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Abstract
Many reinforcement learning (RL) tasks provide
the agent with high-dimensional observations that
can be simplified into low-dimensional continu-
ous states. To formalize this process, we introduce
the concept of a DeepMDP, a parameterized latent
space model that is trained via the minimization
of two tractable latent space losses: prediction
of rewards and prediction of the distribution over
next latent states. We show that the optimization
of these objectives guarantees (1) the quality of
the embedding function as a representation of the
state space and (2) the quality of the DeepMDP as
a model of the environment. Our theoretical find-
ings are substantiated by the experimental result
that a trained DeepMDP recovers the latent struc-
ture underlying high-dimensional observations on
a synthetic environment. Finally, we show that
learning a DeepMDP as an auxiliary task in the
Atari 2600 domain leads to large performance
improvements over model-free RL.

1. Introduction
In reinforcement learning (RL), it is typical to model the en-
vironment as a Markov Decision Process (MDP). However,
for many practical tasks, the state representations of these
MDPs include a large amount of redundant information and
task-irrelevant noise. For example, image observations from
the Arcade Learning Environment (Bellemare et al., 2013a)
consist of 33,600-dimensional pixel arrays, yet it is intu-
itively clear that there exist lower-dimensional approximate
representations for all games. Consider PONG; observing
only the positions and velocities of the three objects in the
frame is enough to play. Converting each frame into such
a simplified state before learning a policy facilitates the
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learning process by reducing the redundant and irrelevant
information presented to the agent. Representation learn-
ing techniques for reinforcement learning seek to improve
the learning efficiency of existing RL algorithms by doing
exactly this: learning a mapping from states to simplified
states.

Bisimulation metrics (Ferns et al., 2004; 2011) define two
states to be behaviourally similar if they (1) produce the
close immediate reward and (2) they transition to states
which themselves are behaviourally similar. Bisimulation
metrics have been used reduce the dimensionality of the
state space by aggregating states (a form of representation
learning) but have not received much attention due to their
high computational cost. Furthermore, state aggregation
techniques, whether based on bisimulation or other methods
(Abel et al., 2017; Li et al., 2006; Singh et al., 1995; Givan
et al., 2003; Jiang et al., 2015; Ruan et al., 2015), suffer
from poor compatibility with function approximation meth-
ods. Instead, to support stochastic gradient descent-based
training procedures we explore the use of continuous la-
tent representations. Specifically, for any MDP, we propose
utilizing the latent space of its corresponding DeepMDP.

A DeepMDP is a latent space model of an MDP which has
been trained to minimize two tractable losses: predicting
the rewards and predicting the distribution of next latent
states. DeepMDPs can be viewed as a formalization of re-
cent works which use neural networks to learn latent space
models of the environment (Ha & Schmidhuber, 2018; Oh
et al., 2017; Hafner et al., 2018). The state of a DeepMDP
can be interpreted as a representation of the original MDP’s
state, and doing so reveals a profound theoretical connection
to bisimulation. We show that minimization of the Deep-
MDP losses guarantees that two non-bisimilar states can
never be collapsed into a single representation. Additionally,
this guarantees that value functions in the DeepMDP are
good approximations of value functions in the original task
MDP. These results serve not only provide a theoretically-
grounded approach to representation learning but also repre-
sent a promising first step towards principled latent-space
model-based RL algorithms.

In a synthetic environment, we show that a DeepMDP learns
to recover the low-dimensional latent structure underlying



DeepMDP: Learning Continuous Latent Space Models for Representation Learning

high-dimensional observations. We then demonstrate that
learning a DeepMDP as an auxiliary task to model-free RL
in the Atari 2600 environment (Bellemare et al., 2013b)
leads to significant improvement in performance when com-
pared to a baseline model-free method.

2. Background
Define a Markov Decision Process (MDP) in standard fash-
ion:M “ xS,A,R,P, γy (Puterman, 1994). For simplic-
ity of notation we will assume that S and A are discrete
spaces unless otherwise stated. A policy π defines a distri-
bution over actions conditioned on the state, πpa|sq. Denote
by Π the set of all stationary policies. The value function
of a policy π P Π at a state s is the expected sum of future
discounted rewards by running the policy from that state.
V π : S Ñ R is defined as:

V πpsq “ E
at„πp¨|stq

st`1„Pp¨|st,atq

«

8
ÿ

t“0

γtRpst, atq|s0 “ s

ff

.

