distance. Let ¢ be the embedding function and L;g and L;’% be the global DeepMDP losses. The Bisimulation distance

inM,d:S xS — R* can be upperbounded by the {5 distance in the embedding and the losses in the following way:

Tsr.2) < 2 <L3§ pyLg R) + EE05R Jo(s0) - olso)l
P

P1-9Kp K
Proof.
d(s1,52) < d(s1, (1)) + d(52, 6(52)) + d($(51), H(s2))
<2 <L1O€ + ’YL;.Sl_K;zKP> +d(p(s1), d(s2)) (Using Theorem 5)
ke (L?% +l57 _KWRKJ (i = ﬁf [6(s1) = é(s2)l (Applying Theorem 4)
Completing the proof. O

A.5. Quality of TI

Lemma 6. Let d; and dg be the metrics on the space X, with the property that for some € > 0 it holds that Vx,y €
X,df(z,y) < €+ dg(x,y). Define the sets of 1-Lipschitz functions F = {f : |f(z) — f(z)| < df(z,y),Va,y € x} and
G ={g:|g9(z) —g(x)| < dg(x,y),Yx,y € x}. Then for any f € F, there exists one g € G such that for all x € ¥,

|f(x) = g(z)| <

N

Proof. Define the set Z = {z:|z(x) — 2(y)| < e+ dy(z,y),Yx,y € x}. Then trivially, any function f € F is also a
member of Z. We now show that the set Z can equivalently be expressed as z(z) = g(z) + u(x), where g € G and
u(x) € (5, §), is (non Lipschitz) bounded function.

|2(z) — 2(y)| = |9(x) + u(z) — g(y) — u(y)|
< lg(z) — g(y)| + |u(z) — u(y)|
<dg(x,y) + €

Note how both inequalities are tight (there is a g and u for which the equality holds), together with the fact that the set Z is
convex, it follows that any z € Z must be expressible as g(x) + u(x).

We now complete the proof. For any z € Z, there exista g € G s.t. z(z) = g(x) + u(x). Then:

O

Theorem 4. Let M be an MDP and M be a (K, Kp)-Lipschitz DeepMDPF, with an embedding function ¢, and global
loss functions L and L. Denote by Il the set of K-Lipschitz deep policies {7 : 7 € II,[7(als1) — 7(als2)| <

K Hgi)_(sl) — ¢(s2)ll5,Vs1,82 € S,a € A}. Finally define the constant C = % Then for any % € Il there exists a
7 € Il which is close to T in the sense that, for all s € S and a € A,

~ = <L L2 Kg

|T(als) — 7(als)] < Lg + 7 ﬁm

Proof. The proof is based on Lemma 6. Let x = S, d¢(z,y) = Kd(z,y), dg(z,y) = KC|¢(z) — ¢(y)|, and € =

2 (L% +7L3F 1_127}7?). Theorem 5 can be used to show that the condition ds(x,y) < € + dg4(z,y) holds. Then the

application of Lemma 6 provides the desired result. O

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

0.15 0.006
Reward Loss

Transition Loss n
m 0004 &
& 01 - 004 S
c
§e])
T =
g wv
0.002 €
& 0.05 ©
|_

0

2k 4k 6k 8k 10k

[terations

Figure 4. Due to the competition between reward and transition losses, the optimization procedure spends significant time in local minima
early on in training. It eventually learns a good representation, which it then optimizes further.

B. DonutWorld Experiments
B.1. Environment Specification

Our synthetic environment, DonutWorld, consists of an agent moving around a circular track. The environment is centered
at (0,0), and includes the set of points whose distance to the center is between 3 and 6 units away; all other points are
out-of-bounds. The distance the agent can move on each timestep is equal to the distance to the nearest out-of-bounds
point, capped at 1. We refer to the regions of space where the agent’s movements are fastest (between 4 and 5 units away
from the origin) as the “track,” and other in-bounds locations as “grass”. Observations are given in the form of 32-by-32
black-and-white pixel arrays, where the agent is represented by a white pixel, the track by luminance 0.75, the grass by
luminance 0.25, and out-of-bounds by black. The actions are given as pairs of numbers in the range (-1,1), representing an
unnormalized directional vector. The reward for each transition is given by the number of radians moved clockwise around
the center.

