Partially Linear Additive Gaussian Graphical Models

Supplements

A. Proof of Theorem 1

Following the definition, we can derive the PL for the PLA-GGM as:
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Then Lemma 1 can be proved by the definition of z; _;.

B. Proof of Lemma 2

According to the analysis in Section 3.1, we treat the PL as p partially-linear additive linear regressions. Then, for each
regression, we can derive M;; as the estimation to the smooth part following the rationale in (Fan et al., 2005). Combining
the results for every regression, we can derive Lemma 2.

C. Proof of Theorem 1

In this Section, we prove the y/n-sparsistency of the L;-regularized MPPLE by following the widely-used primal-dual
witness proof technique (Wainwright, 2009; Ravikumar et al., 2010; Yang & Ravikumar, 2011; Yang et al., 2015a). PDW is
characterized by the following Lemma 3:

Lemma 3. Let € be an optimal solution to (5), and 7 be the corresponding dual solution. If V4 satisfies H y/ NH < 1, then
oo

any given optimal solution to (5) flo satisfies flo 1 = 0. Moreover, if Hgg is positive definite, then the solution to (5) is
unique.

Proof. Specifically, following the same rationale as Lemma 1 in Wainwright 2009, Lemma 1 in Ravikumar et al. 2010, and
Lemma 2 in Yang & Ravikumar 2011, we can derive Lemma 3 characterizing the optimal solution of (5). O

Bound | VF(25)

lloo

Before we use the PDW, we first provide a Lemma bounding ||V F(€)||,, which has been shown to be vital for
PDW (Wainwright, 2009; Ravikumar et al., 2010; Yang & Ravikumar, 2011; Yang et al., 2015a).

Lemma 4. Let r := 4C5\. For any €5 > 0, with probability of at least 1 — ¢y, there exists Cy > 0 and Ny > 0 satisfying

the following two inequalities:
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forn > Ng.

Proof. We prove (8) and (9) in turn.
PROOF OF (8)

To begin with, we prove (8). We define
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We use the F' to denote the PPL defined in Definition 1. Then, the derivative of F’ (QS j) is:
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where []; denotes the j™ component of the vector. For the ease of presentation, we define
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whose ;7" component is just the target value
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Therefore, we focus on bounding (11). Then,
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where the second equality is due to Lemma 5.
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We fist study Z: according ot Lemma 8, for any ¢, > 0, there exists §, > 0 and N, > 0 satisfying
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Now, we study M According to Lemma 9, we have
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with n > N,.

According to Assumption 1
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. . T (1-S;)e; . .
uniformly for j. Note that MIS a p x 1 vector. Therefore, for the ;' th component, we have
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It can be shown that (%) and ( 4 73 = ) are independent and follow chi-squared distribution with degree equal to

1.

By Lemma 1 in (Laurent & Massart, 2000), the linear combinition of chi-squared random variables satisfies:
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for any €. > 0. Combing the previous four probabilistic bounds, we can derive
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Taking (14) and (15) into (13), we can derive
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Then, by the definition of op(l), for any €, > 0, there exists IV} so that for n > Ny:
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Combining (16) and (17), we derive
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by a union bound. Eventually, according to (12) and (18), and by setting €. = 2log p we prove:
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with probability larger than 1 — €, — €, — 2p~". Thus, for any €4 > 0, there exists C; > 0 and Ng > 0
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with probability larger than 1 — €4, for n > Ny.

PROOF OF (9)

To prove (9), we use the fixed point method by defining a map G(Ag) := —Hgé {VSF(QSS +Ag) + )\ZS} + Ag. If
|A|l, <, by Taylor expansion of V g F (€25 + A) centered at V g F'(Q2f)),

|G(As)ll | —H5s [VsF(Ss) + HssAs + Rs(A) + \Zs|+As ||
= | -H58 (VsF(@5s) + Rs() + 225 )|

<[54 (IVsF (68 + 1B (A + M| 25| )
<Co(A+ 312 + \) = CyC3r2 + 205\,

where the inequality is due to Assumption 4 and Assumption 5, and |V F'(©*)||, < X with a high probability, according
to (8). Then, based on the definition of r, we can derive the upper bound of ||G(Ag)||, as |G(As)|| <r/2+7/2=7.

Therefore, according to the fixed point theorem (Ortega & Rheinboldt, 2000; Yang & Ravikumar, 2011), there exists A g
satisfying G(Ag) = Ag, which indicates Vg F (2§ + A) + AZg = 0. The optimal solution to (20) is unique, and thus

Ag = Ag. Therefore, HA SH < r, with probability larger than 1 — €. O

PDW

By Lemma 3, we can prove the sparsistency by building an optimal solution to (5) satisfying the strict dual feasibility (SDF)

defined as HZ N H < 1, which is summarized. Therefore, we now build a solution by solving a restricted problem.

