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Supplements

A. Proof of Theorem 1
Following the definition, we can derive the PL for the PLA-GGM as:

`PL

(
{zi, gi}i∈[n] ; R(·),Ω0

)
∝

n∑
i=1

p∑
j=1

zij
Ωijj +

∑
j′ 6=j

Ωijj′zijzij′

− 1

2
z2ij

− 1

2

Ωijj +
∑
j′ 6=j

Ωijj′zijzij′

2
 .

Then Lemma 1 can be proved by the definition of zi,−j .

B. Proof of Lemma 2
According to the analysis in Section 3.1, we treat the PL as p partially-linear additive linear regressions. Then, for each
regression, we can derive M̂ij as the estimation to the smooth part following the rationale in (Fan et al., 2005). Combining
the results for every regression, we can derive Lemma 2.

C. Proof of Theorem 1
In this Section, we prove the

√
n-sparsistency of the L1-regularized MPPLE by following the widely-used primal-dual

witness proof technique (Wainwright, 2009; Ravikumar et al., 2010; Yang & Ravikumar, 2011; Yang et al., 2015a). PDW is
characterized by the following Lemma 3:

Lemma 3. Let Ω̂0 be an optimal solution to (5), and Ẑ be the corresponding dual solution. If Ẑ satisfies
∥∥∥ẐN∥∥∥

∞
< 1, then

any given optimal solution to (5) Ω̃0 satisfies Ω̃0I = 0. Moreover, if HSS is positive definite, then the solution to (5) is
unique.

Proof. Specifically, following the same rationale as Lemma 1 in Wainwright 2009, Lemma 1 in Ravikumar et al. 2010, and
Lemma 2 in Yang & Ravikumar 2011, we can derive Lemma 3 characterizing the optimal solution of (5).

Bound ‖∇F (Ω∗0)‖∞
Before we use the PDW, we first provide a Lemma bounding ‖∇F (Ω∗0)‖∞, which has been shown to be vital for
PDW (Wainwright, 2009; Ravikumar et al., 2010; Yang & Ravikumar, 2011; Yang et al., 2015a).

Lemma 4. Let r := 4C5λ. For any εd > 0, with probability of at least 1− εd, there exists C4 > 0 and Nd > 0 satisfying
the following two inequalities:

‖∇F (Ω∗0)‖∞ ≤ C4

√
log p

n
, (8)

∥∥∥Θ̃S −Θ∗S

∥∥∥
∞
≤ r, (9)

for n > Nd.

Proof. We prove (8) and (9) in turn.

PROOF OF (8)

To begin with, we prove (8). We define

λ∗ij = (1i − Sij)
>

xjΩ
∗
0·j .
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We use the F to denote the PPL defined in Definition 1. Then, the derivative of F (Ω∗0·j) is:

∂F (Ω∗0)

∂Ω∗0j′j
=

∑n
i=1

{
− (1i − Sij)

>
yj

[
(1i − Sij)

>
xj

]
j′

+ λ∗ij

[
(1i − Sij)

>
xj

]
j′

}
n

+

∑n
i=1

{
− (1i − Sij′)

>
yj′
[
(1i − Sij′)

>
xj′
]
j

+ λ∗ij′
[
(1i − Sij)

>
xj′
]
j

}
n

,

(10)

where [·]j denotes the jth component of the vector. For the ease of presentation, we define

y′j =


(11 − S1j)

>
yj

...
(1n − Snj)

>
yj

 and x′j =


(11 − S1j)

>
xj

...
(1n − Snj)

>
xj

 .
Then, we consider

x′j
>

x′jΩ
∗
0·j − x′j

>
y′j

n
, (11)

whose j′th component is just the target value

∑n
i=1

{
− (1i − Sij)

>
yj

[
(1i − Sij)

>
xj

]
j′

+ λ∗ij

[
(1i − Sij)

>
xj

]
j′

}
n

.

Therefore, we focus on bounding (11). Then,

x′j
>

x′jΩ
∗
0·j − x′j

>
y′j

n
=

x′j
>

x′j

[
Ω∗0·j −

(
x′j
>

x′j

)−1
x′j
>

y′j

]
n

=
x′j
>

(I− Sj) (Mj + εj)

n

,

where the second equality is due to Lemma 5.