Another variant of this environment involves four copies of the track, all adjacent to one another. The agent is randomly
placed onto one of the four tracks, and cannot move between them. Note that the value function for any policy is identical
whether the agent is on the one-track DonutWorld or the four-track DonutWorld. Observations for the four-track DonutWorld
are 64-by-64 pixel arrays.

B.2. Architecture Details

We learn a DeepMDP on states and actions from a uniform distribution over all possible state-action pairs. The environment
can be fully represented by a latent space of size two, so that is the dimensionality used for latent states of the DeepMDP.

We use a convolutional neural net for our embedding function ¢, which contains three convolutional layers followed by a
linear transformation. Each convolutional layer uses 4x4 convolutional filters with stride of 2, and depths are mapped to 2,
then 4, then 8; the final linear transformation maps it to the size of the latent state, 2. ReLU nonlinearities are used between
each layer, and a sigmoid is applied to the output to constrain the space of latent states to be bounded by (0, 1).

The transition function and reward function are each represented by feed-forward neural networks, using 2 hidden layers of
size 32 with ReLU nonlinearities. A sigmoid is applied output of the transition function.

For the autoencoder baseline, we use the same architecture for the encoder as was used for the embedding function. Our
decoder is a three-layer feedforward ReLU network with 32 hidden units per layer. The reconstruction loss is a softmax
cross-entropy over possible agent locations.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Loss
Empirical Value Difference -1.25
=== Moving average of Empirical Value Difference

[}
o
c
t
£
a 02- 1
3
T —
> -0.75
3
£ 015~
aQ -05
S
w
0 5k 10k 15k 20k 25k 30k

Updates

Figure 5. Plot of training curves obtained by learning a DeepMDP on our toy environment. Our objective minimizes both the theoretical
upper bound of value difference and the empirical value difference.

Frostbite Breakout Seaquest Gravitar

— oneayer 140000
— two-layer 600 120000 600
— convolutional

100000
80000

60000

200 40000 200

1000 100 20000 100

20 80 100 20 20 60 80 100 20 a 60 80 100 20 20 60 80 100

a 60
Number of Frames (x 1 million)

Figure 6. Performance of C51 with model-based auxiliary objectives. Three types of transition models are used for predicting next latent
states: a single convolutional layer (convolutional), a single fully-connected layer (one-layer), and a two-layer fully-connected network
(two-layer).

B.3. Hyperparameters

All models were implemented in Tensorflow. We use an Adam Optimizer with a learning rate of 3e-4, and default settings.
We train for 30,000 steps. The batch size is 256 for DMDPs and 1024 for autoencoders. The discount factor, 7, is set to 0.9,
and the coefficient for the gradient penalty, A, is set to 0.01. In contrast to the gradient penalty described in Gulrajani et al.
(2017b), which uses its gradient penalty to encourage all gradient norms to be close to 1, we encourage all gradient norms to
be close to 0. Our sampling distribution is the same as our training distribution, simply the distribution of states sampled
from the environment.

B.4. Empirical Value Difference

Figure 5 shows the loss curves for our learning procedure. We randomly sample trajectories of length 1000, and compute both
the empirical reward in the real environment and the reward approximated by performing the same actions in the DeepMDP;
this allows us to compute the empirical value error. These results demonstrate that neural optimization techniques are
capable of learning DeepMDPs, and that this optimization procedure, designed to tighten theoretical bounds, is minimized
by a good model of the environment, as reflected in improved empirical outcomes.