SOLVE A RESTRICTED PROBLEM
First of all, we derive the KKT condition of (5):
VF(Qo) + A\Z = 0. (19)

To construct an optimal primal-dual pair solution, we define Qo as an optimal solution to the restricted problem:

Qo = rginF(Qo) + A|Qoll;, (20)

with Qo = 0. Q is unique due to Lemma 3. Then, we define the subgradient corresponding to Qq as Z. Therefore,
(QO7 Z) is a pair of optimal solutions to the restricted problem (20). Z s is determined according to the values of QOS via
the KKT conditions of (20). Thus we have

VsF(®)+ \Zg = 0, (1)

where V g represents the gradient components with respect to .S. Letting Qo = Qo, we determine Zy according to (19). It
now remains to show that Z  satisfies SDF.
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SDF

Now, we demonstrate that © and Z satisfy SDF. We define A =06 -0 By (21), and by the Taylor expansion of
V s F(£), we have that ) } 3
HssAg + VsF(QS) + Rs(A) + g =0,

which means R ~ )
Ag=Hgl |-VsF() — Rs(A) - M\zs| , (22)

where Hgg is positive definite and hence invertible.
By the definition of Q and Z,
VF(Q)+ M =0= VF(Q) +HA + R(Q) + )\ =0= VyF(O) + HysAg + Ry(A) + \Zy = 0. (23)

Due to (22),
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Further, we use the Assumption 4, )
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<2-a) (IVF@)ll.. +||R@A)|_) + -, (24)

where we have used in the first inequality, and the third inequality is due to Assumption 4.

Now, we study ||V F(£25)]|..By Lemma 4 and the assumption on A in Theorem 1, || VF(©*)| < 254,/ k’% < 2
with probability larger than 1 — €.

loo

It remains to control HR(A) H . According to Assumption 5 and Lemma 4,
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where in the last inequality we have used the assumption A < Cj in Theorem 1. Therefore, when we choose

n > (640502203/a)2 log p in Theorem 1, from (25), we can conclude that HR(A)H < %. As a result, )\HZNH can
o0 o0

be bounded by )\HZN H < ar/2+4+ ar/2+ (1 — a)\ = A. Combined with Lemma 3, we demonstrate that any optimal
%0

solution of (5) satisfies ® 5 = 0. Furthermore, (9) controls the difference between the optimal solution of (5) and the real

parameter by HA SH < r, by the fact that < ||@%]| _ in Theorem 1, C) s shares the same sign with ©%.

Auxiliary Lemmas

In this section, we provide and prove the used auxiliary lemmas.

Lemma 5. For the graphical model defined in Section 2 parameterized by €, the conditional distribution of Z;; follows

(Zij | Gi = gi) ~ sz‘jQO-j + M;; + €,

2, ], =% 7T
e N

€ s follow the standard normal distribution, and €;; is independent with €;/; for j # j' € [p].

where
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Proof. According to Lemma 1, the node-wise conditional distribution of a PLA-GGM follows a Gaussian distribution.
Then, Lemma 5 can be proved. O

Lemma 6. For a kernel regression on {x;,y;}.—, as the IID samples of (X,Y). Assume that E|Y|* < co and supy €
[YI°f(X,Y)dY < cc. Given that n**=*h — oo for e < 1 — s~ 1, we have

- o 1/2
> %Z (K (2 — ) — E{Kp( _x)yi}]‘ ~0, ({lgy(llh/h)} ) _

x i=1
Proof. Lemma 6 follows (Mack & Silverman, 1982). O]
Lemma 7. Suppose Y = {Y1,Y2---,Y,} follows a multivariate Gaussian distribution, then max |Y;| follows a sub-

Gaussian distribution with variance max var(Y;). Further, for any t > 0, the tail probability can be controlled via

—¢2
P {max|e;;| >t} < exp <2) .
Lemma 8. For any € > 0, there exists 6 > 0 and N > 0, so that when n > N, we have

X (I—-S,)M,
P{HJ(])] zgci}ga
n oo

uniformly for j € [p].
Proof. To start with, we review the definition of S;;
-1
Sij - |:]lg,i/>g*z;r—j 0:| (D;SWLDZ]) D;SWZ

We first study D;; W;Dy;:

Zwi 1]152]/>g*zl,—jzz’ —j Y (lgir — gil/h) E:L' 11§/>g*zt7 ]Z;_jgf L) Y (g — gil/h)

DTWZD”: 2
" S 12 (g — /) Sy 12, sal s (25) 0 (g - ai/h)

To bound DiTjWiDij uniformly over j, we consider a random vector B; = [1, > 4~ Z[,1]7, with observations

by = [ﬂgi/>g*zir’ 1]

b, = []1.(1,;/>9*Z7—Lr7 1]

Then, we study an auxiliary matrix

Zyt 1 g/>g bl’bT¢(|gl/791‘/h) Zri 1 g/>g bZ’brgi/_gi Y (lgi — gil/h)
2
S 12 g bub] S (g — gl /) Y5y 12,5l (S52) 0 (g0 — gil/h)