We fist study
X′j
>(I−Sj)Mj

n : according ot Lemma 8, for any εa > 0, there exists δa > 0 and Na > 0 satisfying

P


∥∥∥∥∥x′j

>
(I− Sj) Mj

n

∥∥∥∥∥
∞

> δa

 log
(
1
h

)
nh

+ h4 + 2h2

√
log
(
1
h

)
nh

 < εa,

with n > Na.

According to Assumption 1

P

{∥∥∥∥∥x′j
>

(I− Sj) Mj

n

∥∥∥∥∥
∞

> δaC1

√
log p

n

}
< εa. (12)

Now, we study
x′j
>(I−Sj)εj

n . According to Lemma 9, we have

x′j
>

(I− Sj) εj

n
=

n∑
i=1

{
xij − E>

[
1gi′>g∗Zi,−jZ

>
i,−j | gi

]
E−1

[
12
gi′>g

∗Zi,−jZ
>
i,−j | gi

]
x̃ij

}
εij(1 + op(1))/n,
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uniformly for j. Note that
x′j
>(I−Sj)εj

n is a p× 1 vector. Therefore, for the j′th component, we have∣∣∣∣∣∣
[

x′j
>

(I− Sj) εj

n

]
j′

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i:gi≤g∗

(
1− 12

gi>g∗

)
zij′εij

∣∣∣∣∣∣ (1 + |op(1)|) /n

=
1

2n

∣∣∣∣∣∑
i=1

(
1− 12

gi>g∗
) [(zij′ + εij√

2

)2

− 1−
(
zij′ − εij√

2

)2

+ 1

]∣∣∣∣∣(1 + |op(1)|)

. (13)

It can be shown that
(
zij′+εij√

2

)2
and

(
zij′−εij√

2

)2
are independent and follow chi-squared distribution with degree equal to

1.

By Lemma 1 in (Laurent & Massart, 2000), the linear combinition of chi-squared random variables satisfies:

P

{∑
i=1

(
1− 12

gi>g∗
) [(zij′ + εij√

2

)2

− 1

]
≥ 2
√
nx+ 2εc

}
≤ exp(−εc),

P

{∑
i=1

(
1− 12

gi>g∗
) [(zij′ + εij√

2

)2

− 1

]
≤ −2

√
nx

}
≤ exp(−εc),

P

{
−
∑
i=1

(
1− 12

gi>g∗
) [(zij′ − εij√

2

)2

− 1

]
≤ −2

√
nx− 2εc

}
≤ exp(−εc),

and

P

{
−
∑
i=1

(
1− 12

gi>g∗
) [(zij′ − εij√

2

)2

− 1

]
≥ 2
√
nx

}
≤ exp(−εc),

for any εc > 0. Combing the previous four probabilistic bounds, we can derive

P

{∑
i=1

(
1− 12

gi>g∗
) [(zij′ + εij√

2

)2

− 1

]

−
∑
i=1

(
1− 12

gi>g∗
) [(zij′ − εij√

2

)2

− 1

]
≥ 4
√
nε+ 2εc

}
≤ exp(−2εc)

(14)

and

P

{∑
i=1

(
1− 12

gi>g∗
) [(zij′ + εij√

2

)2

− 1

]

−
∑
i=1

(
1− 12

gi>g∗
) [(zij′ − εij√

2

)2

− 1

]
≤ −4

√
nε− 2εc

}
≤ exp(−2εc)

. (15)

Taking (14) and (15) into (13), we can derive

P


∣∣∣∣∣∣
[

X′j
>

(I− Sj) εj

n

]
j′

∣∣∣∣∣∣ ≥
(

2

√
εc
n

+
εc
n

)
(1 + |op(1)|)

 ≤ 2 exp(−2εc). (16)

Then, by the definition of op(1), for any εb > 0, there exists Nb so that for n > Nb:

P {|op(1)| ≥ 1} ≤ εb. (17)
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Combining (16) and (17), we derive

P

{∥∥∥∥∥X′j
>

(I− Sj) Mj

n

∥∥∥∥∥
∞

≥
(

4

√
εc
n

+ 2
εc
n

)}
≤ 2p exp(−2εc) + εb, (18)

by a union bound. Eventually, according to (12) and (18), and by setting εc = 2 log p we prove:∥∥∥∥∥x′j
>

x′jΩ
∗
0·j − x′j

>
y′j

n

∥∥∥∥∥
∞

≤ (6 + δaC1)

√
2 log p

n
,

with probability larger than 1− εb − εa − 2p−1. Thus, for any εd > 0, there exists C4 > 0 and Nd > 0

‖∇F (Θ∗)‖∞ ≤ C4

√
log p

n
,

with probability larger than 1− εd, for n > Nd.