C. Atari 2600 Experiments
C.1. Hyperparameters

For all experiments we use an Adam Optimizer with a learning rate of 0.00025 and epsilon of 0.0003125. We linearly decay
epsilon from 1.0 to 0.01 over 1000000 training steps. We use a replay memory of size 1000000 (it must reach a minimum
size of 50000 prior to sampling transitions for training). Unless otherwise specified, the batch size is 32. For additional
hyperparameter details, see Table 1 and (Bellemare et al., 2017a).

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Hyperparameter Value
Runner.sticky.actions No Sticky Actions
Runner.num_iterations 200
Runner.training_steps 250000

Runner.evaluation_steps Eval phase not used.
Runner.max_steps_per_episode 27000
WrappedPrioritizedReplayBuffer.replay_capacity 1000000
WrappedPrioritizedReplayBuffer.batch_size 32
RainbowAgent .num_atoms 51
RainbowAgent .vmax 10.
RainbowAgent .update_horizon 1
RainbowAgent .min_replay_history 50000
RainbowAgent .update_period 4
RainbowAgent.target_update_period 10000
RainbowAgent.epsilon_train 0.01
RainbowAgent.epsilon_eval 0.001
RainbowAgent.epsilon_decay-period 100000
RainbowAgent.replay_scheme "uniform’
RainbowAgent.tf_device " /gpu:0’

RainbowAgent.optimizer

@tf.train.AdamOptimizer ()

tf.train.AdamOptimizer.learning._rate 0.00025
tf.train.AdamOptimizer.epsilon 0.0003125
ModelRainbowAgent .reward-loss_weight 1.0
ModelRainbowAgent.transition_loss_weight 1.0

ModelRainbowAgent.transition.model_type
ModelRainbowAgent .embedding_type

"convolutional’
"conv_layer_embedding’

Table 1. Configurations for the DeepMDP and C51 agents used with Dopamine (Castro et al., 2018) in Section 7.3. Note that the
DeepMDP is referred to as ModelRainbowAgent in the configs.

C.2. Architecture Search

In this section, we aim to answer: what latent state space and transition model architecture lead to the best Atari 2600
performance of the C51 DeepMDP? We begin by jointly determining the form of S and 05 which are conducive to learning
a DeepMDP on Atari 2600 games. We employ three latent transition model architectures: (1) single fully connected layer,
(2) two-layer fully-connected network, and (3) single convolutional layer. The fully-connected transition networks use the
512-dimensional output of the embedding network’s penultimate layer as the latent state, while the convolutional transition
model uses the 11 x 11 x 64 output of the embedding network’s final convolutional layer. Empirically, we find that the use
of a convolutional transition model on the final convolutional layer’s output outperforms the other architectures, as shown in
Figure 6.

C.3. Architecture Details

The architectures of various components are described below. A conv layer refers to a 2D convolutional layer with a
specified stride, kernel size, and number of outputs. A deconv layer refers to a deconvolutional layer. The padding for
conv and deconv layers is such that the output layer has the same dimensionality as the input. A maxpool layer performs
max-pooling on a 2D input and fully connected refers to a fully-connected layer.

C.3.1. ENCODER

In the main text, the encoder is referred to as ¢ : S — S and is parameterized by .. The encoder architecture is as follows:

Input: observation s which has shape: batch size x 84 x 84 x 4. The Atari 2600 frames are 84 x 84 and there are 4 stacked
frames given as input. The frames are pre-processed by dividing by the maximum pixel value, 255. Output: latent state ¢(s)

In Appendix C.2, we experimented with two different latent state representations. (1) ConvLayer: The latent state is the

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

o(s)

conv 3 x 3, stride 1, 64 out

conv 4 x 4, stride 2, 64 out

conv 8 x 8, stride 4, 32 out

conv 8 x 8, stride 4, 32 out

s s
(1) ConvLayer network (2) FCLayer network

Figure 7. Encoder architectures used for the DeepMDP agent.

output of the final convolutional layer, or (2) FCLayer: the latent state is the output of a fully-connected (FC) layer following
the final convolutional layer. These possibilities for the encoder architecture are described in Figure 7.