0, =

Therefore, the components of DTW iD;; belong to O;, and each part of O; is in the form of a kernel regression. By
Lemma 6, we have

O; =nf(g:;)E BB/ | g;] ® {1+ 0p(cn)},

which holds uniformly for ¢. Therefore,

D/ WiDy; = nf(g)E [12 % ;2] ;| 9:] @ {1+ 0,(cn)} (26)
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holds uniformly for ¢ with the same O, (cy,) for every j. Define
a;(gi) = |:Ql~j Qn-j:| .
By the same technique, uniformly for ¢ and with the same O, (c,,) for every j, we can show
T 2 T T
DI WM, = nf(9)E [12,.,-Zi 52 | g:] @ [1 0] a(9) {1+ Oplen)}

and

-
D/ Wx; =nf(g:)E [1g, 54 Zi—;Z; _; | 9] ® [1 0} {14+ 0p(cn)} -
Combining (26) and (27) we have

[ 0] (DWiDy;) ™ DIWIM, =%y (90) {1 + Op(e)}
Similarly, combining (26) and (28), we have
X, = xij — X B! [13i,>g* Zi_iZ] | gl} E 1y, Zi 527, | i)
Next, we follow the rationale of the Lemma A.4 in (Fan et al., 2005), and combine (29) and (30). Finally, we have

X (- S,)M,

_ 2
L = 0,(c)

uniformly for j.
Lemma 9. For any € > 0, there exists N > 0, so that when n > N, we have
n
HXS‘T(I - Sj)ejHoo 22 Z {Xij -E' (L4, >4 Zi,—jZiT,—j | gi] E! []1_(271.,>g*zi,—jzj \ gi:| iij} €ijs
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uniformly for j € [p] with probability less than e.

Proof. By definition, we have
. -1
X (I—-8))e; = x, {e,»j — [xjj o] (D] WD) Djjwiej}.
Using the technique in (26), we have
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Therefore,
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uniformly for j.
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D. Proof of Theorem 2
We first study CON-GGMs. According to (6) and (Eaton, 1983), we have

_ _ 1
cov(Z|G=g)] ' = (222 — Bz268c636z]

whose right-hand side has nothing to do with g. Therefore, the conditional distribution of Z | G = g follows a GGM with

parameter [Ezz — Ezgzgézgz] -t irrelevant to g. In other words CON-GGM is equivalent to assuming that G follows
a normal distribution and R(g) = 0 on the basis of the proposed PLA-GGM.

Then, we study LR-GGMs. Again, given G = ¢ for any g, we have
[cov(Z |G = g)] " = o,
which has nothing to do with G either. Given G = ¢, the conditional distribution of Z | G = g follows a GGM with the
parameter 2. Therefore, LR-GGM is a special case of the proposed PLA-GGM by assuming R(g) = 0.
E. Experiments
Data Simulation

To simulate the samples from PLA-GGMs, we first define

g—10 g>12
(z—12)2
e+ 20 11 10<g <12
flg) =40 -10<g <10
2
4 @ L1 12<g< 10
g+ 10 g < —12

We provide the following procedure:

1. We consider p = 10, 20, 50, 100, and implement the following steps separately.

2. We randomly generate a sparse precision matrix as {)y Specifically, each element of {2y is drawn randomly to be
non-zero with probability 0.3.

3. A dense precision matrix W is generated to build the confounding.

4. We take {—400,---,0,---,399} as the confounders. For each g € {—400,---,0,--- ,399}, the precision matrix is
selected to be Q(g) = Ry + f(g)W, and a sample is generated by a GGM with parameter ©(g). Thus, we get 800
samples.

Note that the procedure is equivalent to selecting g* = 10.

Glass Brains for Brain Function Connectivity Estimation

We report the glass brains from other angles for the brain function connectivity estimation experiment in Section 6.2.

Schizophrenia Diagnosis using Different 1 > +}’s

We conduct the analysis in Section 6.2 using different 174> 4+1’s. Specifically, we consider the function 1 — exp(—ka) /2
using k = 144, 150. The achieved accuracy using the parameter selected by the 10-fold cross validation and AIC are
reported in Figure 9. The performance of PLA-GGMs is not hugely affected when selecting 144>~} in a reasonable range,
which is consistent with our analysis in Theorem 1. Note that, if we select k too large, the PPL. method will be not applicable.
The reason is that a large k corresponds to a small g*, and will induce few non-confounded samples observed. As a result,
(D,;W;D;;) will be singular. In practice, if we use a relative large g* corresponding to a small k, (2) will tend to be like
R(g) = 0 used in CON-GGMs and LR-GGMs.
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Figure 5: Controls using PLA-GGMs

Figure 6: Patients using PLA-GGMs

Figure 7: Controls using LR-GGMs
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Figure 9: Diagnosis using different 1 ¢|g;>4+}’s.
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