PROOF OF (9)

To prove (9), we use the fixed point method by defining a map G(∆S) := −H−1SS

[
∇SF (Ω∗0S + ∆S) + λẐS

]
+ ∆S . If

‖∆‖∞ ≤ r, by Taylor expansion of ∇SF (Ω∗0 + ∆) centered at ∇SF (Ω∗0),

‖G(∆S)‖∞=
∥∥∥−H−1SS

[
∇SF (Ω∗0S) + HSS∆S +RS(∆) + λẐS

]
+∆S

∥∥∥
∞

=
∥∥∥−H−1SS

(
∇SF (Ω∗0S) +RS(∆) + λẐS

)∥∥∥
∞

≤
∥∥H−1SS∥∥∞ (‖∇SF (Ω∗0S)‖∞ + ‖RS(∆)‖∞ + λ

∥∥∥ẐS∥∥∥
∞

)
≤C2(λ+ C3r

2 + λ) = C2C3r
2 + 2C2λ,

where the inequality is due to Assumption 4 and Assumption 5, and ‖∇SF (Θ∗)‖∞ ≤ λ with a high probability, according
to (8). Then, based on the definition of r, we can derive the upper bound of ‖G(∆S)‖∞ as ‖G(∆S)‖∞ ≤ r/2 + r/2 = r.

Therefore, according to the fixed point theorem (Ortega & Rheinboldt, 2000; Yang & Ravikumar, 2011), there exists ∆S

satisfying G(∆S) = ∆S , which indicates ∇SF (Ω∗0 + ∆) + λẐS = 0. The optimal solution to (20) is unique, and thus
∆̃S = ∆S . Therefore,

∥∥∥∆̃S

∥∥∥
∞
≤ r , with probability larger than 1− ε.

PDW

By Lemma 3, we can prove the sparsistency by building an optimal solution to (5) satisfying the strict dual feasibility (SDF)
defined as

∥∥∥ẐN∥∥∥
∞
< 1, which is summarized. Therefore, we now build a solution by solving a restricted problem.

SOLVE A RESTRICTED PROBLEM

First of all, we derive the KKT condition of (5):

∇F (Ω̂0) + λẐ = 0. (19)

To construct an optimal primal-dual pair solution, we define Ω̃0 as an optimal solution to the restricted problem:

Ω̃0 := min
Ω0

F (Ω0) + λ‖Ω0‖1, (20)

with Ω0N = 0. Ω̃0 is unique due to Lemma 3. Then, we define the subgradient corresponding to Ω̃0 as Z̃. Therefore,
(Ω̃0, Z̃) is a pair of optimal solutions to the restricted problem (20). Z̃S is determined according to the values of Ω̃0S via
the KKT conditions of (20). Thus we have

∇SF (Θ̃) + λZ̃S = 0, (21)

where ∇S represents the gradient components with respect to S. Letting Ω̂0 = Ω̃0, we determine Z̃N according to (19). It
now remains to show that Z̃N satisfies SDF.
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SDF

Now, we demonstrate that Θ̃ and Z̃ satisfy SDF. We define ∆̃ := Θ̃ − Θ∗. By (21), and by the Taylor expansion of
∇SF (Ω̃0), we have that

HSS∆̃S + ∇SF (Ω∗0) +RS(∆̃) + λZ̃S = 0,

which means
∆̃S = H−1SS

[
−∇SF (Ω∗0)−RS(∆̃)− λZ̃S

]
, (22)

where HSS is positive definite and hence invertible.