In sections 7.3, 7.4, C.4, and C.5 the latent state of type ConvLayer is used: 11 x 11 x 64 outputs of the final convolutional
layer.
C.3.2. LATENT TRANSITION MODEL

In Appendix C.2 there are three types of latent transition models P : S — S parameterized by 6 which are evaluated: (1) a
single fully-connected layer, (2) a two-layer fully-connected network, and (3) a single convolutional layer (see Figure 8).
Note that the first two types of transition models operate on the flattened 512-dimensional latent state (FCLayer), while the
convolutional transition model receives as input the 11 x 11 x 64 latent state type ConvLayer. For each transition model,
num_actions predictions are made: one for each action conditioned on the current latent state ¢(s).

In sections 7.3, 7.4, C.4, and C.5 the convolutional transition model is used.

C.3.3. REWARD MODEL AND C51 LOGITS NETWORK

The architectures of the reward model R parameterized by 05 and C51 logits network parameterized by 6 depend the
latent state representation. See Figure 9 for these architectures. For each architecture type, num_actions predictions are
made: one for each action conditioned on the current latent state ¢(s).

In sections 7.3, 7.4, C.4, and C.5 two-layer fully-connected networks are used for the reward and C51 logits networks.

C.3.4. OBSERVATION RECONSTRUCTION AND NEXT OBSERVATION PREDICTION

The models for observation reconstruction and next observation prediction in Section 7.4 are deconvolutional networks
based on the architecture of the embedding function ¢. Both operate on latent states of type ConvLayer. The architectures
are described in Figure 10.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning
fully connected
512 x num_actions outputs

RELU RELU RELU

fully connected fully connected. 512 out conv 2 x 2, stride 1,
512 x num_actions outputs y ’ 64 x num_actions outputs

| ! !

o(s) o(s) o(s)
) 2) 3)

Figure 8. Transition model architectures used for the DeepMDP agent: (1) a single fully-connected layer (used with latent states of type
FCLayer), (2) a two-layer fully-connected network (used with latent states of type FCLayer), and (3) a single convolutional layer (used
with latent states of type ConvLayer).

fully connected
1 X num_actions outputs

RELU

[fully copnecled] [fully connected, 512 out
1 X num_actions outputs

¢(s) ¢(s)
M ®

Figure 9. Reward and C51 Logits network architectures used for the DeepMDP agent: (1) a single fully-connected layer (used with latent
states of type FCLayer), (2) a two-layer fully-connected network (used with latent states of type ConvLayer).

C.4. DeepMDP Aucxiliary Tasks: Different Weightings on DeepMDP Losses

In this section, we discuss results of a set of experiments where we use a convolutional latent transition model and a
two-layer reward model to form auxiliary task objectives on top of a C51 agent. In these experiments, we use different
weightings in the set {0, 1} for the transition loss and for the reward loss. The network architecture is based on the best
performing DeepMDP architecture in Appendix C.2. Our results show that using the transition loss is enough to match
performance of using both the transition and reward loss. In fact, on Seaquest, using only the reward loss as an auxiliary
tasks causes performance to crash. See Figure 11 for the results.

C.5. Representation Learning with DeepMDP Objectives

Given performance improvements in the auxiliary task setting, a natural question is whether optimization of the deepMDP
losses is sufficient to perform model-free RL. To address this question, we learn 6. only via minimizing the reward and
latent transition losses. We then learn 6z by minimizing the C51 loss but do not pass gradients through .. As a baseline, we
minimize the C51 loss with randomly initialized 6. and do not update .. In order to successfully predict terminal transitions
and rewards, we add a terminal reward loss and a terminal state transition loss. The terminal reward loss is a Huber loss
between R(é(s7)) and 0, where st is a terminal state. The terminal transition loss is a Huber loss between P(s,) and 0,
where s is either a terminal state or a state immediately preceding a terminal state and 0 is the zero latent state.