The action value function is similarly defined:

Qπps, aq “ E
at„πp¨|stq

st`1„Pp¨|st,atq

«

8
ÿ

t“0

γtRpst, atq|s0 “ s, a0 “ a

ff

We denote π˚ as the optimal policy inM; i.e., the policy
which maximizes expected future reward. We denote the
optimal state and action value functions with respect to π˚

as V ˚, Q˚. We denote the stationary distribution of a policy
π inM by dπ; i.e.,

dπpsq “
ÿ

9sPS, 9aPA
Pps| 9s, 9aqπp 9a| 9sqdπp 9sq d 9a

The state-action stationary distribution is given by
ξπps, aq “ dπpsqπpa|sq. Although only non-terminating
MDPs have stationary distributions, a state distribution for
terminating MDPs with similar properties exists (Gelada &
Bellemare, 2019).

2.1. Wasserstein Distance

For two distribution P and Q defined on a metric space
xχ, dy, the optimal transport problem (Villani, 2008) studies
how to transform the probability mass of P into Q with the
minimum cost, where the cost of a particle from point x to
y comes from a metric dpx, yq. The Wasserstein-1 metric
between P and Q, denoted by W pP,Qq, is the minimal
possible cost of such a transport.
Definition 1. Let d be any metric. The Wasserstein-1 metric
W between distributions P and Q is defined as

Wd pP,Qq “ inf
λPΓpP,Qq

ż

dpx, yqλpx, yq dx dy.

where ΓpP,Qq denotes the set of all couplings of P and Q.

When it’s clear what the underlying metric is, we will simply
write W . The Wasserstein has an equivalent dual form
(Mueller, 1997):

Wd pP,Qq “ sup
fPFd

| E
x„P

fpxq ´ E
y„Q

fpyq|, (1)

where Fd is the set of absolutely continuous 1-Lipschitz
functions:

Fd “ tf : |fpxq ´ fpyq| ď dpx, yqu.

The Wasserstein metric can be extended to pseudometrics.
A pseudometric d satisfies all the properties of a metric ex-
cept identity of indiscernibles, dpx, yq “ 0 ô x “ y. The
kernel of a pseudometric is the equivalence relation defined
for all states where the pseudometric is 0. Note how the
triangle inequality of the pseudometric ensures the kernel
is a valid equivalence satisfying the associative property.
Intuitively, using a pseudometric for the Wasserstein can be
interpreted letting points that are different be equivalent un-
der the pseudometric and thus, requiring no transportation.

Central to the results in this work is the connection between
the Wasserstein metric and Lipschitz smoothness. The fol-
lowing property, trivially derived from the dual form of
the Wasserstein distance, will be used throughout. For any
K-Lipschitz function f ,

| E
x„P

fpxq ´ E
y„Q

fpyq| ď K ¨W pP,Qq (2)

2.2. Lipschitz MDPs

Several works have studied Lipschitz smoothness con-
straints on the transition and reward functions (Hinderer,
2005; Asadi et al., 2018), to provide conditions for value
functions to be Lipschitz. Closely following their formula-
tion, we define Lipschitz MDPs as follows:

Definition 2. LetM “ xS,A,R,P, γy be an MDP with a
continuous, metric state space pS, dSq, where dS : SˆS Ñ
R`, and a discrete action spaceA. We sayM is pKR,KP q-
Lipschitz if, for all s1, s2 P S and a P A:

|Rps1, aq ´Rps2, aq| ď KRdSps1, s2q

W pPp¨|, s1, aq,Pp¨|s2, aqq ď KPdSps1, s2q

From here onwards, we will we restrict our attention to
the set of Lipschitz MDPs for which the constant KP is
sufficiently small, as stated in the following assumption.

Assumption 1. The Lipschitz constant KP of the transition
function P is strictly smaller than 1

γ .