By the definition of Ω̃0 and Z̃,

∇F (Ω̃0) + λZ̃ = 0⇒∇F (Ω∗0) + H∆̃ +R(Ω̃0) + λZ̃ = 0⇒∇NF (Θ̃) + HNS∆̃S +RN (∆̃) + λZ̃N = 0. (23)

Due to (22),

λ
∥∥∥Z̃N∥∥∥

∞
=
∥∥∥−HNS∆̃S −∇NF (Ω∗0)−RN (∆̃)

∥∥∥
∞

≤
∥∥∥HNSH−1SS

[
−∇SF (Ω∗0)−RS(∆̃)− λZ̃S

]∥∥∥
∞

+
∥∥∥∇NF (Ω∗0) +RN (∆̃)

∥∥∥
∞

≤
∥∥HNSH−1SS

∥∥
∞

∥∥∥∇SF (Ω∗0) +RS(∆̃)
∥∥∥
∞

+
∥∥HNSH−1SS

∥∥
∞

∥∥∥λZ̃S

∥∥∥
∞

+
∥∥∥∇NF (Ω∗0) +RN (∆̃)

∥∥∥
∞

.

Further, we use the Assumption 4,

λ
∥∥∥Z̃N∥∥∥

∞
≤(1− α)

(
‖∇SF (Ω∗0)‖∞ +

∥∥∥RS(∆̃)
∥∥∥
∞

)
+ (1− α)λ+

(
‖∇NF (Ω∗0)‖∞ +

∥∥∥RN (∆̃)
∥∥∥
∞

)
≤(2− α)

(
‖∇F (Ω∗0)‖∞ +

∥∥∥R(∆̃)
∥∥∥
∞

)
+ (1− α)λ, (24)

where we have used in the first inequality, and the third inequality is due to Assumption 4.

Now, we study ‖∇F (Ω∗0)‖∞.By Lemma 4 and the assumption on λ in Theorem 1, ‖∇F (Θ∗)‖∞ ≤
αC4

4

√
log p
n ≤ αλ

4 ,
with probability larger than 1− εd.

It remains to control
∥∥∥R(∆̃)

∥∥∥
∞

. According to Assumption 5 and Lemma 4,

∥∥∥R(∆̃)
∥∥∥
∞
≤ C3‖∆‖2∞ ≤ C3r

2 ≤ C3(4C2λ)2 = λ
64C2

2C3

α

αλ

4
≤

(
C5

√
log p

n

)
64C2

2C3

α

αλ

4
, (25)

where in the last inequality we have used the assumption λ ≤ C5

√
log p
n in Theorem 1. Therefore, when we choose

n ≥
(
64C5C

2
2C3/α

)2
log p in Theorem 1, from (25), we can conclude that

∥∥∥R(∆̃)
∥∥∥
∞
≤ αλ

4 . As a result, λ
∥∥∥ẐN∥∥∥

∞
can

be bounded by λ
∥∥∥Z̃N∥∥∥

∞
< αλ/2 + αλ/2 + (1− α)λ = λ. Combined with Lemma 3, we demonstrate that any optimal

solution of (5) satisfies Θ̃N = 0. Furthermore, (9) controls the difference between the optimal solution of (5) and the real
parameter by

∥∥∥∆̃S

∥∥∥
∞
≤ r, by the fact that r ≤ ‖Θ∗S‖∞ in Theorem 1, Θ̂S shares the same sign with Θ∗S .

Auxiliary Lemmas

In this section, we provide and prove the used auxiliary lemmas.
Lemma 5. For the graphical model defined in Section 2 parameterized by Ω∗0, the conditional distribution of Zij follows

(Zij |Gi = gi) ∼ Z>i,−jΩ0·j +Mij + εij ,

where

[Zi,−j ]j′ =

{
Zij′ j′ 6= j

1 j′ = j
.

εij’s follow the standard normal distribution, and εij is independent with εi′j for j 6= j′ ∈ [p].
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Proof. According to Lemma 1, the node-wise conditional distribution of a PLA-GGM follows a Gaussian distribution.
Then, Lemma 5 can be proved.

Lemma 6. For a kernel regression on {xi, yi}ni=1 as the IID samples of (X,Y ). Assume that E|Y |s < ∞ and supX ∈
|Y |sf(X,Y )dY ≤ ∞. Given that n2ε−1h→∞ for ε < 1− s−1, we have

∑
x

∣∣∣∣∣ 1n
n∑
i=1

[Kh(xi − x)− E {Kh(xi − x)yi}]

∣∣∣∣∣ = Op

({
log(1/h)

nh

}1/2
)
.

Proof. Lemma 6 follows (Mack & Silverman, 1982).