We find that in practice, minimizing the latent transition loss causes the latent states to collapse to ¢(s) = 0 Vs € S. As
(Francois-Lavet et al., 2018) notes, if only the latent transition loss was minimized, then the optimal solution is indeed
¢ : S — 0 so that P perfectly predicts ¢(P(s,a)).

We hope to mitigate representation collapse by augmenting the influence of the reward loss. We increase the batch size
from 32 to 100 to acquire greater diversity of rewards in each batch sampled from the replay buffer. However, we find that
only after introducing a state reconstruction loss do we obtain performance levels on par with our simple baseline. These

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

RELU RELU

[deconv 8 x 8, stride 4, 4 out } [deconv8 X.S’ stride 4 }
4 x num_actions outputs

RELU RELU

[deconv 4 x 4, stride 2,32 out} [deconv 4 x 4, stride 2, 32 out}
RELU RELU

[deconv 3 x 3, stride 1,64 out} [deconv 3 x 3, stride 1, 64 out}
b(s) b(s)

(1) Observation Reconstruction (1) Next Observation Prediction

Figure 10. Architectures used for observation reconstruction and next observation prediciton. Both networks take latent states of type
ConvLayer as input.

Seaquest Frostbite Breakout Gravitar

— cs1
300000 — reward 8000 600 n
— transition 7000 + + o ,VW’)"!;%W
250000 reward-transition M 6000 oy poain /Y 200 440 BRI
MY Y e
200000 : o A f : . 3
W |

3t

il

150000 J‘_) 4000

)

100000 A
A A h 2000
50000 / \ 1000
| J

20 60 80 100 120 140 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Number of Frames (x 1 million)

Train Episode Returns

Figure 11. We compare C51 with C51 with DeepMDP auxiliary task losses. The combinations of loss weightings are {0, 1} (just reward),
{1, 0} (just transition), and {1, 1} (reward-+transition), where the first number is the weight for the transition loss and the second number
is the weight for the reward loss.

results (see Figure 12) indicate that in more complex environments, additional work is required to successfully balance the
minimization of the transition loss and the reward loss, as the transition loss seems to dominate.

This finding was surprising, since we were able to train a DeepMDP on the DonutWorld environment with no reconstruction
loss. Further investigation of the DonutWorld experiments shows that the DeepMDP optimization procedure seems to be
highly prone to becoming trapped in local minima. The reward loss encourages latent states to be informative, but the
transition loss counteracts this, preferring latent states which are uninformative and thus easily predictable. Looking at the
relative reward and transition losses in early phases of training in Figure 4, we see this dynamic clearly. At the start of
training, the transition loss quickly forces latent states to be near-zero, resulting in very high reward loss. Eventually, on this
simple task, the model is able to escape this local minimum by “discovering” a representation that is both informative and
predictable. However, as the difficulty of a task scales up, it becomes increasingly difficult to discover a representation which

Seaquest Frostbite Breakout Asterix

— 1
1600 — geep MDP 1400 6000
1a00)| — deep MDP + batch size 100 b 20
w deep MDP + state 00
H| — deep MDP + state + batch size 100

5000

u

4000

800
3000

600 1
2 / 2000
400
s|
200} 1000

Figure 12. We evaluate the performance of C51 when learning the latent state representation only via minimizing deepMDP objectives.
We compare learning the latent state representation with the deepMDP objectives (deep MDP), deepMDP objectives with larger batch
sizes (deepMDP + batch size 100), deepMDP objectives and an observation reconstruction loss (deepMDP + state), and deepMDP with
both a reconstruction loss and larger batch size (deepMDP + state + batch size 100). As a baselines, we compare to C51 on a random
latent state representation (C51).