From a practical standpoint, Assumption 1 is relatively
strong, but simplifies our analysis by ensuring that close
states cannot have future trajectories that are “divergent.”
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An MDP might not exhibit divergent behaviour even when
K

sP ě 1
γ . In particular, when episodes terminate after a

finite amount of time, Assumption 1 becomes unnecessary.
We leave as future work how to improve on this assumption.

The main use of Lipschitz MDPs will be to study the Lips-
chitz properties of value functions.1

Definition 3. A policy π P Π is KV -Lipschitz-valued if for
all s1, s2 P S and a, a P A:

|V πps1q ´ V
πps2q| ď KV dSps1, s2q

|Qπps1, aq ´Q
πps2, aq| ď KV dSps1, s2q

Lipschitz MDPs allow us to provide a simple condition for
a policy to have a Lipschitz value function.

Lemma 1. LetM be pKR,KP q-Lipschitz and let π be any
policy with the property that @s1, s2 P S,

|V πps1q ´ V
πps2q| ď max

aPA
|Qπps1, aq ´Q

πps2, aq|

then π is KR
1´γKP

-Lipschitz-valued.

Proof. See the Appendix for all proofs.

This defines a rich set of Lipschitz-Valued policies. Notably,
the optimal policy π˚ satisfies the condition of Lemma 1.

Corollary 1. Let M be pKR,KP q-Lipschitz, then π˚ is
KR

1´γKP
-Lipschitz-Valued.

2.3. Latent Space Models

For some MDPM, let ĎM “ x sS,A, sR, sP, γy be an MDP
where sS Ă RD for finiteD and the action spaceA is shared
between M and ĎM. Furthermore, let φ : S Ñ sS be an
embedding function which connects the state spaces of these
two MDPs. We refer to pĎM, φq as a latent space model of
M.

Since ĎM is, by definition, an MDP, value functions can
be defined in the standard way. We use sV sπ, sQsπ to denote
the value functions of a policy sπ P sΠ, where sΠ is the set
of policies defined on the state space sS. We use sπ˚ to
denote the optimal policy in ĎM. The corresponding optimal
state and action value functions are then sV ˚, sQ˚. For ease
of notation, when s P S, we use sπp¨|sq :“ sπp¨|φpsqq to
denote first using φ to map s to the state space S of ĎM and
subsequently using sπ to generate the probability distribution
over actions.

Although similar definitions of latent space models have
been previously studied (Francois-Lavet et al., 2018; Zhang

1Another benefit of MDP smoothness is improved learning dy-
namics. Pirotta et al. (2015) suggest that the smaller the Lipschitz
constant of an MDP, the faster it is to converge to a near-optimal
policy.

et al., 2018; Ha & Schmidhuber, 2018; Oh et al., 2017;
Hafner et al., 2018; Kaiser et al., 2019; Silver et al., 2017),
the parametrizations and training objectives used to learn
such models have varied widely. For example Ha & Schmid-
huber (2018); Hafner et al. (2018); Kaiser et al. (2019)
use pixel prediction losses to learn the latent representa-
tion while (Oh et al., 2017) chooses instead to optimize
the model to predict next latent states with the same value
function as the sampled next states.

In this work, we study the minimization of latent space
losses defined with respect to rewards and transitions in the
latent space:

L
sRps, aq “ |Rps, aq ´ sRpφpsq, aq| (3)

L
sPps, aq “W

`

φPp¨|s, aq, sPp¨|φpsq, aq
˘

(4)

where we use the shorthand notation φPp¨|s, aq to denote
the probability distribution over sS of first sampling s1 „
Pp¨|s, aq and then embedding ss1 “ φps1q. Francois-Lavet
et al. (2018) and Chung et al. (2019) have studied similar
latent losses, but to the best of our knowledge ours is the
first theoretical analysis of latent space models as auxiliary
losses.

We use the term DeepMDP to refer to a parameterized
latent space model which minimizes the latent losses L

sR
and L

sP (sometimes referred to as the DeepMDP losses). In
Section 3, we derive theoretical guarantees of DeepMDPs
when minimizing the DeepMDP losses over the whole state
space (which we term global optimization). However, our
principal objective is to learn DeepMDPs parameterized
by deep networks, which requires losses in the form of
expectations. We show in Section 4 that similar theoretical
guarantees can be obtained in this setting.