Lemma 7. Suppose Y = {Y1, Y2 · · · , Yn} follows a multivariate Gaussian distribution, then max |Yi| follows a sub-
Gaussian distribution with variance max var(Yi). Further, for any t > 0, the tail probability can be controlled via

P {max |εij | ≥ t} ≤ exp

(
−t2

2

)
.

Lemma 8. For any ε > 0, there exists δ > 0 and N > 0, so that when n > N , we have

P
{∥∥∥∥X′j(I− Sj)Mj

n

∥∥∥∥
∞
≥ δc2n

}
≤ ε,

uniformly for j ∈ [p].

Proof. To start with, we review the definition of Sij

Sij =
[
1gi′>g∗z

>
i,−j 0

] (
D>ijWiDij

)−1
D>ijWi.

We first study D>ijWiDij :

D>ijWiDij =

 ∑n
i′=1 1

2
gi′>g

∗zi′,−jz
>
i′,−jψ (|gi′ − gi|/h)

∑n
i′=1 1

2
gi′>g

∗zi′,−jz
>
i′,−j

gi′−gi
h ψ (|gi′ − gi|/h)∑n

i′=1 1
2
gi′>g

∗zi′,−jz
>
i′−j

gi′−gi
h ψ (|gi′ − gi|/h)

∑n
i′=1 1

2
gi′>g

∗zi′,−jz
>
i′,−j

(
gi′−gi
h

)2
ψ (|gi′ − gi|/h)

 .
To bound D>ijWiDij uniformly over j, we consider a random vector Bi = [1gi′>g∗Z

>
i , 1]>, with observations

b1 =
[
1gi′>g∗z

>
1 , 1

]
...

bn =
[
1gi′>g∗z

>
n , 1

]
 .

Then, we study an auxiliary matrix

Oi =

 ∑n
i′=1 1

2
gi′>g

∗bi′b
>
i′ψ (|gi′ − gi|/h)

∑n
i′=1 1

2
gi′>g

∗bi′b
>
i′
gi′−gi
h ψ (|gi′ − gi|/h)∑n

i′=1 1
2
gi′>g

∗bi′b
>
i′
gi′−gi
h ψ (|gi′ − gi|/h)

∑n
i′=1 1

2
gi′>g

∗bi′b
>
i′

(
gi′−gi
h

)2
ψ (|gi′ − gi|/h)

 .
Therefore, the components of D>ijWiDij belong to Oi, and each part of Oi is in the form of a kernel regression. By
Lemma 6, we have

Oi = nf(gi)E
[
BiB

>
i | gi

]
⊗

[
1 0

0 µ2

]
{1 +Op(cn)} ,

which holds uniformly for i. Therefore,

D>ijWiDij = nf(gi)E
[
12
gi′>g

∗Zi,−jZ
>
i,−j | gi

]
⊗

[
1 0

0 µ2

]
{1 +Op(cn)} (26)
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holds uniformly for i with the same Op(cn) for every j. Define

αj(gi) =
[
Ω1·j · · · Ωn·j

]
.

By the same technique, uniformly for i and with the same Op(cn) for every j, we can show

D>ijWiMj = nf(gi)E
[
12
gi′>g

∗Zi,−jZ
>
i,−j | gi

]
⊗
[
1 0

]>
αj(gi) {1 +Op(cn)} , (27)

and

D>ijWixj = nf(gi)E
[
1gi′>g∗Zi,−jZ

>
i,−j | gi

]
⊗
[
1 0

]>
{1 +Op(cn)} . (28)

Combining (26) and (27) we have[
x̃>j 0

] (
D>ijWiDij

)−1
D>ijWiMj = x̃>j αj(gi) {1 +Op(cn)} . (29)

Similarly, combining (26) and (28), we have

x′ij = xij − x̃ijE−1
[
12
gi′>g

∗Zi,−jZ
>
i | gi

]
E
[
1gi′>g∗Zi,−jZ

>
i,−j | gi

]
. (30)

Next, we follow the rationale of the Lemma A.4 in (Fan et al., 2005), and combine (29) and (30). Finally, we have

x′j(I− Sj)Mj

n
= Op(c

2
n)

uniformly for j.

Lemma 9. For any ε > 0, there exists N > 0, so that when n > N , we have

∥∥x′>j (I− Sj)εj
∥∥
∞ ≥ 2

n∑
i=1

{
xij − E>

[
1gi′>g∗Zi,−jZ

>
i,−j | gi

]
E−1

[
12
gi′>g

∗Zi,−jZ
>
i | gi

]
x̃ij

}
εij ,

uniformly for j ∈ [p] with probability less than ε.