Train Episode Return:

20

a 0
Number of Frames (x 1 million)

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

escapes these local minima by explaining the underlying dynamics of the environment well. This explains our observations
on the Arcade Learning Environment; the additional supervision from the reconstruction loss helps guide the algorithm
towards representations which explain the environment well.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

12000 AirRaid 6000 Alien 1800 Amidar 5000 Assault Asterix 2000 Asteroids Atlantis
1600 0000 1800
10000 5000
4000 0000
1400 1 0000 ! 1e00 W
8000 |- L 1200 0000
i L X SAMME"™ 1400 0000
1000 0000
6000 3000 1200
800 2000 0000 4p0000
1000
4000} 2000} 00 0000 Vi, i My
800
00 0000
2000 1000 1000 2hoooo
200 0000 w00 f
0 0 i
S 100 150 S0 W0 150 S0 o 10 S0 o 10 oo B0 00 150 S 100 150
BankHeist 1800 Berzerk 55 Bowling 100, % 700 Breakout
1600 50 80 600 |-
00
1300 i
5000 5000 as 0 B 500
1200 4 ; w©
600 0000 |- . 1 1000 a0 L4 H a00
0000 2
5000 800 35 300
0
00 g
y 0 4 200
t -
200 5000 w00 W 20
5000 200 2 40 100
0 20, i -
S0 100 150 S0 W0 150 S0 o 150 S0 o 10 o oo 150 00 150 5% 100 150
000 carnival Centipede ChopperCommand CrazyClimber DemonAttack 15 DoubleDunk ElevatorAction
9000 160000 1 10 0000
5000 0000 0000
8000 f10000. \ s 0000
4000} 8000
7000 i 0 0000
0000 : :
6000 6000 000
0000 I
5000 -10 0000
2000 a000 000 0000 MW
-1
0000 ;
1000 | 2000 0000 o
3000 0000 : -20 0000
50 100 150 50 100 150 °, 5 100 150 100 150 100 150 5 100 150
Enduro FishingDerby s Freeway 000 Frostbite Gopher Gravitar Hero
20f 30 . 7000 M £oo
2000
B 000 L Y 70| 5000
w00 00 0000
1500 | "
-20 20 M 500 v 5000
4000 T a
a0 s 400 f 0000
1000 3000 U
300 5000
10 2000 5000
500 , 00} ff f
-8 s H 1000 100 5000
50 100 150 50 100 150 50 100 150 °, 5 100 150 100 150 100 150 E 100 150
2 IceHockey 6000 o Kangaroo Krull KungFuMaster 800
o0 s000 hoooo. 700
ol i 5000 8000 AT AT 5000 600
" M 7000
4000 0000 w0
6000 ;]
000 5000
10 3000 ! 400
5000 0000
o y. wool o0
14 5000 4000 200
Al 2000
1000
16 2000 000 100
18) . i 2000,) W
56100 150 S0 100 150 %o 100 130 % 100 10 o6 130 00 150 5 100 150
6000 MsPacman NameThisGame Phoenix ° Pitfall 30 Pong 4500 Pooyan PrivateEye
s000]- 2000 0000 1 “ 4000 s000
5000 U’ 3500 | Wt
A i - 4 0000
4000 -) 0000 a 3000
8000 5000 1 2500 5000
3000
000 0000 / 2000 /
N |
2000 1 5000 My 1500
4000 5000
0000 1000 A
2000 H 5000 500
o i 0
56 100 150 50 100 150 S 100 130 030100 130 6 130 00 150 5% 100 150
25000 Qbert Riverraid . Robotank Seaquest skiing 2000 Solaris
480000
o000 y boooo 50 /(W"'{W /.u« 2500
5000 0000
0000
0000 w0 P | J i l 2000
13000]- 1 ool)A ! !
0000 0000 30 | 4000 1500
150000 !
10000 |- 6000l !
0000 2 ! ; Boooo J f 1000
5000 . i
5000} 1 0000 10 v 0000 oo
0 0
56 100 150 S w0 150 EES T 6 o 10 S0 100 150 S5 100 150 S5 100 150
18000 Spacelnvaders StarGunner 0 Tennis. 9000 TimePilot 200 Tutankham UpNDown Venture