3. Global DeepMDP Bounds
We refer to the following losses as the global DeepMDP
losses, to emphasize their dependence on the whole state
and action space:2

L8
sR “ sup

s,a
L

sRps, aq (5)

L8
sP “ sup

s,a
L

sPps, aq (6)

3.1. Value Difference Bound

We start by bounding the difference of the value functions
Qsπ and sQsπ for any policy sπ P sΠ. Note that Qsπps, aq
is computed using P and R on S while sQsπpφpsq, aq is
computed using sP and sR on sS.

Lemma 2. Let M and ĎM be an MDP and DeepMDP
respectively, with an embedding function φ and global loss

2The 8 notation is a reference to the `8 norm
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functions L8
sR and L8

sP . For any K
sV -Lipschitz-valued policy

sπ P sΠ the value difference can be bounded by

ˇ

ˇQsπps, aq ´ sQsπpφpsq, aq
ˇ

ˇ ď
L8

sR ` γK sV L
8
sP

1´ γ
,

The previous result holds for all policies sΠ Ď Π, a subset
of all possible policies Π. The reader might ask whether
this is an interesting set of policies to consider; in Section
5, we characterize this set of policies via a connection with
bisimulation.

A similar bound can be found in Asadi et al. (2018), who
study non-latent transition models with the use of an exact
reward function. We also note that our results are arguably
simpler, since we do not require the treatment of MDP tran-
sitions in terms of distributions over a set of deterministic
components.

3.2. Representation Quality Bound

When a representation is used to predict value functions
of policies sπ P sΠ, a clear failure case is when two states
with different value functions are collapsed to the same
representation. The following result demonstrates that when
the global DeepMDP losses L8

sR “ 0 and L8
sP “ 0, this

failure case can never occur for the embedding function φ.

Theorem 1. Let M and ĎM be an MDP and DeepMDP
respectively, with an embedding function φ and global loss
functions L8

sR and L8
sP . For any K

sV -Lipschitz-valued policy
sπ P sΠ the representation φ guarantees that for any s1, s2 P

S and a P A,

ˇ

ˇQsπps1, aq ´Q
sπps2, aq

ˇ

ˇ ď K
sV }φps1q ´ φps2q}2

` 2

`

L8
sR ` γK sV L

8
sP

˘

1´ γ

This result justifies using the embedding function φ as a
representation to predict values.

3.3. Suboptimality Bound

Although we do not make use of any form of model-based
RL in this work, we bound the performance loss of running
the optimal policy of ĎM inM, compared to the optimal
policy π˚.

Theorem 2. LetM and ĎM be an MDP and a pKR,KP q-
Lipschitz DeepMDP respectively, with an embedding func-
tion φ and global loss functions L8

sR and L8
sP . For all s P S ,

the suboptimality of the optimal policy sπ˚ of ĎM evaluated
onM can be bounded by,

V ˚psq ´ V sπ˚psq ď 2
L8

sR ` γK sV L
8
sP

1´ γ

Where K
sV “

K
ĎR

1´γK
ĎP

is an upper bound to the Lipschitz

constant of the value function sV sπ˚ , as shown by Corol-
lary 1.

4. Local DeepMDP Bounds
In large-scale tasks, data from many regions of the state
space is often unavailable,3 making it infeasible to measure
– let alone optimize – global losses. Further, when the ca-
pacity of a model is limited, or when sample efficiency is a
concern, it might not even be desirable to precisely learn a
model of the whole state space. Interestingly, we can still
provide similar guarantees based on the DeepMDP losses,
as measured under an expectation over a state-action distri-
bution, denoted here as ξ. We refer to these as the losses
local to ξ. Taking Lξ

sR, Lξ
sP to be the reward and transition

losses under ξ, respectively, we have the following local
DeepMDP losses:

Lξ
sR “ E

s,a„ξ
|Rps, aq ´ sRpφpsq, aq|, (7)

Lξ
sP “ E

s,a„ξ

“

W
`

φPp¨|s, aq, sPp¨|φpsq, aq
˘‰

. (8)

Losses of this form are compatible with the stochastic gradi-
ent decent methods used by neural networks. Thus, study of
the local losses allows us to bridge the gap between theory
and practice.