Proof. By definition, we have

x′>j (I− Sj)εj =

n∑
i=1

x′ij

{
εij −

[
x̃>ij 0

] (
D>ijWiDij

)−1
D>ijWiεj

}
.

Using the technique in (26), we have[
x̃>ij 0

] (
D>ijWiDij

)−1
D>ijWiεj = x̃>ijE−1

[
12
gi′>g

∗Zi,−jZ
>
i | gi

]
E
[
x̃>ij | gi

]
Op(cn).

Therefore,

x′>j (I− Sj)εj =

n∑
i=1

{
xij − E>

[
1gi′>g∗Zi,−jZ

>
i,−j | gi

]
E−1

[
12
gi′>g

∗Zi,−jZ
>
i | gi

]
x̃ij

}
εij [1 + op(1)],

uniformly for j.
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D. Proof of Theorem 2
We first study CON-GGMs. According to (6) and (Eaton, 1983), we have

[cov (Z |G = g)]
−1

=
[
ΣZZ −ΣZGΣ−1GGΣGZ

]−1
,

whose right-hand side has nothing to do with g. Therefore, the conditional distribution of Z |G = g follows a GGM with
parameter

[
ΣZZ −ΣZGΣ−1GGΣGZ

]−1
irrelevant to g. In other words CON-GGM is equivalent to assuming that G follows

a normal distribution and R(g) = 0 on the basis of the proposed PLA-GGM.

Then, we study LR-GGMs. Again, given G = g for any g, we have

[cov (Z |G = g)]
−1

= Ω0,

which has nothing to do with G either. Given G = g, the conditional distribution of Z |G = g follows a GGM with the
parameter Ω. Therefore, LR-GGM is a special case of the proposed PLA-GGM by assuming R(g) = 0.

E. Experiments
Data Simulation

To simulate the samples from PLA-GGMs, we first define

f(g) =



g − 10 g > 12

x+ (x−12)2
4 − 11 10 < g ≤ 12

0 −10 < g ≤ 10

x+ (x+12)2

4 + 11 −12 < g ≤ −10

g + 10 g ≤ −12

We provide the following procedure:

1. We consider p = 10, 20, 50, 100, and implement the following steps separately.

2. We randomly generate a sparse precision matrix as Ω0 Specifically, each element of Ω0 is drawn randomly to be
non-zero with probability 0.3.

3. A dense precision matrix W is generated to build the confounding.

4. We take {−400, · · · , 0, · · · , 399} as the confounders. For each g ∈ {−400, · · · , 0, · · · , 399}, the precision matrix is
selected to be Ω(g) = Ω0 + f(g)W, and a sample is generated by a GGM with parameter Ω(g). Thus, we get 800
samples.

Note that the procedure is equivalent to selecting g∗ = 10.

Glass Brains for Brain Function Connectivity Estimation

We report the glass brains from other angles for the brain function connectivity estimation experiment in Section 6.2.

Schizophrenia Diagnosis using Different 1{|g|≥g∗}’s

We conduct the analysis in Section 6.2 using different 1{|g|≥g∗}’s. Specifically, we consider the function 1− exp
(
−kx2

)
/2

using k = 144, 150. The achieved accuracy using the parameter selected by the 10-fold cross validation and AIC are
reported in Figure 9. The performance of PLA-GGMs is not hugely affected when selecting 1{|g|≥g∗} in a reasonable range,
which is consistent with our analysis in Theorem 1. Note that, if we select k too large, the PPL method will be not applicable.
The reason is that a large k corresponds to a small g∗, and will induce few non-confounded samples observed. As a result,(
D>ijWiDij

)
will be singular. In practice, if we use a relative large g∗ corresponding to a small k, (2) will tend to be like

R(g) = 0 used in CON-GGMs and LR-GGMs.
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Figure 5: Controls using PLA-GGMs

Figure 6: Patients using PLA-GGMs

Figure 7: Controls using LR-GGMs
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Figure 8: Patients using LR-GGMs
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(b) k = 144
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(c) k = 150

Figure 9: Diagnosis using different 1{|g|≥g∗}’s.