16000] 0000 a000]t
20 250 1

14000 ! 7000 |

12000 | 10 s000 200 a000 w00

10000 0000 5000 WW ‘
o 150 ; 000 00 Ly el
000 I 0000 4000 WAV
000 0000 -10 3000 100 : 4000 , 400
4000} 0000 2000
—20 ; 50 ; : 2000 : ; 200
2000 1000 !
30, 0 0 1
56 100 150 ST 6 o B0 E T S5 100 150 S5 100 150
600000 VideoPinball YarsRevenge Zaxxon
13000
500000 0000
e o c51
2 400000 i 8000 1
£ 0000
£ 300000 000 8000
& 6000 A b DeepMDP
£ 200000 4000 » p
= 4000
100000 | 2000

2000

50 0 15
Number of Frames (x 1 million)

Figure 13. Learning curves of C51 and C51 + DeepMDP auxiliary task objectives (labeled DeepMDP) on Atari 2600 games.

DeepMDP: Learning Continuous Latent Space Models for Representation Learning

Game Name C51 DeepMDP
AirRaid 11544.2 10274.2
Alien 4338.3 6160.7
Amidar 1304.7 1663.8
Assault 4133.4 5026.2
Asterix 343210.0 452712.7
Asteroids 1125.4 1981.7
Atlantis 844063.3 906196.7
BankHeist 861.3 937.0
BattleZone 31078.2 34310.2
BeamRider 19081.0 16216.8
Berzerk 1250.9 1799.9
Bowling 51.4 56.3
Boxing 97.3 98.2
Breakout 584.1 672.8
Carnival 4877.3 5319.8
Centipede 9092.1 9060.9
ChopperCommand 10558.8 9895.7
CrazyClimber 158427.7 173043.1
DemonAttack 111697.7 119224.7
DoubleDunk 6.7 -9.3
ElevatorAction 73943.3 37854.4
Enduro 1905.3 2197.8
FishingDerby 25.4 33.9
Freeway 33.9 33.9
Frostbite 5882.9 7367.3
Gopher 15214.3 21017.2
Gravitar 790.4 838.3
Hero 36420.7 40563.1
IceHockey -3.5 -4.1
Jamesbond 1776.7 5181.1
JourneyEscape -1856.1 -1337.1
Kangaroo 8815.5 9714.9
Krull 8201.5 8246.9
KungFuMaster 37956.5 42692.7
MontezumaRevenge 14.7 770.7
MsPacman 4597.8 5282.5
NameThisGame 13738.7 14064.6
Phoenix 20216.7 45565.1
Pitfall 9.8 -0.8
Pong 20.8 20.8
Pooyan 4052.7 4431.1
PrivateEye 28694.0 11223.8
Qbert 23268.6 23538.7
Riverraid 17845.1 19934.7
RoadRunner 57638.5 59152.2
Robotank 57.4 51.3
Seaquest 226264.0 230881.6
Skiing -15454.8 -16478.0
Solaris 2876.7 2506.8
SpacelInvaders 12145.8 16461.2
StarGunner 38928.7 78847.6
Tennis 22.6 22.7
TimePilot 8340.7 8345.6
Tutankham 259.3 256.9
UpNDown 10175.5 10930.6
Venture 1190.1 755.4
VideoPinball 668415.7 633848.8
WizardOfWor 2926.0 11846.1
YarsRevenge 39502.9 44317.8
Zaxxon 7436.5 14723.0

Table 2. DeepMDP versus C51 returns. For both agents, we report the max average score achieved across all training iterations (each

training iteration is 1 million frames).