4.1. Value Difference Bound

We provide a value function bound for the local case, analo-
gous to Lemma 2.

Lemma 3. Let M and ĎM be an MDP and DeepMDP
respectively, with an embedding function φ. For any K

sV -
Lipschitz-valued policy sπ P sΠ, the expected value function
difference can be bounded using the local loss functions
Lξsπ

sR and Lξsπ
sP measured under ξ

sπ , the stationary state action
distribution of sπ.

E
s,a„ξ

sπ

ˇ

ˇQsπps, aq ´ sQsπpφpsq, aq
ˇ

ˇ ď

´

Lξsπ
sR ` γK

sV L
ξ
sπ
sP

¯

1´ γ
,

The provided bound guarantees that for any policy sπ P sΠ
which visits state-action pairs ps, aq where L

sRps, aq and
L

sPps, aq are small, the DeepMDP will provide accurate
value functions for any states likely to be seen under the
policy. 4

3Challenging exploration environments like Montezuma’s Re-
venge are a prime example.

4The value functions might be inaccurate in states that the
policy sπ rarely visits.
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4.2. Representation Quality Bound

We can also extend the local value difference bound to
provide a local bound on how well the representation φ can
be used to predict the value function of a policy π̄ P Π̄,
analogous to Theorem 1.
Theorem 3. Let M and ĎM be an MDP and DeepMDP
respectively, with an embedding function φ. Let sπ P sΠ be
any K

sV -Lipschitz-valued policy with stationary distribution
d
sπpsq and let Lξsπ

sR and Lξsπ
sP be the local loss functions mea-

sured under ξ
sπ, the stationary state action distribution of

sπ. For any two states s1, s2 P S, the local representation
similarity can be bounded by

|V sπps1q ´ V
sπps2q| ď K

sV }φps1q ´ φps2q}2

`
Lξsπ

sR ` γK
sV L

ξ
sπ
sP

1´ γ

ˆ

1

d
sπps1q

`
1

d
sπps2q

˙

Thus, the representation quality argument given in 3.2 holds
for any two states s1 and s2 which are visited often by a
policy sπ.

5. Connection to Bisimulation
As we will now see, the representation learned by optimizing
the DeepMDP losses is closely connected to bisimulation.
Givan et al. (2003) first studied bisimulation relations in the
context of RL as a formalization of behavioural equivalence
between states. They proposed grouping equivalent states
to reduce the dimensionality of the MDP.
Definition 4 (Givan et al. (2003)). Given an MDPM, an
equivalence relation B between states is a bisimulation
relation if for all states s1, s2 P S equivalent under B (i.e.
s1Bs2), the following conditions hold,

Rps1, aq “ Rps2, aq

PpG|s1, aq “ PpG|s2, aq,@G P S{B

Where S{B denotes the partition of S under the rela-
tion B, the set of all sets of equivalent states, and where
PpG|s, aq “

ř

s1PG Pps1|s, aq.

Essentially, two states are bisimilar if (1) they have the same
immediate reward for all actions and (2) both of their distri-
butions over next-states contain states which themselves are
bisimilar. Of particular interest is the maximal bisimulation
relation „, which defines the partition S{ „ with the fewest
elements.

A drawback of bisimulation relations is their all-or-nothing
nature. Two states that are nearly identical, but differ slightly
in their reward or transition functions, are treated as though
they were just as unrelated as two states with nothing in
common. Ferns et al. (2004) introduced the usage of bisimu-
lation metrics, which are pseudometrics that to quantify the

behavioural similarity of two discrete states, and proposed
the aggregation of states that are ε away under the bisim-
ulation metric. We present the extension of bisimulation
metrics to continuous state spaces as proposed in Ferns et al.
(2011).

Definition 5. Given an MDPM, a bisimulation metric rd
satisfies the fixed point:

rdps1, s2q “ max
a
p1´ γq |Rps1, aq ´Rps2, aq|

` γW
rdpPp¨|s1, aq,Pp¨|s2, aqq

This recurrent formulation of bisimulation metrics has a
single fixed point rd, which has as its kernel the maximal
bisimulation relation „ (i.e. rdps1, s2q “ 0 ðñ s1 „ s2).

We show a connection between bisimulation metrics and
the representation φ learned by the global DeepMDP losses
(see Lemma 5 in Appendix). The main application of this
result will be to characterize the set of policies sΠ. With
that aim, we first define the concept of Lipschitz-bisimilar
policies:

Definition 6. We denote by rΠK the set of K-Lipschitz-
bisimilar policies, s.t. for all s1, s2 P S, a P A,

tπ : π P Π, |πpa|s1q ´ πpa|s2q| ď K rdps1, s2qu.

Lipschitz-bisimilar policies act differently only on states that
are different under the bisimulation metric: rΠ excludes any
policies which act differently on states that are fundamen-
tally equivalent. We guarantee that the set of deep policies
is sufficiently expressive by showing that minimizing the
global DeepMDP losses ensures that for any rπ P rΠK , there
is a deep policy sΠ which is close. The following result thus
characterizes the set of policies sΠ:

Theorem 4. LetM be an MDP and ĎM be a (K
sR, K

sP )-
Lipschitz DeepMDP, with an embedding function φ, and
global loss functions L8

sR and L8
sP . Denote by sΠK the

set of K-Lipschitz deep policies tsπ : sπ P sΠ, |sπpa|s1q ´

sπpa|s2q| ď K }φps1q ´ φps2q}2 ,@s1, s2 P S, a P Au. Fi-
nally define the constant C “

p1´γqKR
1´γK

ĎP
. Then for any

rπ P rΠK there exists a sπ P sΠCK which is close to rπ in the
sense that, for all s P S and a P A,

|rπpa|sq ´ sπpa|sq| ď L8
sR ` γL

8
sP

K
sR

1´ γK
sP

We speculate that similar results should be possible based
on local DeepMDP losses, but they would require a general-
ization of bisimulation metrics to the local setting.

Although bisimulation metrics have been used for state ag-
gregation (Givan et al., 2003; Ferns et al., 2004; Ruan et al.,
2015), feature discovery (Comanici & Precup, 2011) and
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transfer learning between MDPs (Castro & Precup, 2010),
they have not been scaled up to modern deep reinforcement
learning techniques. In that sense, our method is of indepen-
dent interest as a practical representation learning scheme
for deep reinforcement learning that provides the desirable
properties of bisimulation metrics via learning objectives
that are tractable to compute.

6. Related Work
We have shown that learning a DeepMDP via the minimiza-
tion of latent space losses leads to representations that:

• Allow for the good approximation of a large set of
interesting policies.

• Allow for the good approximation of the value func-
tion of these policies.

Thus, DeepMDPs are a mathematically sound approach to
representation learning that is compatible with neural nets
and simple to implement.

A similar connection between the quality of representations
and model based objectives in the linear setting was made
by Parr et al. (2008). There exists an extensive body of
literature on exploiting the transition function structure for
representation learning (Mahadevan & Maggioni, 2007; Bar-
reto et al., 2017), but these works do not rely on the reward
function. Recently, Bellemare et al. (2019) approached the
representation learning problem from the perspective that a
good representation is one that allows the prediction via a lin-
ear map of any possible value function in the value function
polytope (Dadashi et al., 2019). Other auxiliary tasks, with-
out the same level of theoretical justification, been shown
to improve the performance of RL agents (Jaderberg et al.,
2016; van den Oord et al., 2018; Mirowski et al., 2017). Lyle
et al. (2019) argued that the performance benefits of Distri-
butional RL (Bellemare et al., 2017a) can also be explained
as a form of auxiliary task.

7. Empirical Evaluation
Our results depend on minimizing losses in expectation,
which is the main requirement for deep networks to be
applicable. Still, two main obstacles arise when turning
these theoretical results into practical algorithms:

(1) Minimization of the Wasserstein Arjovsky et al.
(2017) first proposed the use of the Wasserstein distance
for Generative Adversarial Networks (GANs) via its dual
formulation (see Equation 1). Their approach consists of
training a network, constrained to be 1-Lipschitz, to at-
tain the supremum of the dual. Once this supremum is
attained, the Wasserstein can be minimized by differenti-
ating through the network. Quantile regression has been

proposed as an alternative solution to the minimization
of the Wasserstein (Dabney et al., 2018b), (Dabney et al.,
2018a), and has shown to perfom well for Distributional
RL. The reader might note that issues with the stochastic
minimization of the Wasserstein distance have been found
by Bellemare et al. (2017b) and Bikowski et al. (2018).
In our experiments, we circumvent these issues by assum-
ing that both P and sP are deterministic. This reduces
the Wasserstein distance W

`

φPp¨|s, aq, sPp¨|φpsq, aq
˘

to
›

›φpPps, aqq ´ sPpφpsq, aq
›

›

2
, where Pps, aq and sPpss, aq de-

note the deterministic transition functions.

(2) Control the Lipschitz constantsK
sR andK

sP . We also
turn to the field of Wasserstein GANs for approaches to con-
strain deep networks to be Lipschitz. Originally, Arjovsky
et al. (2017) used a projection step to constraint the discrim-
inator function to be 1-Lipschitz. Gulrajani et al. (2017a)
proposed using a gradient penalty, and sowed improved
learning dynamics. Lipschitz continuity has also been pro-
posed as a regularization method by Gouk et al. (2018),
who provided an approach to compute an upper bound to
the Lipschitz constant of neural nets. In our experiments,
we follow Gulrajani et al. (2017a) and utilize the gradient
penalty.

7.1. DonutWorld Experiments

In order to evaluate whether we can learn effective repre-
sentations, we study the representations learned by Deep-
MDPs in a simple synthetic environment we call Donut-
World. DonutWorld consists of an agent rewarded for run-
ning clockwise around a fixed track. Staying in the center of
the track results in faster movement. Observations are given
in terms of 32x32 greyscale pixel arrays, but there is a sim-
ple 2D latent state space (the x-y coordinates of the agent).
We investigate whether the x-y coordinates are correctly
recovered when learning a two-dimensional representation.

This task epitomizes the low-dimensional dynamics, high-
dimensional observations structure typical of Atari 2600
games, while being sufficiently simple to experiment with.
We implement the DeepMDP training procedure using Ten-
sorflow and compare it to a simple autoencoder baseline.
See Appendix B for a full environment specification, ex-
perimental setup, and additional experiments. Code for
replicating all experiments is included in the supplementary
material.

In order to investigate whether the learned representations
learned correspond well to reality, we plot a heatmap of
closeness of representation for various states. Figure 1(a)
shows that the DeepMDP representations effectively recover
the underlying state of the agent, i.e. its 2D position, from
the high-dimensional pixel observations. In contrast, the
autoencoder representations are less meaningful, even when
the autoencoder solves the task near-perfectly.
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(a) One-track DonutWorld.

(b) Four-track DonutWorld.

Figure 1. Given a state in our DonutWorld environment (first row),
we plot a heatmap of the distance between that latent state and each
other latent state, for both autoencoder representations (second
row) and DeepMDP representations (third row). More-similar
latent states are represented by lighter colors.

In Figure 1(b), we modify the environment: rather than a
single track, the environment now has four identical tracks.
The agent starts in one uniformly at random, and cannot
move between tracks. The DeepMDP hidden state correctly
merges all states with indistinguishable value functions,
learning a deep state representation which is almost com-
pletely invariant to which track the agent is in.

7.2. Atari 2600 Experiments

In this section, we demonstrate practical benefits of ap-
proximately learning a DeepMDP in the Arcade Learn-
ing Environment (Bellemare et al., 2013a). Our results on
representation-similarity indicate that learning a DeepMDP
is a principled method for learning a high-quality repre-
sentation. Therefore, we minimize DeepMDP losses as an
auxiliary task alongside model-free reinforcement learning,
learning a single representation which is shared between
both tasks. Our implementations of the proposed algorithms
are based on Dopamine (Castro et al., 2018).

We adopt the Distributional Q-learning approach to model-
free RL; specifically, we use as a baseline the C51 agent
(Bellemare et al., 2017a), which estimates probability

masses on a discrete support and minimizes the KL di-
vergence between the estimated distribution and a target
distribution. C51 encodes the input frames using a convo-
lutional neural network φ : S Ñ sS, outputting a dense
vector representation ss “ φpsq. The C51 Q-function is a
feed-forward neural network which maps ss to an estimate
of the reward distribution’s logits.

To incorporate learning a DeepMDP as an auxiliary learning
objective, we define a deep reward function and deep transi-
tion function. These are each implemented as a feed-forward
neural network, which uses ss to estimate the immediate re-
ward and the next-state representation, respectively. The
overall objective function is a simple linear combination of
the standard C51 loss and the Wasserstein distance-based ap-
proximations to the local DeepMDP loss given by Equations
7 and 8. For experimental details, see Appendix C.

By optimizing φ to jointly minimize both C51 and Deep-
MDP losses, we hope to learn meaningful ss that form the
basis for learning good value functions. In the following
subsections, we aim to answer the following questions: (1)
How does the learning of a DeepMDP affect the overall
performance of C51 on Atari 2600 games? (2) How do the
DeepMDP objectives compare with similar representation-
learning approaches?

7.3. DeepMDPs as an Auxiliary Task

We show that when using the best performing DeepMDP
architecture described in Appendix C.2, we obtain nearly
consistent performance improvements over C51 on the suite
of 60 Atari 2600 games (see Figure 2).

7.4. Comparison to Alternative Objectives

We empirically compare the effect of the DeepMDP aux-
illiary objectives on the performance of a C51 agent to a
variety of alternatives. In the experiments in this section, we
replace the deep transition loss suggested by the DeepMDP
bounds with each of the following:

(1) Observation Reconstruction: We train a state decoder
to reconstruct observations s P S from ss. This framework
is similar to (Ha & Schmidhuber, 2018), who learn a la-
tent space representation of the environment with an auto-
encoder, and use it to train an RL agent.

(2) Next Observation Prediction: We train a transition model
to predict next observations s1 „ Pp¨|s, aq from the current
state representation ss. This framework is similar to model-
based RL algorithms which predict future observations (Xu
et al., 2018).

(3) Next Logits Prediction: We train a transition model to
predict next-state representations such that the Q-function
correctly predicts the logits of ps1, a1q, where a1 is the ac-
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Figure 2. We compare the DeepMDP agent versus the C51 agent on the 60 games from the ALE (3 seeds each). For each game, the
percentage performance improvement of DeepMDP over C51 is recorded.

Figure 3. Using various auxiliary tasks in the Arcade Learning Environment. We compare predicting the next state’s representation (Next
Latent State, recommended by theoretical bounds on DeepMDPs) with reconstructing the current observation (Observation), predicting
the next observation (Next Observation), and predicting the next C51 logits (Next Logits). Training curves for a baseline C51 agent are
also shown.

tion associated with the max Q-value of s1. This can be
understood as a distributional analogue of the Value Pre-
diction Network, VPN, (Oh et al., 2017). Note that this
auxiliary loss is used to update only the parameters of the
representation encoder and the transition model, not the
Q-function.

Our experiments demonstrate that the deep transition loss
suggested by the DeepMDP bounds (i.e. predicting the next
state’s representation) outperforms all three ablations (see
Figure 3). Accurately modeling Atari 2600 frames, whether
through observation reconstruction or next observation pre-
diction, forces the representation to encode irrelevant in-
formation with respect to the underlying task. VPN-style
losses have been shown to be helpful when using the learned
predictive model for planning (Oh et al., 2017); however,
we find that with a distributional RL agent, using this as an
auxiliary task tends to hurt performance.

8. Conclusions
We introduce the concept of a DeepMDP: a parameterized
latent space model trained via the minimization of tractable
latent space losses. Theoretical analysis of DeepMDPs

reveals several insights. A novel connection to bisimula-
tion metrics guarantees that our analysis applies to a large
set of interesting policies. Further, the representation al-
lows the value functions of these policies can be predicted.
Together, these findings suggest a novel approach to repre-
sentation learning. Our results are corroborated by strong
performance on large-scale Atari 2600 experiments, demon-
strating that model-based DeepMDP auxiliary losses can be
useful auxiliary tasks in model-free RL. Using the transition
and reward models of the DeepMDP for model-based RL
(e.g. planning, exploration) is a promising future research
direction. Additionally, extending DeepMDPs to accommo-
date different action spaces or time scales from the original
MDPs could be a promising path towards learning hierar-
chical models of the environment.
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